aboutsummaryrefslogtreecommitdiff
path: root/src/common/crypto_rsa.c
blob: 0e006b0eb38bfa0a43ee3cd17c420c4e575ba75e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto_rsa.c
 * \brief Block of functions related with RSA utilities and operations.
 **/

#include "crypto_rsa.h"
#include "crypto.h"
#include "compat_openssl.h"
#include "crypto_curve25519.h"
#include "crypto_format.h"
#include "crypto_digest.h"
#include "crypto_rand.h"
#include "crypto_util.h"

DISABLE_GCC_WARNING(redundant-decls)

#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/conf.h>
#include <openssl/hmac.h>

ENABLE_GCC_WARNING(redundant-decls)

#include "torlog.h"
#include "util.h"
#include "util_format.h"

/** Declaration for crypto_pk_t structure. */
struct crypto_pk_t
{
  int refs; /**< reference count, so we don't have to copy keys */
  RSA *key; /**< The key itself */
};

/** Log all pending crypto errors at level <b>severity</b>.  Use
 * <b>doing</b> to describe our current activities.
 */
static void
crypto_log_errors(int severity, const char *doing)
{
  unsigned long err;
  const char *msg, *lib, *func;
  while ((err = ERR_get_error()) != 0) {
    msg = (const char*)ERR_reason_error_string(err);
    lib = (const char*)ERR_lib_error_string(err);
    func = (const char*)ERR_func_error_string(err);
    if (!msg) msg = "(null)";
    if (!lib) lib = "(null)";
    if (!func) func = "(null)";
    if (BUG(!doing)) doing = "(null)";
    tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
              doing, msg, lib, func);
  }
}

/** Return the number of bytes added by padding method <b>padding</b>.
 */
int
crypto_get_rsa_padding_overhead(int padding)
{
  switch (padding)
    {
    case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}

/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
 */
int
crypto_get_rsa_padding(int padding)
{
  switch (padding)
    {
    case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}

/** used internally: quicly validate a crypto_pk_t object as a private key.
 * Return 1 iff the public key is valid, 0 if obviously invalid.
 */
static int
crypto_pk_private_ok(const crypto_pk_t *k)
{
#ifdef OPENSSL_1_1_API
  if (!k || !k->key)
    return 0;

  const BIGNUM *p, *q;
  RSA_get0_factors(k->key, &p, &q);
  return p != NULL; /* XXX/yawning: Should we check q? */
#else /* !(defined(OPENSSL_1_1_API)) */
  return k && k->key && k->key->p;
#endif /* defined(OPENSSL_1_1_API) */
}

/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
crypto_pk_t *
crypto_new_pk_from_rsa_(RSA *rsa)
{
  crypto_pk_t *env;
  tor_assert(rsa);
  env = tor_malloc(sizeof(crypto_pk_t));
  env->refs = 1;
  env->key = rsa;
  return env;
}

/** Helper, used by tor-gencert.c.  Return the RSA from a
 * crypto_pk_t. */
RSA *
crypto_pk_get_rsa_(crypto_pk_t *env)
{
  return env->key;
}

/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t.  Iff
 * private is set, include the private-key portion of the key. Return a valid
 * pointer on success, and NULL on failure. */
MOCK_IMPL(EVP_PKEY *,
crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
{
  RSA *key = NULL;
  EVP_PKEY *pkey = NULL;
  tor_assert(env->key);
  if (private) {
    if (!(key = RSAPrivateKey_dup(env->key)))
      goto error;
  } else {
    if (!(key = RSAPublicKey_dup(env->key)))
      goto error;
  }
  if (!(pkey = EVP_PKEY_new()))
    goto error;
  if (!(EVP_PKEY_assign_RSA(pkey, key)))
    goto error;
  return pkey;
 error:
  if (pkey)
    EVP_PKEY_free(pkey);
  if (key)
    RSA_free(key);
  return NULL;
}

