1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
|
/* Copyright (c) 2020 tevador <tevador@gmail.com> */
/* See LICENSE for licensing information */
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "program.h"
#include "unreachable.h"
#include "siphash_rng.h"
/* instructions are generated until this CPU cycle */
#define TARGET_CYCLE 192
/* requirements for the program to be acceptable */
#define REQUIREMENT_SIZE 512
#define REQUIREMENT_MUL_COUNT 192
#define REQUIREMENT_LATENCY 195
/* R5 (x86 = r13) register cannot be used as the destination of INSTR_ADD_RS */
#define REGISTER_NEEDS_DISPLACEMENT 5
#define PORT_MAP_SIZE (TARGET_CYCLE + 4)
#define NUM_PORTS 3
#define MAX_RETRIES 1
#define LOG2_BRANCH_PROB 4
#define BRANCH_MASK 0x80000000
#define TRACE false
#define TRACE_PRINT(...) do { if (TRACE) printf(__VA_ARGS__); } while (false)
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* If the instruction is a multiplication. */
static inline bool is_mul(instr_type type) {
return type <= INSTR_MUL_R;
}
#ifdef HASHX_PROGRAM_STATS
/* If the instruction is a 64x64->128 bit multiplication. */
static inline bool is_wide_mul(instr_type type) {
return type < INSTR_MUL_R;
}
#endif
/* Ivy Bridge integer execution ports: P0, P1, P5 */
typedef enum execution_port {
PORT_NONE = 0,
PORT_P0 = 1,
PORT_P1 = 2,
PORT_P5 = 4,
PORT_P01 = PORT_P0 | PORT_P1,
PORT_P05 = PORT_P0 | PORT_P5,
PORT_P015 = PORT_P0 | PORT_P1 | PORT_P5
} execution_port;
static const char* execution_port_names[] = {
"PORT_NONE", "PORT_P0", "PORT_P1", "PORT_P01", "PORT_P5", "PORT_P05", "PORT_P15", "PORT_P015"
};
typedef struct instr_template {
instr_type type; /* instruction type */
const char* x86_asm; /* x86 assembly */
int x86_size; /* x86 code size */
int latency; /* latency in cycles */
execution_port uop1; /* ex. ports for the 1st uop */
execution_port uop2; /* ex. ports for the 2nd uop */
uint32_t immediate_mask; /* mask for imm32 */
instr_type group; /* instruction group */
bool imm_can_be_0; /* if imm32 can be zero */
bool distinct_dst; /* if dst and src must be distinct */
bool op_par_src; /* operation parameter is equal to src */
bool has_src; /* if the instruction has a source operand */
bool has_dst; /* if the instr. has a destination operand */
} instr_template;
typedef struct register_info {
int latency; /* cycle when the register value will be ready */
instr_type last_op; /* last op applied to the register */
uint32_t last_op_par; /* parameter of the last op (~0 = constant) */
} register_info;
typedef struct program_item {
const instr_template** templates;
uint32_t mask0;
uint32_t mask1;
bool duplicates;
} program_item;
typedef struct generator_ctx {
int cycle;
int sub_cycle;
int mul_count;
bool chain_mul;
int latency;
siphash_rng gen;
register_info registers[8];
execution_port ports[PORT_MAP_SIZE][NUM_PORTS];
} generator_ctx;
static const instr_template tpl_umulh_r = {
.type = INSTR_UMULH_R,
.x86_asm = "mul r",
.x86_size = 9, /* mov, mul, mov */
.latency = 4,
.uop1 = PORT_P1,
.uop2 = PORT_P5,
.immediate_mask = 0,
.group = INSTR_UMULH_R,
.imm_can_be_0 = false,
.distinct_dst = false,
.op_par_src = false,
.has_src = true,
.has_dst = true,
};
static const instr_template tpl_smulh_r = {
.type = INSTR_SMULH_R,
.x86_asm = "imul r",
.x86_size = 9, /* mov, mul, mov */
.latency = 4,
.uop1 = PORT_P1,
.uop2 = PORT_P5,
.immediate_mask = 0,
