summaryrefslogtreecommitdiff
path: root/src/common/util.c
blob: 6a557c956038a8a5dc5b6f0caef4a687faa3e110 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/* Copyright (c) 2003, Roger Dingledine
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2018, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file util.c
 * \brief Common functions for strings, IO, network, data structures,
 * process control.
 **/

#include "orconfig.h"
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#define UTIL_PRIVATE
#include "common/util.h"
#include "lib/log/torlog.h"
#include "lib/crypt_ops/crypto_digest.h"
#include "lib/cc/torint.h"
#include "lib/container/smartlist.h"
#include "lib/fdio/fdio.h"
#include "lib/net/address.h"
#include "lib/sandbox/sandbox.h"
#include "lib/err/backtrace.h"
#include "lib/process/waitpid.h"
#include "lib/encoding/binascii.h"

#ifdef _WIN32
#include <io.h>
#include <direct.h>
#include <process.h>
#include <tchar.h>
#include <winbase.h>
#else /* !(defined(_WIN32)) */
#include <dirent.h>
#include <pwd.h>
#include <grp.h>
#endif /* defined(_WIN32) */

/* math.h needs this on Linux */
#ifndef _USE_ISOC99_
#define _USE_ISOC99_ 1
#endif
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <signal.h>

#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_ARPA_INET_H
#include <arpa/inet.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_SYS_SOCKET_H
#include <sys/socket.h>
#endif
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_MALLOC_MALLOC_H
#include <malloc/malloc.h>
#endif
#ifdef HAVE_MALLOC_H
#if !defined(OpenBSD) && !defined(__FreeBSD__)
/* OpenBSD has a malloc.h, but for our purposes, it only exists in order to
 * scold us for being so stupid as to autodetect its presence.  To be fair,
 * they've done this since 1996, when autoconf was only 5 years old. */
#include <malloc.h>
#endif /* !defined(OpenBSD) && !defined(__FreeBSD__) */
#endif /* defined(HAVE_MALLOC_H) */
#ifdef HAVE_MALLOC_NP_H
#include <malloc_np.h>
#endif
#ifdef HAVE_SYS_WAIT_H
#include <sys/wait.h>
#endif
#if defined(HAVE_SYS_PRCTL_H) && defined(__linux__)
#include <sys/prctl.h>
#endif

/* =====
 * Memory management
 * ===== */

DISABLE_GCC_WARNING(aggregate-return)
/** Call the platform malloc info function, and dump the results to the log at
 * level <b>severity</b>.  If no such function exists, do nothing. */
void
tor_log_mallinfo(int severity)
{
#ifdef HAVE_MALLINFO
  struct mallinfo mi;
  memset(&mi, 0, sizeof(mi));
  mi = mallinfo();
  tor_log(severity, LD_MM,
      "mallinfo() said: arena=%d, ordblks=%d, smblks=%d, hblks=%d, "
      "hblkhd=%d, usmblks=%d, fsmblks=%d, uordblks=%d, fordblks=%d, "
      "keepcost=%d",
      mi.arena, mi.ordblks, mi.smblks, mi.hblks,
      mi.hblkhd, mi.usmblks, mi.fsmblks, mi.uordblks, mi.fordblks,
      mi.keepcost);
#else /* !(defined(HAVE_MALLINFO)) */
  (void)severity;
#endif /* defined(HAVE_MALLINFO) */
}
ENABLE_GCC_WARNING(aggregate-return)

/* =====
 * Math
 * ===== */

/**
 * Returns the natural logarithm of d base e.  We defined this wrapper here so
 * to avoid conflicts with old versions of tor_log(), which were named log().
 */
double
tor_mathlog(double d)
{
  return log(d);
}