/** Allocate and return storage for a public key.  The key itself will not yet
 * be set.
 */
MOCK_IMPL(crypto_pk_t *,
crypto_pk_new,(void))
{
  RSA *rsa;

  rsa = RSA_new();
  tor_assert(rsa);
  return crypto_new_pk_from_rsa_(rsa);
}

/** Release a reference to an asymmetric key; when all the references
 * are released, free the key.
 */
void
crypto_pk_free_(crypto_pk_t *env)
{
  if (!env)
    return;

  if (--env->refs > 0)
    return;
  tor_assert(env->refs == 0);

  if (env->key)
    RSA_free(env->key);

  tor_free(env);
}

/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
 * Return 0 on success, -1 on failure.
 */
MOCK_IMPL(int,
crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
{
  tor_assert(env);

  if (env->key) {
    RSA_free(env->key);
    env->key = NULL;
  }

  {
    BIGNUM *e = BN_new();
    RSA *r = NULL;
    if (!e)
      goto done;
    if (! BN_set_word(e, 65537))
      goto done;
    r = RSA_new();
    if (!r)
      goto done;
    if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
      goto done;

    env->key = r;
    r = NULL;
  done:
    if (e)
      BN_clear_free(e);
    if (r)
      RSA_free(r);
  }

  if (!env->key) {
    crypto_log_errors(LOG_WARN, "generating RSA key");
    return -1;
  }

  return 0;
}

/** A PEM callback that always reports a failure to get a password */
static int
pem_no_password_cb(char *buf, int size, int rwflag, void *u)
{
  (void)buf;
  (void)size;
  (void)rwflag;
  (void)u;
  return 0;
}

/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
 * into <b>env</b>.  Return 0 on success, -1 on failure.  If len is -1,
 * the string is nul-terminated.
 */
int
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
                                       const char *s, ssize_t len)
{
  BIO *b;

  tor_assert(env);
  tor_assert(s);
  tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);

  /* Create a read-only memory BIO, backed by the string 's' */
  b = BIO_new_mem_buf((char*)s, (int)len);
  if (!b)
    return -1;

  if (env->key)
    RSA_free(env->key);

  env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL);

  BIO_free(b);

  if (!env->key) {
    crypto_log_errors(LOG_WARN, "Error parsing private key");
    return -1;
  }
  return 0;
}

/** Read a PEM-encoded private key from the file named by
 * <b>keyfile</b> into <b>env</b>.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
                                         const char *keyfile)
{
  char *contents;
  int r;

  /* Read the file into a string. */
  contents = read_file_to_str(keyfile, 0, NULL);
  if (!contents) {
    log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
    return -1;
  }

  /* Try to parse it. */
  r = crypto_pk_read_private_key_from_string(env, contents, -1);
  memwipe(contents, 0, strlen(contents));
  tor_free(contents);
  if (r)
    return -1; /* read_private_key_from_string already warned, so we don't.*/

  /* Make sure it's valid. */
  if (crypto_pk_check_key(env) <= 0)
    return -1;

  return 0;
}

/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
 * success, -1 on failure. */
static int
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
                                   size_t *len, int is_public)
{
  BUF_MEM *buf;
  BIO *b;
  int r;

  tor_assert(env);
  tor_assert(env->key);
  tor_assert(dest);

  b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
  if (!b)
    return -1;

  /* Now you can treat b as if it were a file.  Just use the
   * PEM_*_bio_* functions instead of the non-bio variants.
   */
  if (is_public)
    r = PEM_write_bio_RSAPublicKey(b, env->key);
  else
    r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);

  if (!r) {
    crypto_log_errors(LOG_WARN, "writing RSA key to string");
    BIO_free(b);
    return -1;
  }

  BIO_get_mem_ptr(b, &buf);

  *dest = tor_malloc(buf->length+1);
  memcpy(*dest, buf->data, buf->length);
  (*dest)[buf->length] = 0; /* nul terminate it */
  *len = buf->length;

  BIO_free(b);

  return 0;
}

/** PEM-encode the public key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
                                     size_t *len)
{
  return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
}

/** PEM-encode the private key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
                                     size_t *len)
{
  return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
}

/** Read a PEM-encoded public key from the first <b>len</b> characters of
 * <b>src</b>, and store the result in <b>env</b>.  Return 0 on success, -1 on
 * failure.
 */
int
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
                                      size_t len)
{
  BIO *b;

  tor_assert(env);
  tor_assert(src);
  tor_assert(len<INT_MAX);

  b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
  if (!b)
    return -1;

