summaryrefslogtreecommitdiff
path: root/src/common/crypto.c
blob: 062179deda3799bf34034036f8a2033182a706cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2016, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto.c
 * \brief Wrapper functions to present a consistent interface to
 * public-key and symmetric cryptography operations from OpenSSL and
 * other places.
 **/

#include "orconfig.h"

#ifdef _WIN32
#include <winsock2.h>
#include <windows.h>
#include <wincrypt.h>
/* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually
 * use either definition. */
#undef OCSP_RESPONSE
#endif

#define CRYPTO_PRIVATE
#include "crypto.h"
#include "compat_openssl.h"
#include "crypto_curve25519.h"
#include "crypto_ed25519.h"
#include "crypto_format.h"

DISABLE_GCC_WARNING(redundant-decls)

#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/conf.h>
#include <openssl/hmac.h>

ENABLE_GCC_WARNING(redundant-decls)

#if __GNUC__ && GCC_VERSION >= 402
#if GCC_VERSION >= 406
#pragma GCC diagnostic pop
#else
#pragma GCC diagnostic warning "-Wredundant-decls"
#endif
#endif

#ifdef HAVE_CTYPE_H
#include <ctype.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#ifdef HAVE_SYS_RANDOM_H
#include <sys/random.h>
#endif

#include "torlog.h"
#include "torint.h"
#include "aes.h"
#include "util.h"
#include "container.h"
#include "compat.h"
#include "sandbox.h"
#include "util_format.h"

#include "keccak-tiny/keccak-tiny.h"

#ifdef ANDROID
/* Android's OpenSSL seems to have removed all of its Engine support. */
#define DISABLE_ENGINES
#endif

#if OPENSSL_VERSION_NUMBER >= OPENSSL_VER(1,1,0,0,5) && \
  !defined(LIBRESSL_VERSION_NUMBER)
/* OpenSSL as of 1.1.0pre4 has an "new" thread API, which doesn't require
 * seting up various callbacks.
 *
 * OpenSSL 1.1.0pre4 has a messed up `ERR_remove_thread_state()` prototype,
 * while the previous one was restored in pre5, and the function made a no-op
 * (along with a deprecated annotation, which produces a compiler warning).
 *
 * While it is possible to support all three versions of the thread API,
 * a version that existed only for one snapshot pre-release is kind of
 * pointless, so let's not.
 */
#define NEW_THREAD_API
#endif

/** Longest recognized */
#define MAX_DNS_LABEL_SIZE 63

/** Largest strong entropy request */
#define MAX_STRONGEST_RAND_SIZE 256

#ifndef NEW_THREAD_API
/** A number of preallocated mutexes for use by OpenSSL. */
static tor_mutex_t **openssl_mutexes_ = NULL;
/** How many mutexes have we allocated for use by OpenSSL? */
static int n_openssl_mutexes_ = 0;
#endif

/** A public key, or a public/private key-pair. */
struct crypto_pk_t
{
  int refs; /**< reference count, so we don't have to copy keys */
  RSA *key; /**< The key itself */
};

/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
 * while we're waiting for the second.*/
struct crypto_dh_t {
  DH *dh; /**< The openssl DH object */
};

static int setup_openssl_threading(void);
static int tor_check_dh_key(int severity, const BIGNUM *bn);

/** Return the number of bytes added by padding method <b>padding</b>.
 */
static inline int
crypto_get_rsa_padding_overhead(int padding)
{
  switch (padding)
    {
    case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}

/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
 */
static inline int
crypto_get_rsa_padding(int padding)
{
  switch (padding)
    {
    case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
    default: tor_assert(0); return -1; // LCOV_EXCL_LINE
    }
}

/** Boolean: has OpenSSL's crypto been initialized? */
static int crypto_early_initialized_ = 0;

/** Boolean: has OpenSSL's crypto been initialized? */
static int crypto_global_initialized_ = 0;