/** Return the long integer closest to <b>d</b>. We define this wrapper
 * here so that not all users of math.h need to use the right incantations
 * to get the c99 functions. */
long
tor_lround(double d)
{
#if defined(HAVE_LROUND)
  return lround(d);
#elif defined(HAVE_RINT)
  return (long)rint(d);
#else
  return (long)(d > 0 ? d + 0.5 : ceil(d - 0.5));
#endif /* defined(HAVE_LROUND) || ... */
}

/** Return the 64-bit integer closest to d.  We define this wrapper here so
 * that not all users of math.h need to use the right incantations to get the
 * c99 functions. */
int64_t
tor_llround(double d)
{
#if defined(HAVE_LLROUND)
  return (int64_t)llround(d);
#elif defined(HAVE_RINT)
  return (int64_t)rint(d);
#else
  return (int64_t)(d > 0 ? d + 0.5 : ceil(d - 0.5));
#endif /* defined(HAVE_LLROUND) || ... */
}

/** Transform a random value <b>p</b> from the uniform distribution in
 * [0.0, 1.0[ into a Laplace distributed value with location parameter
 * <b>mu</b> and scale parameter <b>b</b>. Truncate the final result
 * to be an integer in [INT64_MIN, INT64_MAX]. */
int64_t
sample_laplace_distribution(double mu, double b, double p)
{
  double result;
  tor_assert(p >= 0.0 && p < 1.0);

  /* This is the "inverse cumulative distribution function" from:
   * http://en.wikipedia.org/wiki/Laplace_distribution */
  if (p <= 0.0) {
    /* Avoid taking log(0.0) == -INFINITY, as some processors or compiler
     * options can cause the program to trap. */
    return INT64_MIN;
  }

  result = mu - b * (p > 0.5 ? 1.0 : -1.0)
                  * tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));

  return clamp_double_to_int64(result);
}

/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace
 * distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> to
 * <b>signal</b> based on the provided <b>random</b> value in [0.0, 1.0[.
 * The epsilon value must be between ]0.0, 1.0]. delta_f must be greater
 * than 0. */
int64_t
add_laplace_noise(int64_t signal_, double random_, double delta_f,
                  double epsilon)
{
  int64_t noise;

  /* epsilon MUST be between ]0.0, 1.0] */
  tor_assert(epsilon > 0.0 && epsilon <= 1.0);
  /* delta_f MUST be greater than 0. */
  tor_assert(delta_f > 0.0);

  /* Just add noise, no further signal */
  noise = sample_laplace_distribution(0.0,
                                      delta_f / epsilon,
                                      random_);

  /* Clip (signal + noise) to [INT64_MIN, INT64_MAX] */
  if (noise > 0 && INT64_MAX - noise < signal_)
    return INT64_MAX;
  else if (noise < 0 && INT64_MIN - noise > signal_)
    return INT64_MIN;
  else
    return signal_ + noise;
}

/* =====
 * String manipulation
 * ===== */

/* =====
 * Time
 * ===== */

#define TOR_USEC_PER_SEC 1000000

/** Return the difference between start->tv_sec and end->tv_sec.
 * Returns INT64_MAX on overflow and underflow.
 */
static int64_t
tv_secdiff_impl(const struct timeval *start, const struct timeval *end)
{
  const int64_t s = (int64_t)start->tv_sec;
  const int64_t e = (int64_t)end->tv_sec;

  /* This may not be the most efficient way of implemeting this check,
   * but it's easy to see that it's correct and doesn't overflow */

  if (s > 0 && e < INT64_MIN + s) {
    /* s is positive: equivalent to e - s < INT64_MIN, but without any
     * overflow */
    return INT64_MAX;
  } else if (s < 0 && e > INT64_MAX + s) {
    /* s is negative: equivalent to e - s > INT64_MAX, but without any
     * overflow */
    return INT64_MAX;
  }