  BIO_write(b, src, (int)len);

  if (env->key)
    RSA_free(env->key);
  env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL);
  BIO_free(b);
  if (!env->key) {
    crypto_log_errors(LOG_WARN, "reading public key from string");
    return -1;
  }

  return 0;
}

/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
 * PEM-encoded.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
                                        const char *fname)
{
  BIO *bio;
  char *cp;
  long len;
  char *s;
  int r;

  tor_assert(crypto_pk_private_ok(env));

  if (!(bio = BIO_new(BIO_s_mem())))
    return -1;
  if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
      == 0) {
    crypto_log_errors(LOG_WARN, "writing private key");
    BIO_free(bio);
    return -1;
  }
  len = BIO_get_mem_data(bio, &cp);
  tor_assert(len >= 0);
  s = tor_malloc(len+1);
  memcpy(s, cp, len);
  s[len]='\0';
  r = write_str_to_file(fname, s, 0);
  BIO_free(bio);
  memwipe(s, 0, strlen(s));
  tor_free(s);
  return r;
}

/** Return true iff <b>env</b> has a valid key.
 */
int
crypto_pk_check_key(crypto_pk_t *env)
{
  int r;
  tor_assert(env);

  r = RSA_check_key(env->key);
  if (r <= 0)
    crypto_log_errors(LOG_WARN,"checking RSA key");
  return r;
}

/** Return true iff <b>key</b> contains the private-key portion of the RSA
 * key. */
int
crypto_pk_key_is_private(const crypto_pk_t *key)
{
  tor_assert(key);
  return crypto_pk_private_ok(key);
}

/** Return true iff <b>env</b> contains a public key whose public exponent
 * equals 65537.
 */
int
crypto_pk_public_exponent_ok(crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

  const BIGNUM *e;

#ifdef OPENSSL_1_1_API
  const BIGNUM *n, *d;
  RSA_get0_key(env->key, &n, &e, &d);
#else
  e = env->key->e;
#endif /* defined(OPENSSL_1_1_API) */
  return BN_is_word(e, 65537);
}

/** Compare the public-key components of a and b.  Return less than 0
 * if a\<b, 0 if a==b, and greater than 0 if a\>b.  A NULL key is
 * considered to be less than all non-NULL keys, and equal to itself.
 *
 * Note that this may leak information about the keys through timing.
 */
int
crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  int result;
  char a_is_non_null = (a != NULL) && (a->key != NULL);
  char b_is_non_null = (b != NULL) && (b->key != NULL);
  char an_argument_is_null = !a_is_non_null | !b_is_non_null;

  result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
  if (an_argument_is_null)
    return result;

  const BIGNUM *a_n, *a_e;
  const BIGNUM *b_n, *b_e;

#ifdef OPENSSL_1_1_API
  const BIGNUM *a_d, *b_d;
  RSA_get0_key(a->key, &a_n, &a_e, &a_d);
  RSA_get0_key(b->key, &b_n, &b_e, &b_d);
#else
  a_n = a->key->n;
  a_e = a->key->e;
  b_n = b->key->n;
  b_e = b->key->e;
#endif /* defined(OPENSSL_1_1_API) */

  tor_assert(a_n != NULL && a_e != NULL);
  tor_assert(b_n != NULL && b_e != NULL);

  result = BN_cmp(a_n, b_n);
  if (result)
    return result;
  return BN_cmp(a_e, b_e);
}

/** Compare the public-key components of a and b.  Return non-zero iff
 * a==b.  A NULL key is considered to be distinct from all non-NULL
 * keys, and equal to itself.
 *
 *  Note that this may leak information about the keys through timing.
 */
int
crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  return (crypto_pk_cmp_keys(a, b) == 0);
}

/** Return the size of the public key modulus in <b>env</b>, in bytes. */
size_t
crypto_pk_keysize(const crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

  return (size_t) RSA_size((RSA*)env->key);
}

/** Return the size of the public key modulus of <b>env</b>, in bits. */
int
crypto_pk_num_bits(crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

#ifdef OPENSSL_1_1_API
  /* It's so stupid that there's no other way to check that n is valid
   * before calling RSA_bits().
   */
  const BIGNUM *n, *e, *d;
  RSA_get0_key(env->key, &n, &e, &d);
  tor_assert(n != NULL);

  return RSA_bits(env->key);
#else /* !(defined(OPENSSL_1_1_API)) */
  tor_assert(env->key->n);
  return BN_num_bits(env->key->n);
#endif /* defined(OPENSSL_1_1_API) */
}

/** Increase the reference count of <b>env</b>, and return it.
 */
crypto_pk_t *
crypto_pk_dup_key(crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

  env->refs++;
  return env;
}

#ifdef TOR_UNIT_TESTS
/** For testing: replace dest with src.  (Dest must have a refcount
 * of 1) */
void
crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
{
  tor_assert(dest);
  tor_assert(dest->refs == 1);
  tor_assert(src);
  RSA_free(dest->key);
  dest->key = RSAPrivateKey_dup(src->key);
}
#endif /* defined(TOR_UNIT_TESTS) */