/** Log all pending crypto errors at level <b>severity</b>.  Use
 * <b>doing</b> to describe our current activities.
 */
static void
crypto_log_errors(int severity, const char *doing)
{
  unsigned long err;
  const char *msg, *lib, *func;
  while ((err = ERR_get_error()) != 0) {
    msg = (const char*)ERR_reason_error_string(err);
    lib = (const char*)ERR_lib_error_string(err);
    func = (const char*)ERR_func_error_string(err);
    if (!msg) msg = "(null)";
    if (!lib) lib = "(null)";
    if (!func) func = "(null)";
    if (BUG(!doing)) doing = "(null)";
    tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
              doing, msg, lib, func);
  }
}

#ifndef DISABLE_ENGINES
/** Log any OpenSSL engines we're using at NOTICE. */
static void
log_engine(const char *fn, ENGINE *e)
{
  if (e) {
    const char *name, *id;
    name = ENGINE_get_name(e);
    id = ENGINE_get_id(e);
    log_notice(LD_CRYPTO, "Default OpenSSL engine for %s is %s [%s]",
               fn, name?name:"?", id?id:"?");
  } else {
    log_info(LD_CRYPTO, "Using default implementation for %s", fn);
  }
}
#endif

#ifndef DISABLE_ENGINES
/** Try to load an engine in a shared library via fully qualified path.
 */
static ENGINE *
try_load_engine(const char *path, const char *engine)
{
  ENGINE *e = ENGINE_by_id("dynamic");
  if (e) {
    if (!ENGINE_ctrl_cmd_string(e, "ID", engine, 0) ||
        !ENGINE_ctrl_cmd_string(e, "DIR_LOAD", "2", 0) ||
        !ENGINE_ctrl_cmd_string(e, "DIR_ADD", path, 0) ||
        !ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) {
      ENGINE_free(e);
      e = NULL;
    }
  }
  return e;
}
#endif

/* Returns a trimmed and human-readable version of an openssl version string
* <b>raw_version</b>. They are usually in the form of 'OpenSSL 1.0.0b 10
* May 2012' and this will parse them into a form similar to '1.0.0b' */
static char *
parse_openssl_version_str(const char *raw_version)
{
  const char *end_of_version = NULL;
  /* The output should be something like "OpenSSL 1.0.0b 10 May 2012. Let's
     trim that down. */
  if (!strcmpstart(raw_version, "OpenSSL ")) {
    raw_version += strlen("OpenSSL ");
    end_of_version = strchr(raw_version, ' ');
  }

  if (end_of_version)
    return tor_strndup(raw_version,
                      end_of_version-raw_version);
  else
    return tor_strdup(raw_version);
}

static char *crypto_openssl_version_str = NULL;
/* Return a human-readable version of the run-time openssl version number. */
const char *
crypto_openssl_get_version_str(void)
{
  if (crypto_openssl_version_str == NULL) {
    const char *raw_version = OpenSSL_version(OPENSSL_VERSION);
    crypto_openssl_version_str = parse_openssl_version_str(raw_version);
  }
  return crypto_openssl_version_str;
}

static char *crypto_openssl_header_version_str = NULL;
/* Return a human-readable version of the compile-time openssl version
* number. */
const char *
crypto_openssl_get_header_version_str(void)
{
  if (crypto_openssl_header_version_str == NULL) {
    crypto_openssl_header_version_str =
                        parse_openssl_version_str(OPENSSL_VERSION_TEXT);
  }
  return crypto_openssl_header_version_str;
}

/** Make sure that openssl is using its default PRNG. Return 1 if we had to
 * adjust it; 0 otherwise. */
STATIC int
crypto_force_rand_ssleay(void)
{
  RAND_METHOD *default_method;
  default_method = RAND_OpenSSL();
  if (RAND_get_rand_method() != default_method) {
    log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
               "a replacement the OpenSSL RNG. Resetting it to the default "
               "implementation.");
    RAND_set_rand_method(default_method);
    return 1;
  }
  return 0;
}