.group = INSTR_SMULH_R,
.imm_can_be_0 = false,
.distinct_dst = false,
.op_par_src = false,
.has_src = true,
.has_dst = true,
};
static const instr_template tpl_mul_r = {
.type = INSTR_MUL_R,
.x86_asm = "imul r,r",
.x86_size = 4,
.latency = 3,
.uop1 = PORT_P1,
.uop2 = PORT_NONE,
.immediate_mask = 0,
.group = INSTR_MUL_R,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = true,
.has_src = true,
.has_dst = true,
};
static const instr_template tpl_sub_r = {
.type = INSTR_SUB_R,
.x86_asm = "sub r,r",
.x86_size = 3,
.latency = 1,
.uop1 = PORT_P015,
.uop2 = PORT_NONE,
.immediate_mask = 0,
.group = INSTR_ADD_RS,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = true,
.has_src = true,
.has_dst = true,
};
static const instr_template tpl_xor_r = {
.type = INSTR_XOR_R,
.x86_asm = "xor r,r",
.x86_size = 3,
.latency = 1,
.uop1 = PORT_P015,
.uop2 = PORT_NONE,
.immediate_mask = 0,
.group = INSTR_XOR_R,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = true,
.has_src = true,
.has_dst = true,
};
static const instr_template tpl_add_rs = {
.type = INSTR_ADD_RS,
.x86_asm = "lea r,r+r*s",
.x86_size = 4,
.latency = 1,
.uop1 = PORT_P01,
.uop2 = PORT_NONE,
.immediate_mask = 3,
.group = INSTR_ADD_RS,
.imm_can_be_0 = true,
.distinct_dst = true,
.op_par_src = true,
.has_src = true,
.has_dst = true,
};
static const instr_template tpl_ror_c = {
.type = INSTR_ROR_C,
.x86_asm = "ror r,i",
.x86_size = 4,
.latency = 1,
.uop1 = PORT_P05,
.uop2 = PORT_NONE,
.immediate_mask = 63,
.group = INSTR_ROR_C,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = false,
.has_src = false,
.has_dst = true,
};
static const instr_template tpl_add_c = {
.type = INSTR_ADD_C,
.x86_asm = "add r,i",
.x86_size = 7,
.latency = 1,
.uop1 = PORT_P015,
.uop2 = PORT_NONE,
.immediate_mask = UINT32_MAX,
.group = INSTR_ADD_C,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = false,
.has_src = false,
.has_dst = true,
};
static const instr_template tpl_xor_c = {
.type = INSTR_XOR_C,
.x86_asm = "xor r,i",
.x86_size = 7,
.latency = 1,
.uop1 = PORT_P015,
.uop2 = PORT_NONE,
.immediate_mask = UINT32_MAX,
.group = INSTR_XOR_C,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = false,
.has_src = false,
.has_dst = true,
};
static const instr_template tpl_target = {
.type = INSTR_TARGET,
.x86_asm = "cmovz esi, edi",
.x86_size = 5, /* test, cmovz */
.latency = 1,
.uop1 = PORT_P015,
.uop2 = PORT_P015,
.immediate_mask = 0,
.group = INSTR_TARGET,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = false,
.has_src = false,
.has_dst = false,
};
static const instr_template tpl_branch = {
.type = INSTR_BRANCH,
.x86_asm = "jz target",
.x86_size = 10, /* or, test, jz */
.latency = 1,
.uop1 = PORT_P015,
.uop2 = PORT_P015,
.immediate_mask = BRANCH_MASK,
.group = INSTR_BRANCH,
.imm_can_be_0 = false,
.distinct_dst = true,
.op_par_src = false,
.has_src = false,
.has_dst = false,
};
static const instr_template* instr_lookup[] = {
&tpl_ror_c,
&tpl_xor_c,
&tpl_add_c,
&tpl_add_c,
&tpl_sub_r,
&tpl_xor_r,
&tpl_xor_c,
&tpl_add_rs,
};
static const instr_template* wide_mul_lookup[] = {
&tpl_smulh_r,
&tpl_umulh_r
};
static const instr_template* mul_lookup = &tpl_mul_r;
static const instr_template* target_lookup = &tpl_target;
static const instr_template* branch_lookup = &tpl_branch;
static const program_item item_mul = {
.templates = &mul_lookup,
.mask0 = 0,
.mask1 = 0,