  return e - s;
}

/** Return the number of microseconds elapsed between *start and *end.
 * Returns LONG_MAX on overflow and underflow.
 */
long
tv_udiff(const struct timeval *start, const struct timeval *end)
{
  /* Sanity check tv_usec */
  if (start->tv_usec > TOR_USEC_PER_SEC || start->tv_usec < 0) {
    log_warn(LD_GENERAL, "comparing times on microsecond detail with bad "
             "start tv_usec: " I64_FORMAT " microseconds",
             I64_PRINTF_ARG(start->tv_usec));
    return LONG_MAX;
  }

  if (end->tv_usec > TOR_USEC_PER_SEC || end->tv_usec < 0) {
    log_warn(LD_GENERAL, "comparing times on microsecond detail with bad "
             "end tv_usec: " I64_FORMAT " microseconds",
             I64_PRINTF_ARG(end->tv_usec));
    return LONG_MAX;
  }

  /* Some BSDs have struct timeval.tv_sec 64-bit, but time_t (and long) 32-bit
   */
  int64_t udiff;
  const int64_t secdiff = tv_secdiff_impl(start, end);

  /* end->tv_usec - start->tv_usec can be up to 1 second either way */
  if (secdiff > (int64_t)(LONG_MAX/1000000 - 1) ||
      secdiff < (int64_t)(LONG_MIN/1000000 + 1)) {
    log_warn(LD_GENERAL, "comparing times on microsecond detail too far "
             "apart: " I64_FORMAT " seconds", I64_PRINTF_ARG(secdiff));
    return LONG_MAX;
  }

  /* we'll never get an overflow here, because we check that both usecs are
   * between 0 and TV_USEC_PER_SEC. */
  udiff = secdiff*1000000 + ((int64_t)end->tv_usec - (int64_t)start->tv_usec);

  /* Some compilers are smart enough to work out this is a no-op on L64 */
#if SIZEOF_LONG < 8
  if (udiff > (int64_t)LONG_MAX || udiff < (int64_t)LONG_MIN) {
    return LONG_MAX;
  }
#endif

  return (long)udiff;
}

/** Return the number of milliseconds elapsed between *start and *end.
 * If the tv_usec difference is 500, rounds away from zero.
 * Returns LONG_MAX on overflow and underflow.
 */
long
tv_mdiff(const struct timeval *start, const struct timeval *end)
{
  /* Sanity check tv_usec */
  if (start->tv_usec > TOR_USEC_PER_SEC || start->tv_usec < 0) {
    log_warn(LD_GENERAL, "comparing times on millisecond detail with bad "
             "start tv_usec: " I64_FORMAT " microseconds",
             I64_PRINTF_ARG(start->tv_usec));
    return LONG_MAX;
  }

  if (end->tv_usec > TOR_USEC_PER_SEC || end->tv_usec < 0) {
    log_warn(LD_GENERAL, "comparing times on millisecond detail with bad "
             "end tv_usec: " I64_FORMAT " microseconds",
             I64_PRINTF_ARG(end->tv_usec));
    return LONG_MAX;
  }

  /* Some BSDs have struct timeval.tv_sec 64-bit, but time_t (and long) 32-bit
   */
  int64_t mdiff;
  const int64_t secdiff = tv_secdiff_impl(start, end);

  /* end->tv_usec - start->tv_usec can be up to 1 second either way, but the
   * mdiff calculation may add another temporary second for rounding.
   * Whether this actually causes overflow depends on the compiler's constant
   * folding and order of operations. */
  if (secdiff > (int64_t)(LONG_MAX/1000 - 2) ||
      secdiff < (int64_t)(LONG_MIN/1000 + 1)) {
    log_warn(LD_GENERAL, "comparing times on millisecond detail too far "
             "apart: " I64_FORMAT " seconds", I64_PRINTF_ARG(secdiff));
    return LONG_MAX;
  }