/** Set up the siphash key if we haven't already done so. */
int
crypto_init_siphash_key(void)
{
  static int have_seeded_siphash = 0;
  struct sipkey key;
  if (have_seeded_siphash)
    return 0;

  crypto_rand((char*) &key, sizeof(key));
  siphash_set_global_key(&key);
  have_seeded_siphash = 1;
  return 0;
}

/** Initialize the crypto library.  Return 0 on success, -1 on failure.
 */
int
crypto_early_init(void)
{
  if (!crypto_early_initialized_) {

    crypto_early_initialized_ = 1;

    ERR_load_crypto_strings();
    OpenSSL_add_all_algorithms();

    setup_openssl_threading();

    unsigned long version_num = OpenSSL_version_num();
    const char *version_str = OpenSSL_version(OPENSSL_VERSION);
    if (version_num == OPENSSL_VERSION_NUMBER &&
        !strcmp(version_str, OPENSSL_VERSION_TEXT)) {
      log_info(LD_CRYPTO, "OpenSSL version matches version from headers "
                 "(%lx: %s).", version_num, version_str);
    } else {
      log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the "
               "version we're running with. If you get weird crashes, that "
               "might be why. (Compiled with %lx: %s; running with %lx: %s).",
               (unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT,
               version_num, version_str);
    }

    crypto_force_rand_ssleay();

    if (crypto_seed_rng() < 0)
      return -1;
    if (crypto_init_siphash_key() < 0)
      return -1;

    curve25519_init();
    ed25519_init();
  }
  return 0;
}

/** Initialize the crypto library.  Return 0 on success, -1 on failure.
 */
int
crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
{
  if (!crypto_global_initialized_) {
    if (crypto_early_init() < 0)
      return -1;

    crypto_global_initialized_ = 1;

    if (useAccel > 0) {
#ifdef DISABLE_ENGINES
      (void)accelName;
      (void)accelDir;
      log_warn(LD_CRYPTO, "No OpenSSL hardware acceleration support enabled.");
#else
      ENGINE *e = NULL;

      log_info(LD_CRYPTO, "Initializing OpenSSL engine support.");
      ENGINE_load_builtin_engines();
      ENGINE_register_all_complete();

      if (accelName) {
        if (accelDir) {
          log_info(LD_CRYPTO, "Trying to load dynamic OpenSSL engine \"%s\""
                   " via path \"%s\".", accelName, accelDir);
          e = try_load_engine(accelName, accelDir);
        } else {
          log_info(LD_CRYPTO, "Initializing dynamic OpenSSL engine \"%s\""
                   " acceleration support.", accelName);
          e = ENGINE_by_id(accelName);
        }
        if (!e) {
          log_warn(LD_CRYPTO, "Unable to load dynamic OpenSSL engine \"%s\".",
                   accelName);
        } else {
          log_info(LD_CRYPTO, "Loaded dynamic OpenSSL engine \"%s\".",
                   accelName);
        }
      }
      if (e) {
        log_info(LD_CRYPTO, "Loaded OpenSSL hardware acceleration engine,"
                 " setting default ciphers.");
        ENGINE_set_default(e, ENGINE_METHOD_ALL);
      }
      /* Log, if available, the intersection of the set of algorithms
         used by Tor and the set of algorithms available in the engine */
      log_engine("RSA", ENGINE_get_default_RSA());
      log_engine("DH", ENGINE_get_default_DH());
#ifdef OPENSSL_1_1_API
      log_engine("EC", ENGINE_get_default_EC());
#else
      log_engine("ECDH", ENGINE_get_default_ECDH());
      log_engine("ECDSA", ENGINE_get_default_ECDSA());
#endif
      log_engine("RAND", ENGINE_get_default_RAND());
      log_engine("RAND (which we will not use)", ENGINE_get_default_RAND());
      log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
      log_engine("3DES-CBC", ENGINE_get_cipher_engine(NID_des_ede3_cbc));
      log_engine("AES-128-ECB", ENGINE_get_cipher_engine(NID_aes_128_ecb));
      log_engine("AES-128-CBC", ENGINE_get_cipher_engine(NID_aes_128_cbc));
#ifdef NID_aes_128_ctr
      log_engine("AES-128-CTR", ENGINE_get_cipher_engine(NID_aes_128_ctr));
#endif
#ifdef NID_aes_128_gcm
      log_engine("AES-128-GCM", ENGINE_get_cipher_engine(NID_aes_128_gcm));
#endif
      log_engine("AES-256-CBC", ENGINE_get_cipher_engine(NID_aes_256_cbc));
#ifdef NID_aes_256_gcm
      log_engine("AES-256-GCM", ENGINE_get_cipher_engine(NID_aes_256_gcm));
#endif