.duplicates = true
};
static const program_item item_target = {
.templates = &target_lookup,
.mask0 = 0,
.mask1 = 0,
.duplicates = true
};
static const program_item item_branch = {
.templates = &branch_lookup,
.mask0 = 0,
.mask1 = 0,
.duplicates = true
};
static const program_item item_wide_mul = {
.templates = wide_mul_lookup,
.mask0 = 1,
.mask1 = 1,
.duplicates = true
};
static const program_item item_any = {
.templates = instr_lookup,
.mask0 = 7,
.mask1 = 3, /* instructions that don't need a src register */
.duplicates = false
};
static const program_item* program_layout[] = {
&item_mul,
&item_target,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_wide_mul,
&item_any,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_mul,
&item_branch,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_wide_mul,
&item_any,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_mul,
&item_any,
&item_any,
&item_mul,
&item_any,
&item_any,
};
static const instr_template* select_template(generator_ctx* ctx, instr_type last_instr, int attempt) {
const program_item* item = program_layout[ctx->sub_cycle % 36];
const instr_template* tpl;
do {
int index = item->mask0 ? hashx_siphash_rng_u8(&ctx->gen) & (attempt > 0 ? item->mask1 : item->mask0) : 0;
tpl = item->templates[index];
} while (!item->duplicates && tpl->group == last_instr);
return tpl;
}
static uint32_t branch_mask(siphash_rng* gen) {
uint32_t mask = 0;
int popcnt = 0;
while (popcnt < LOG2_BRANCH_PROB) {
int bit = hashx_siphash_rng_u8(gen) % 32;
uint32_t bitmask = 1U << bit;
if (!(mask & bitmask)) {
mask |= bitmask;
popcnt++;
}
}
return mask;
}
static void instr_from_template(const instr_template* tpl, siphash_rng* gen, instruction* instr) {
instr->opcode = tpl->type;
if (tpl->immediate_mask) {
if (tpl->immediate_mask == BRANCH_MASK) {
instr->imm32 = branch_mask(gen);
}
else do {
instr->imm32 = hashx_siphash_rng_u32(gen) & tpl->immediate_mask;
} while (instr->imm32 == 0 && !tpl->imm_can_be_0);
}
if (!tpl->op_par_src) {
if (tpl->distinct_dst) {
instr->op_par = UINT32_MAX;
}
else {
instr->op_par = hashx_siphash_rng_u32(gen);
}
}
if (!tpl->has_src) {
instr->src = -1;
}
if (!tpl->has_dst) {
instr->dst = -1;
}
}
static bool select_register(int available_regs[8], int regs_count, siphash_rng* gen, int* reg_out) {
if (regs_count == 0)
return false;
int index;
if (regs_count > 1) {
index = hashx_siphash_rng_u32(gen) % regs_count;
}
else {
index = 0;
}
*reg_out = available_regs[index];
return true;
}
static bool select_destination(const instr_template* tpl, instruction* instr, generator_ctx* ctx, int cycle) {
int available_regs[8];
int regs_count = 0;
/* Conditions for the destination register:
// * value must be ready at the required cycle
// * cannot be the same as the source register unless the instruction allows it
// - this avoids optimizable instructions such as "xor r, r" or "sub r, r"
// * register cannot be multiplied twice in a row unless chain_mul is true
// - this avoids accumulation of trailing zeroes in registers due to excessive multiplication
// - allowChainedMul is set to true if an attempt to find source/destination registers failed (this is quite rare, but prevents a catastrophic failure of the generator)
// * either the last instruction applied to the register or its source must be different than this instruction