/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
 * Returns NULL on failure. */
crypto_pk_t *
crypto_pk_copy_full(crypto_pk_t *env)
{
  RSA *new_key;
  int privatekey = 0;
  tor_assert(env);
  tor_assert(env->key);

  if (crypto_pk_private_ok(env)) {
    new_key = RSAPrivateKey_dup(env->key);
    privatekey = 1;
  } else {
    new_key = RSAPublicKey_dup(env->key);
  }
  if (!new_key) {
    /* LCOV_EXCL_START
     *
     * We can't cause RSA*Key_dup() to fail, so we can't really test this.
     */
    log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
            privatekey?"private":"public");
    crypto_log_errors(LOG_ERR,
                      privatekey ? "Duplicating a private key" :
                      "Duplicating a public key");
    tor_fragile_assert();
    return NULL;
    /* LCOV_EXCL_STOP */
  }

  return crypto_new_pk_from_rsa_(new_key);
}

/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
 * bytes of data from <b>from</b>, with padding type 'padding',
 * storing the results on <b>to</b>.
 *
 * Returns the number of bytes written on success, -1 on failure.
 *
 * The encrypted data consists of:
 *   - The source data, padded and encrypted with the public key, if the
 *     padded source data is no longer than the public key, and <b>force</b>
 *     is false, OR
 *   - The beginning of the source data prefixed with a 16-byte symmetric key,
 *     padded and encrypted with the public key; followed by the rest of
 *     the source data encrypted in AES-CTR mode with the symmetric key.
 *
 * NOTE that this format does not authenticate the symmetrically encrypted
 * part of the data, and SHOULD NOT BE USED for new protocols.
 */
int
crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env,
                                char *to, size_t tolen,
                                const char *from,
                                size_t fromlen,
                                int padding, int force)
{
  int overhead, outlen, r;
  size_t pkeylen, symlen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
  pkeylen = crypto_pk_keysize(env);

  if (!force && fromlen+overhead <= pkeylen) {
    /* It all fits in a single encrypt. */
    return crypto_pk_public_encrypt(env,to,
                                    tolen,
                                    from,fromlen,padding);
  }
  tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
  tor_assert(tolen >= pkeylen);

  char key[CIPHER_KEY_LEN];
  crypto_rand(key, sizeof(key)); /* generate a new key. */
  cipher = crypto_cipher_new(key);

  buf = tor_malloc(pkeylen+1);
  memcpy(buf, key, CIPHER_KEY_LEN);
  memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);

  /* Length of symmetrically encrypted data. */
  symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);

  outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
  if (outlen!=(int)pkeylen) {
    goto err;
  }
  r = crypto_cipher_encrypt(cipher, to+outlen,
                            from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);

  if (r<0) goto err;
  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen+symlen < INT_MAX);
  return (int)(outlen + symlen);
 err:

  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** Invert crypto_pk_obsolete_public_hybrid_encrypt. Returns the number of
 * bytes written on success, -1 on failure.
 *
 * NOTE that this format does not authenticate the symmetrically encrypted
 * part of the data, and SHOULD NOT BE USED for new protocols.
 */
int
crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env,
                                 char *to,
                                 size_t tolen,
                                 const char *from,
                                 size_t fromlen,
                                 int padding, int warnOnFailure)
{
  int outlen, r;
  size_t pkeylen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(fromlen < SIZE_T_CEILING);
  pkeylen = crypto_pk_keysize(env);

  if (fromlen <= pkeylen) {
    return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
                                     warnOnFailure);
  }

  buf = tor_malloc(pkeylen);
  outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
                                     warnOnFailure);
  if (outlen<0) {
    log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
           "Error decrypting public-key data");
    goto err;
  }
  if (outlen < CIPHER_KEY_LEN) {
    log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
           "No room for a symmetric key");
    goto err;
  }
  cipher = crypto_cipher_new(buf);
  if (!cipher) {
    goto err;
  }
  memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
  outlen -= CIPHER_KEY_LEN;
  tor_assert(tolen - outlen >= fromlen - pkeylen);
  r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
  if (r<0)
    goto err;
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen + fromlen < INT_MAX);
  return (int)(outlen + (fromlen-pkeylen));
 err:
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
 * in <b>env</b>, using the padding method <b>padding</b>.  On success,
 * write the result to <b>to</b>, and return the number of bytes
 * written.  On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
                         const char *from, size_t fromlen, int padding)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen<INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));

  r = RSA_public_encrypt((int)fromlen,
                         (unsigned char*)from, (unsigned char*)to,
                         env->key, crypto_get_rsa_padding(padding));
  if (r<0) {
    crypto_log_errors(LOG_WARN, "performing RSA encryption");
    return -1;
  }
  return r;
}