#endif
    } else {
      log_info(LD_CRYPTO, "NOT using OpenSSL engine support.");
    }

    if (crypto_force_rand_ssleay()) {
      if (crypto_seed_rng() < 0)
        return -1;
    }

    evaluate_evp_for_aes(-1);
    evaluate_ctr_for_aes();
  }
  return 0;
}

/** Free crypto resources held by this thread. */
void
crypto_thread_cleanup(void)
{
#ifndef NEW_THREAD_API
  ERR_remove_thread_state(NULL);
#endif
}

/** used internally: quicly validate a crypto_pk_t object as a private key.
 * Return 1 iff the public key is valid, 0 if obviously invalid.
 */
static int
crypto_pk_private_ok(const crypto_pk_t *k)
{
#ifdef OPENSSL_1_1_API
  if (!k || !k->key)
    return 0;

  const BIGNUM *p, *q;
  RSA_get0_factors(k->key, &p, &q);
  return p != NULL; /* XXX/yawning: Should we check q? */
#else
  return k && k->key && k->key->p;
#endif
}

/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
crypto_pk_t *
crypto_new_pk_from_rsa_(RSA *rsa)
{
  crypto_pk_t *env;
  tor_assert(rsa);
  env = tor_malloc(sizeof(crypto_pk_t));
  env->refs = 1;
  env->key = rsa;
  return env;
}

/** Helper, used by tor-checkkey.c and tor-gencert.c.  Return the RSA from a
 * crypto_pk_t. */
RSA *
crypto_pk_get_rsa_(crypto_pk_t *env)
{
  return env->key;
}

/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t.  Iff
 * private is set, include the private-key portion of the key. Return a valid
 * pointer on success, and NULL on failure. */
MOCK_IMPL(EVP_PKEY *,
          crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
{
  RSA *key = NULL;
  EVP_PKEY *pkey = NULL;
  tor_assert(env->key);
  if (private) {
    if (!(key = RSAPrivateKey_dup(env->key)))
      goto error;
  } else {
    if (!(key = RSAPublicKey_dup(env->key)))
      goto error;
  }
  if (!(pkey = EVP_PKEY_new()))
    goto error;
  if (!(EVP_PKEY_assign_RSA(pkey, key)))
    goto error;
  return pkey;
 error:
  if (pkey)
    EVP_PKEY_free(pkey);
  if (key)
    RSA_free(key);
  return NULL;
}

/** Used by tortls.c: Get the DH* from a crypto_dh_t.
 */
DH *
crypto_dh_get_dh_(crypto_dh_t *dh)
{
  return dh->dh;
}