// - this avoids optimizable instruction sequences such as "xor r1, r2; xor r1, r2" or "ror r, C1; ror r, C2" or "add r, C1; add r, C2"
// * register r5 cannot be the destination of the IADD_RS instruction (limitation of the x86 lea instruction) */
for (int i = 0; i < 8; ++i) {
bool available = ctx->registers[i].latency <= cycle;
available &= ((!tpl->distinct_dst) | (i != instr->src));
available &= (ctx->chain_mul | (tpl->group != INSTR_MUL_R) | (ctx->registers[i].last_op != INSTR_MUL_R));
available &= ((ctx->registers[i].last_op != tpl->group) | (ctx->registers[i].last_op_par != instr->op_par));
available &= ((instr->opcode != INSTR_ADD_RS) | (i != REGISTER_NEEDS_DISPLACEMENT));
available_regs[regs_count] = available ? i : 0;
regs_count += available;
}
return select_register(available_regs, regs_count, &ctx->gen, &instr->dst);
}
static bool select_source(const instr_template* tpl, instruction* instr, generator_ctx* ctx, int cycle) {
int available_regs[8];
int regs_count = 0;
/* all registers that are ready at the cycle */
for (int i = 0; i < 8; ++i) {
if (ctx->registers[i].latency <= cycle)
available_regs[regs_count++] = i;
}
/* if there are only 2 available registers for ADD_RS and one of them is r5, select it as the source because it cannot be the destination */
if (regs_count == 2 && instr->opcode == INSTR_ADD_RS) {
if (available_regs[0] == REGISTER_NEEDS_DISPLACEMENT || available_regs[1] == REGISTER_NEEDS_DISPLACEMENT) {
instr->op_par = instr->src = REGISTER_NEEDS_DISPLACEMENT;
return true;
}
}
if (select_register(available_regs, regs_count, &ctx->gen, &instr->src)) {
if (tpl->op_par_src)
instr->op_par = instr->src;
return true;
}
return false;
}
static int schedule_uop(execution_port uop, generator_ctx* ctx, int cycle, bool commit) {
/* The scheduling here is done optimistically by checking port availability in order P5 -> P0 -> P1 to not overload
port P1 (multiplication) by instructions that can go to any port. */
for (; cycle < PORT_MAP_SIZE; ++cycle) {
if ((uop & PORT_P5) && !ctx->ports[cycle][2]) {
if (commit) {
ctx->ports[cycle][2] = uop;
}
TRACE_PRINT("%s scheduled to port P5 at cycle %i (commit = %i)\n", execution_port_names[uop], cycle, commit);
return cycle;
}
if ((uop & PORT_P0) && !ctx->ports[cycle][0]) {
if (commit) {
ctx->ports[cycle][0] = uop;
}
TRACE_PRINT("%s scheduled to port P0 at cycle %i (commit = %i)\n", execution_port_names[uop], cycle, commit);
return cycle;
}
if ((uop & PORT_P1) != 0 && !ctx->ports[cycle][1]) {
if (commit) {
ctx->ports[cycle][1] = uop;
}
TRACE_PRINT("%s scheduled to port P1 at cycle %i (commit = %i)\n", execution_port_names[uop], cycle, commit);
return cycle;
}
}
return -1;
}
static int schedule_instr(const instr_template* tpl, generator_ctx* ctx, bool commit) {
if (tpl->uop2 == PORT_NONE) {
/* this instruction has only one uOP */
return schedule_uop(tpl->uop1, ctx, ctx->cycle, commit);
}
else {
/* instructions with 2 uOPs are scheduled conservatively by requiring both uOPs to execute in the same cycle */
for (int cycle = ctx->cycle; cycle < PORT_MAP_SIZE; ++cycle) {
int cycle1 = schedule_uop(tpl->uop1, ctx, cycle, false);
int cycle2 = schedule_uop(tpl->uop2, ctx, cycle, false);
if (cycle1 >= 0 && cycle1 == cycle2) {
if (commit) {
schedule_uop(tpl->uop1, ctx, cycle, true);
schedule_uop(tpl->uop2, ctx, cycle, true);
}
return cycle1;
}
}
}
return -1;
}
static void print_registers(const generator_ctx* ctx) {