  /* Subtract and round */
  mdiff = secdiff*1000 +
      /* We add a million usec here to ensure that the result is positive,
       * so that the round-towards-zero behavior of the division will give
       * the right result for rounding to the nearest msec. Later we subtract
       * 1000 in order to get the correct result.
       * We'll never get an overflow here, because we check that both usecs are
       * between 0 and TV_USEC_PER_SEC. */
      ((int64_t)end->tv_usec - (int64_t)start->tv_usec + 500 + 1000000) / 1000
      - 1000;

  /* Some compilers are smart enough to work out this is a no-op on L64 */
#if SIZEOF_LONG < 8
  if (mdiff > (int64_t)LONG_MAX || mdiff < (int64_t)LONG_MIN) {
    return LONG_MAX;
  }
#endif

  return (long)mdiff;
}

/**
 * Converts timeval to milliseconds.
 */
int64_t
tv_to_msec(const struct timeval *tv)
{
  int64_t conv = ((int64_t)tv->tv_sec)*1000L;
  /* Round ghetto-style */
  conv += ((int64_t)tv->tv_usec+500)/1000L;
  return conv;
}

#ifdef _WIN32
HANDLE
load_windows_system_library(const TCHAR *library_name)
{
  TCHAR path[MAX_PATH];
  unsigned n;
  n = GetSystemDirectory(path, MAX_PATH);
  if (n == 0 || n + _tcslen(library_name) + 2 >= MAX_PATH)
    return 0;
  _tcscat(path, TEXT("\\"));
  _tcscat(path, library_name);
  return LoadLibrary(path);
}
#endif /* defined(_WIN32) */

/** Cast a given double value to a int64_t. Return 0 if number is NaN.
 * Returns either INT64_MIN or INT64_MAX if number is outside of the int64_t
 * range. */
int64_t
clamp_double_to_int64(double number)
{
  int exponent;

#if defined(MINGW_ANY) && GCC_VERSION >= 409
/*
  Mingw's math.h uses gcc's __builtin_choose_expr() facility to declare
  isnan, isfinite, and signbit.  But as implemented in at least some
  versions of gcc, __builtin_choose_expr() can generate type warnings
  even from branches that are not taken.  So, suppress those warnings.
*/
#define PROBLEMATIC_FLOAT_CONVERSION_WARNING
DISABLE_GCC_WARNING(float-conversion)
#endif /* defined(MINGW_ANY) && GCC_VERSION >= 409 */

/*
  With clang 4.0 we apparently run into "double promotion" warnings here,
  since clang thinks we're promoting a double to a long double.
 */
#if defined(__clang__)
#if __has_warning("-Wdouble-promotion")
#define PROBLEMATIC_DOUBLE_PROMOTION_WARNING
DISABLE_GCC_WARNING(double-promotion)
#endif
#endif /* defined(__clang__) */

  /* NaN is a special case that can't be used with the logic below. */
  if (isnan(number)) {
    return 0;
  }

  /* Time to validate if result can overflows a int64_t value. Fun with
   * float! Find that exponent exp such that
   *    number == x * 2^exp
   * for some x with abs(x) in [0.5, 1.0). Note that this implies that the
   * magnitude of number is strictly less than 2^exp.
   *
   * If number is infinite, the call to frexp is legal but the contents of
   * are exponent unspecified. */
  frexp(number, &exponent);

  /* If the magnitude of number is strictly less than 2^63, the truncated
   * version of number is guaranteed to be representable. The only
   * representable integer for which this is not the case is INT64_MIN, but
   * it is covered by the logic below. */
  if (isfinite(number) && exponent <= 63) {
    return (int64_t)number;
  }

  /* Handle infinities and finite numbers with magnitude >= 2^63. */
  return signbit(number) ? INT64_MIN : INT64_MAX;

#ifdef PROBLEMATIC_DOUBLE_PROMOTION_WARNING
ENABLE_GCC_WARNING(double-promotion)
#endif
#ifdef PROBLEMATIC_FLOAT_CONVERSION_WARNING
ENABLE_GCC_WARNING(float-conversion)
#endif
}