/** Allocate and return storage for a public key.  The key itself will not yet
 * be set.
 */
MOCK_IMPL(crypto_pk_t *,
          crypto_pk_new,(void))
{
  RSA *rsa;

  rsa = RSA_new();
  tor_assert(rsa);
  return crypto_new_pk_from_rsa_(rsa);
}

/** Release a reference to an asymmetric key; when all the references
 * are released, free the key.
 */
void
crypto_pk_free(crypto_pk_t *env)
{
  if (!env)
    return;

  if (--env->refs > 0)
    return;
  tor_assert(env->refs == 0);

  if (env->key)
    RSA_free(env->key);

  tor_free(env);
}

/** Allocate and return a new symmetric cipher using the provided key and iv.
 * The key is <b>bits</b> bits long; the IV is CIPHER_IV_LEN bytes.  Both
 * must be provided. Key length must be 128, 192, or 256 */
crypto_cipher_t *
crypto_cipher_new_with_iv_and_bits(const uint8_t *key,
                                   const uint8_t *iv,
                                   int bits)
{
  tor_assert(key);
  tor_assert(iv);

  return aes_new_cipher((const uint8_t*)key, (const uint8_t*)iv, bits);
}

/** Allocate and return a new symmetric cipher using the provided key and iv.
 * The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes.  Both
 * must be provided.
 */
crypto_cipher_t *
crypto_cipher_new_with_iv(const char *key, const char *iv)
{
  return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)iv,
                                            128);
}

/** Return a new crypto_cipher_t with the provided <b>key</b> and an IV of all
 * zero bytes and key length <b>bits</b>.  Key length must be 128, 192, or
 * 256. */
crypto_cipher_t *
crypto_cipher_new_with_bits(const char *key, int bits)
{
  char zeroiv[CIPHER_IV_LEN];
  memset(zeroiv, 0, sizeof(zeroiv));
  return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)zeroiv,
                                            bits);
}

/** Return a new crypto_cipher_t with the provided <b>key</b> (of
 * CIPHER_KEY_LEN bytes) and an IV of all zero bytes.  */
crypto_cipher_t *
crypto_cipher_new(const char *key)
{
  return crypto_cipher_new_with_bits(key, 128);
}

/** Free a symmetric cipher.
 */
void
crypto_cipher_free(crypto_cipher_t *env)
{
  if (!env)
    return;

  aes_cipher_free(env);
}

/* public key crypto */

/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
 * Return 0 on success, -1 on failure.
 */
MOCK_IMPL(int,
          crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
{
  tor_assert(env);

  if (env->key) {
    RSA_free(env->key);
    env->key = NULL;
  }

  {
    BIGNUM *e = BN_new();
    RSA *r = NULL;
    if (!e)
      goto done;
    if (! BN_set_word(e, 65537))
      goto done;
    r = RSA_new();
    if (!r)
      goto done;
    if (RSA_generate_key_ex(r, bits, e, NULL) == -1)
      goto done;

    env->key = r;
    r = NULL;
  done:
    if (e)
      BN_clear_free(e);
    if (r)
      RSA_free(r);
  }

  if (!env->key) {
    crypto_log_errors(LOG_WARN, "generating RSA key");
    return -1;
  }

  return 0;
}

/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b>
 * into <b>env</b>.  Return 0 on success, -1 on failure.  If len is -1,
 * the string is nul-terminated.
 */
/* Used here, and used for testing. */
int
crypto_pk_read_private_key_from_string(crypto_pk_t *env,
                                       const char *s, ssize_t len)
{
  BIO *b;

  tor_assert(env);
  tor_assert(s);
  tor_assert(len < INT_MAX && len < SSIZE_T_CEILING);

  /* Create a read-only memory BIO, backed by the string 's' */
  b = BIO_new_mem_buf((char*)s, (int)len);
  if (!b)
    return -1;

  if (env->key)
    RSA_free(env->key);

  env->key = PEM_read_bio_RSAPrivateKey(b,NULL,NULL,NULL);

  BIO_free(b);

  if (!env->key) {
    crypto_log_errors(LOG_WARN, "Error parsing private key");
    return -1;
  }
  return 0;
}

/** Read a PEM-encoded private key from the file named by
 * <b>keyfile</b> into <b>env</b>.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
                                         const char *keyfile)
{
  char *contents;
  int r;