for (int i = 0; i < 8; ++i) {
printf(" R%i = %i\n", i, ctx->registers[i].latency);
}
}
bool hashx_program_generate(const siphash_state* key, hashx_program* program) {
generator_ctx ctx = {
.cycle = 0,
.sub_cycle = 0, /* 3 sub-cycles = 1 cycle */
.mul_count = 0,
.chain_mul = false,
.latency = 0,
.ports = {{ 0 }}
};
hashx_siphash_rng_init(&ctx.gen, key);
#ifdef HASHX_RNG_CALLBACK
ctx.gen.callback = program->rng_callback;
ctx.gen.callback_user_data = program->rng_callback_user_data;
#endif
for (int i = 0; i < 8; ++i) {
ctx.registers[i].last_op = -1;
ctx.registers[i].latency = 0;
ctx.registers[i].last_op_par = (uint32_t)-1;
}
program->code_size = 0;
int attempt = 0;
instr_type last_instr = -1;
#ifdef HASHX_PROGRAM_STATS
program->x86_size = 0;
#endif
while (program->code_size < HASHX_PROGRAM_MAX_SIZE) {
instruction* instr = &program->code[program->code_size];
TRACE_PRINT("CYCLE: %i/%i\n", ctx.sub_cycle, ctx.cycle);
/* select an instruction template */
const instr_template* tpl = select_template(&ctx, last_instr, attempt);
last_instr = tpl->group;
TRACE_PRINT("Template: %s\n", tpl->x86_asm);
instr_from_template(tpl, &ctx.gen, instr);
/* calculate the earliest cycle when this instruction (all of its uOPs) can be scheduled for execution */
int scheduleCycle = schedule_instr(tpl, &ctx, false);
if (scheduleCycle < 0) {
TRACE_PRINT("Unable to map operation '%s' to execution port (cycle %i)\n", tpl->x86_asm, ctx.cycle);
/* __debugbreak(); */
break;
}
ctx.chain_mul = attempt > 0;
/* find a source register (if applicable) that will be ready when this instruction executes */
if (tpl->has_src) {
if (!select_source(tpl, instr, &ctx, scheduleCycle)) {
TRACE_PRINT("; src STALL (attempt %i)\n", attempt);
if (attempt++ < MAX_RETRIES) {
continue;
}
if (TRACE) {
printf("; select_source FAILED at cycle %i\n", ctx.cycle);
print_registers(&ctx);
/* __debugbreak(); */
}
ctx.sub_cycle += 3;
ctx.cycle = ctx.sub_cycle / 3;
attempt = 0;
continue;
}
TRACE_PRINT("; src = r%i\n", instr->src);
}
/* find a destination register that will be ready when this instruction executes */
if (tpl->has_dst) {
if (!select_destination(tpl, instr, &ctx, scheduleCycle)) {
TRACE_PRINT("; dst STALL (attempt %i)\n", attempt);
if (attempt++ < MAX_RETRIES) {
continue;
}
if (TRACE) {
printf("; select_destination FAILED at cycle %i\n", ctx.cycle);
print_registers(&ctx);
/* __debugbreak(); */
}
ctx.sub_cycle += 3;
ctx.cycle = ctx.sub_cycle / 3;
attempt = 0;
continue;
}
TRACE_PRINT("; dst = r%i\n", instr->dst);
}
attempt = 0;
/* recalculate when the instruction can be scheduled for execution based on operand availability */
scheduleCycle = schedule_instr(tpl, &ctx, true);
if (scheduleCycle < 0) {
TRACE_PRINT("Unable to map operation '%s' to execution port (cycle %i)\n", tpl->x86_asm, ctx.cycle);
break;
}
/* terminating condition */
if (scheduleCycle >= TARGET_CYCLE) {
break;
}
if (tpl->has_dst) {
register_info* ri = &ctx.registers[instr->dst];
int retireCycle = scheduleCycle + tpl->latency;
ri->latency = retireCycle;
ri->last_op = tpl->group;
ri->last_op_par = instr->op_par;
ctx.latency = MAX(retireCycle, ctx.latency);
TRACE_PRINT("; RETIRED at cycle %i\n", retireCycle);
}
program->code_size++;
#ifdef HASHX_PROGRAM_STATS
program->x86_size += tpl->x86_size;
#endif
ctx.mul_count += is_mul(instr->opcode);
++ctx.sub_cycle;
ctx.sub_cycle += (tpl->uop2 != PORT_NONE);