/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
 * in <b>env</b>, using the padding method <b>padding</b>.  On success,
 * write the result to <b>to</b>, and return the number of bytes
 * written.  On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
                          size_t tolen,
                          const char *from, size_t fromlen,
                          int padding, int warnOnFailure)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(env->key);
  tor_assert(fromlen<INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));
  if (!crypto_pk_key_is_private(env))
    /* Not a private key */
    return -1;

  r = RSA_private_decrypt((int)fromlen,
                          (unsigned char*)from, (unsigned char*)to,
                          env->key, crypto_get_rsa_padding(padding));

  if (r<0) {
    crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
                      "performing RSA decryption");
    return -1;
  }
  return r;
}

/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
 * public key in <b>env</b>, using PKCS1 padding.  On success, write the
 * signed data to <b>to</b>, and return the number of bytes written.
 * On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
MOCK_IMPL(int,
crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
                           size_t tolen,
                           const char *from, size_t fromlen))
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));
  r = RSA_public_decrypt((int)fromlen,
                         (unsigned char*)from, (unsigned char*)to,
                         env->key, RSA_PKCS1_PADDING);

  if (r<0) {
    crypto_log_errors(LOG_INFO, "checking RSA signature");
    return -1;
  }
  return r;
}

/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
 * <b>env</b>, using PKCS1 padding.  On success, write the signature to
 * <b>to</b>, and return the number of bytes written.  On failure, return
 * -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
                       const char *from, size_t fromlen)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));
  if (!crypto_pk_key_is_private(env))
    /* Not a private key */
    return -1;

  r = RSA_private_encrypt((int)fromlen,
                          (unsigned char*)from, (unsigned char*)to,
                          (RSA*)env->key, RSA_PKCS1_PADDING);
  if (r<0) {
    crypto_log_errors(LOG_WARN, "generating RSA signature");
    return -1;
  }
  return r;
}

/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
 * Return -1 on error, or the number of characters used on success.
 */
int
crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len)
{
  int len;
  unsigned char *buf = NULL;

  len = i2d_RSAPublicKey(pk->key, &buf);
  if (len < 0 || buf == NULL)
    return -1;

  if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
    OPENSSL_free(buf);
    return -1;
  }
  /* We don't encode directly into 'dest', because that would be illegal
   * type-punning.  (C99 is smarter than me, C99 is smarter than me...)
   */
  memcpy(dest,buf,len);
  OPENSSL_free(buf);
  return len;
}

/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
 * success and NULL on failure.
 */
crypto_pk_t *
crypto_pk_asn1_decode(const char *str, size_t len)
{
  RSA *rsa;
  unsigned char *buf;
  const unsigned char *cp;
  cp = buf = tor_malloc(len);
  memcpy(buf,str,len);
  rsa = d2i_RSAPublicKey(NULL, &cp, len);
  tor_free(buf);
  if (!rsa) {
    crypto_log_errors(LOG_WARN,"decoding public key");
    return NULL;
  }
  return crypto_new_pk_from_rsa_(rsa);
}

/** Given a private or public key <b>pk</b>, put a fingerprint of the
 * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
 * space).  Return 0 on success, -1 on failure.
 *
 * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
 * of the public key, converted to hexadecimal, in upper case, with a
 * space after every four digits.
 *
 * If <b>add_space</b> is false, omit the spaces.
 */
int
crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
{
  char digest[DIGEST_LEN];
  char hexdigest[HEX_DIGEST_LEN+1];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
  if (add_space) {
    crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
  } else {
    strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
  }
  return 0;
}

/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
 * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
 * bytes of space).  Return 0 on success, -1 on failure.
 *
 * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
 * of the ASN.1 encoding of the public key, converted to hexadecimal, in
 * upper case.
 */
int
crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
{
  char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
    return -1;
  }
  base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
  return 0;
}