  /* Read the file into a string. */
  contents = read_file_to_str(keyfile, 0, NULL);
  if (!contents) {
    log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile);
    return -1;
  }

  /* Try to parse it. */
  r = crypto_pk_read_private_key_from_string(env, contents, -1);
  memwipe(contents, 0, strlen(contents));
  tor_free(contents);
  if (r)
    return -1; /* read_private_key_from_string already warned, so we don't.*/

  /* Make sure it's valid. */
  if (crypto_pk_check_key(env) <= 0)
    return -1;

  return 0;
}

/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
 * success, -1 on failure. */
static int
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
                                   size_t *len, int is_public)
{
  BUF_MEM *buf;
  BIO *b;
  int r;

  tor_assert(env);
  tor_assert(env->key);
  tor_assert(dest);

  b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
  if (!b)
    return -1;

  /* Now you can treat b as if it were a file.  Just use the
   * PEM_*_bio_* functions instead of the non-bio variants.
   */
  if (is_public)
    r = PEM_write_bio_RSAPublicKey(b, env->key);
  else
    r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL);

  if (!r) {
    crypto_log_errors(LOG_WARN, "writing RSA key to string");
    BIO_free(b);
    return -1;
  }

  BIO_get_mem_ptr(b, &buf);

  *dest = tor_malloc(buf->length+1);
  memcpy(*dest, buf->data, buf->length);
  (*dest)[buf->length] = 0; /* nul terminate it */
  *len = buf->length;

  BIO_free(b);

  return 0;
}

/** PEM-encode the public key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest,
                                     size_t *len)
{
  return crypto_pk_write_key_to_string_impl(env, dest, len, 1);
}

/** PEM-encode the private key portion of <b>env</b> and write it to a
 * newly allocated string.  On success, set *<b>dest</b> to the new
 * string, *<b>len</b> to the string's length, and return 0.  On
 * failure, return -1.
 */
int
crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest,
                                     size_t *len)
{
  return crypto_pk_write_key_to_string_impl(env, dest, len, 0);
}

/** Read a PEM-encoded public key from the first <b>len</b> characters of
 * <b>src</b>, and store the result in <b>env</b>.  Return 0 on success, -1 on
 * failure.
 */
int
crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src,
                                      size_t len)
{
  BIO *b;

  tor_assert(env);
  tor_assert(src);
  tor_assert(len<INT_MAX);

  b = BIO_new(BIO_s_mem()); /* Create a memory BIO */
  if (!b)
    return -1;

  BIO_write(b, src, (int)len);

  if (env->key)
    RSA_free(env->key);
  env->key = PEM_read_bio_RSAPublicKey(b, NULL, NULL, NULL);
  BIO_free(b);
  if (!env->key) {
    crypto_log_errors(LOG_WARN, "reading public key from string");
    return -1;
  }

  return 0;
}

/** Write the private key from <b>env</b> into the file named by <b>fname</b>,
 * PEM-encoded.  Return 0 on success, -1 on failure.
 */
int
crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
                                        const char *fname)
{
  BIO *bio;
  char *cp;
  long len;
  char *s;
  int r;

  tor_assert(crypto_pk_private_ok(env));

  if (!(bio = BIO_new(BIO_s_mem())))
    return -1;
  if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL)
      == 0) {
    crypto_log_errors(LOG_WARN, "writing private key");
    BIO_free(bio);
    return -1;
  }
  len = BIO_get_mem_data(bio, &cp);
  tor_assert(len >= 0);
  s = tor_malloc(len+1);
  memcpy(s, cp, len);
  s[len]='\0';
  r = write_str_to_file(fname, s, 0);
  BIO_free(bio);
  memwipe(s, 0, strlen(s));
  tor_free(s);
  return r;
}