ctx.cycle = ctx.sub_cycle / 3;
}
#ifdef HASHX_PROGRAM_STATS
memset(program->asic_latencies, 0, sizeof(program->asic_latencies));
program->counter = ctx.gen.counter;
program->wide_mul_count = 0;
program->mul_count = ctx.mul_count;
/* Calculate ASIC latency:
Assumes 1 cycle latency for all operations and unlimited parallelization. */
for (size_t i = 0; i < program->code_size; ++i) {
instruction* instr = &program->code[i];
if (instr->dst < 0)
continue;
int last_dst = program->asic_latencies[instr->dst] + 1;
int lat_src = instr->dst != instr->src ? program->asic_latencies[instr->src] + 1 : 0;
program->asic_latencies[instr->dst] = MAX(last_dst, lat_src);
program->wide_mul_count += is_wide_mul(instr->opcode);
}
program->asic_latency = 0;
program->cpu_latency = 0;
for (int i = 0; i < 8; ++i) {
program->asic_latency = MAX(program->asic_latency, program->asic_latencies[i]);
program->cpu_latencies[i] = ctx.registers[i].latency;
program->cpu_latency = MAX(program->cpu_latency, program->cpu_latencies[i]);
}
program->ipc = program->code_size / (double)program->cpu_latency;
program->branch_count = 0;
memset(program->branches, 0, sizeof(program->branches));
if (TRACE) {
printf("; ALU port utilization:\n");
printf("; (* = in use, _ = idle)\n");
for (int i = 0; i < PORT_MAP_SIZE; ++i) {
printf("; %3i ", i);
for (int j = 0; j < NUM_PORTS; ++j) {
printf("%c", (ctx.ports[i][j] ? '*' : '_'));
}
printf("\n");
}
}
#endif
/* reject programs that don't meet the uniform complexity requirements */
/* this happens in less than 1 seed out of 10000 */
return
(program->code_size == REQUIREMENT_SIZE) &&
(ctx.mul_count == REQUIREMENT_MUL_COUNT) &&
(ctx.latency == REQUIREMENT_LATENCY - 1); /* cycles are numbered from 0 */
}
static const char* x86_reg_map[] = { "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" };
void hashx_program_asm_x86(const hashx_program* program) {
size_t target = 0;
for (size_t i = 0; i < program->code_size; ++i) {
const instruction* instr = &program->code[i];
switch (instr->opcode)
{
case INSTR_SUB_R:
printf("sub %s, %s\n", x86_reg_map[instr->dst], x86_reg_map[instr->src]);
break;
case INSTR_XOR_R:
printf("xor %s, %s\n", x86_reg_map[instr->dst], x86_reg_map[instr->src]);
break;
case INSTR_ADD_RS:
printf("lea %s, [%s+%s*%u]\n", x86_reg_map[instr->dst], x86_reg_map[instr->dst], x86_reg_map[instr->src], 1 << instr->imm32);
break;
case INSTR_MUL_R:
printf("imul %s, %s\n", x86_reg_map[instr->dst], x86_reg_map[instr->src]);
break;
case INSTR_ROR_C:
printf("ror %s, %u\n", x86_reg_map[instr->dst], instr->imm32);
break;
case INSTR_ADD_C:
printf("add %s, %i\n", x86_reg_map[instr->dst], instr->imm32);
break;
case INSTR_XOR_C:
printf("xor %s, %i\n", x86_reg_map[instr->dst], instr->imm32);
break;
case INSTR_UMULH_R:
printf("mov rax, %s\n", x86_reg_map[instr->dst]);
printf("mul %s\n", x86_reg_map[instr->src]);
printf("mov %s, rdx\n", x86_reg_map[instr->dst]);
break;
case INSTR_SMULH_R:
printf("mov rax, %s\n", x86_reg_map[instr->dst]);
printf("imul %s\n", x86_reg_map[instr->src]);
printf("mov %s, rdx\n", x86_reg_map[instr->dst]);
break;
case INSTR_TARGET:
printf("test edi, edi\n");
printf("target_%i: cmovz esi, edi\n", (int)i);
target = i;
break;
case INSTR_BRANCH:
printf("or edx, esi\n");
printf("test edx, %i\n", instr->imm32);
printf("jz target_%i\n", (int)target);
break;
default:
UNREACHABLE;
}
}
}
|