/** Check a siglen-byte long signature at <b>sig</b> against
 * <b>datalen</b> bytes of data at <b>data</b>, using the public key
 * in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
 * SHA1(data).  Else return -1.
 */
MOCK_IMPL(int,
crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data,
                                  size_t datalen, const char *sig,
                                  size_t siglen))
{
  char digest[DIGEST_LEN];
  char *buf;
  size_t buflen;
  int r;

  tor_assert(env);
  tor_assert(data);
  tor_assert(sig);
  tor_assert(datalen < SIZE_T_CEILING);
  tor_assert(siglen < SIZE_T_CEILING);

  if (crypto_digest(digest,data,datalen)<0) {
    log_warn(LD_BUG, "couldn't compute digest");
    return -1;
  }
  buflen = crypto_pk_keysize(env);
  buf = tor_malloc(buflen);
  r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen);
  if (r != DIGEST_LEN) {
    log_warn(LD_CRYPTO, "Invalid signature");
    tor_free(buf);
    return -1;
  }
  if (tor_memneq(buf, digest, DIGEST_LEN)) {
    log_warn(LD_CRYPTO, "Signature mismatched with digest.");
    tor_free(buf);
    return -1;
  }
  tor_free(buf);

  return 0;
}

/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
 * <b>from</b>; sign the data with the private key in <b>env</b>, and
 * store it in <b>to</b>.  Return the number of bytes written on
 * success, and -1 on failure.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  int r;
  char digest[DIGEST_LEN];
  if (crypto_digest(digest,from,fromlen)<0)
    return -1;
  r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
 * public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
 * Return 0 on success, -1 on failure.
 */
int
crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out)
{
  char *buf;
  size_t buflen;
  int len;
  int rv = -1;

  buflen = crypto_pk_keysize(pk)*2;
  buf = tor_malloc(buflen);
  len = crypto_pk_asn1_encode(pk, buf, buflen);
  if (len < 0)
    goto done;

  if (crypto_digest(digest_out, buf, len) < 0)
    goto done;

  rv = 0;
  done:
  tor_free(buf);
  return rv;
}

/** Compute all digests of the DER encoding of <b>pk</b>, and store them
 * in <b>digests_out</b>.  Return 0 on success, -1 on failure. */
int
crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
{
  char *buf;
  size_t buflen;
  int len;
  int rv = -1;

  buflen = crypto_pk_keysize(pk)*2;
  buf = tor_malloc(buflen);
  len = crypto_pk_asn1_encode(pk, buf, buflen);
  if (len < 0)
    goto done;

  if (crypto_common_digests(digests_out, (char*)buf, len) < 0)
    goto done;

  rv = 0;
 done:
  tor_free(buf);
  return rv;
}

/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
 * Base64 encoding of the DER representation of the private key as a NUL
 * terminated string, and return it via <b>priv_out</b>.  Return 0 on
 * success, -1 on failure.
 *
 * It is the caller's responsibility to sanitize and free the resulting buffer.
 */
int
crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
{
  unsigned char *der = NULL;
  int der_len;
  int ret = -1;

  *priv_out = NULL;

  der_len = i2d_RSAPrivateKey(pk->key, &der);
  if (der_len < 0 || der == NULL)
    return ret;

  size_t priv_len = base64_encode_size(der_len, 0) + 1;
  char *priv = tor_malloc_zero(priv_len);
  if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
    *priv_out = priv;
    ret = 0;
  } else {
    tor_free(priv);
  }

  memwipe(der, 0, der_len);
  OPENSSL_free(der);
  return ret;
}

/** Given a string containing the Base64 encoded DER representation of the
 * private key <b>str</b>, decode and return the result on success, or NULL
 * on failure.
 */
crypto_pk_t *
crypto_pk_base64_decode(const char *str, size_t len)
{
  crypto_pk_t *pk = NULL;

  char *der = tor_malloc_zero(len + 1);
  int der_len = base64_decode(der, len, str, len);
  if (der_len <= 0) {
    log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
    goto out;
  }

  const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
  RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
  if (!rsa) {
    crypto_log_errors(LOG_WARN, "decoding private key");
    goto out;
  }

  pk = crypto_new_pk_from_rsa_(rsa);

  /* Make sure it's valid. */
  if (crypto_pk_check_key(pk) <= 0) {
    crypto_pk_free(pk);
    pk = NULL;
    goto out;
  }

 out:
  memwipe(der, 0, len + 1);
  tor_free(der);
  return pk;
}