/** Return true iff <b>env</b> has a valid key.
 */
int
crypto_pk_check_key(crypto_pk_t *env)
{
  int r;
  tor_assert(env);

  r = RSA_check_key(env->key);
  if (r <= 0)
    crypto_log_errors(LOG_WARN,"checking RSA key");
  return r;
}

/** Return true iff <b>key</b> contains the private-key portion of the RSA
 * key. */
int
crypto_pk_key_is_private(const crypto_pk_t *key)
{
  tor_assert(key);
  return crypto_pk_private_ok(key);
}

/** Return true iff <b>env</b> contains a public key whose public exponent
 * equals 65537.
 */
int
crypto_pk_public_exponent_ok(crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

  const BIGNUM *e;

#ifdef OPENSSL_1_1_API
  const BIGNUM *n, *d;
  RSA_get0_key(env->key, &n, &e, &d);
#else
  e = env->key->e;
#endif
  return BN_is_word(e, 65537);
}

/** Compare the public-key components of a and b.  Return less than 0
 * if a\<b, 0 if a==b, and greater than 0 if a\>b.  A NULL key is
 * considered to be less than all non-NULL keys, and equal to itself.
 *
 * Note that this may leak information about the keys through timing.
 */
int
crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  int result;
  char a_is_non_null = (a != NULL) && (a->key != NULL);
  char b_is_non_null = (b != NULL) && (b->key != NULL);
  char an_argument_is_null = !a_is_non_null | !b_is_non_null;

  result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null));
  if (an_argument_is_null)
    return result;

  const BIGNUM *a_n, *a_e;
  const BIGNUM *b_n, *b_e;

#ifdef OPENSSL_1_1_API
  const BIGNUM *a_d, *b_d;
  RSA_get0_key(a->key, &a_n, &a_e, &a_d);
  RSA_get0_key(b->key, &b_n, &b_e, &b_d);
#else
  a_n = a->key->n;
  a_e = a->key->e;
  b_n = b->key->n;
  b_e = b->key->e;
#endif

  tor_assert(a_n != NULL && a_e != NULL);
  tor_assert(b_n != NULL && b_e != NULL);

  result = BN_cmp(a_n, b_n);
  if (result)
    return result;
  return BN_cmp(a_e, b_e);
}

/** Compare the public-key components of a and b.  Return non-zero iff
 * a==b.  A NULL key is considered to be distinct from all non-NULL
 * keys, and equal to itself.
 *
 *  Note that this may leak information about the keys through timing.
 */
int
crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
  return (crypto_pk_cmp_keys(a, b) == 0);
}

/** Return the size of the public key modulus in <b>env</b>, in bytes. */
size_t
crypto_pk_keysize(const crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

  return (size_t) RSA_size((RSA*)env->key);
}

/** Return the size of the public key modulus of <b>env</b>, in bits. */
int
crypto_pk_num_bits(crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

#ifdef OPENSSL_1_1_API
  /* It's so stupid that there's no other way to check that n is valid
   * before calling RSA_bits().
   */
  const BIGNUM *n, *e, *d;
  RSA_get0_key(env->key, &n, &e, &d);
  tor_assert(n != NULL);

  return RSA_bits(env->key);
#else
  tor_assert(env->key->n);
  return BN_num_bits(env->key->n);
#endif
}

/** Increase the reference count of <b>env</b>, and return it.
 */
crypto_pk_t *
crypto_pk_dup_key(crypto_pk_t *env)
{
  tor_assert(env);
  tor_assert(env->key);

  env->refs++;
  return env;
}

#ifdef TOR_UNIT_TESTS
/** For testing: replace dest with src.  (Dest must have a refcount
 * of 1) */
void
crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
{
  tor_assert(dest);
  tor_assert(dest->refs == 1);
  tor_assert(src);
  RSA_free(dest->key);
  dest->key = RSAPrivateKey_dup(src->key);
}
#endif

/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
 * Returns NULL on failure. */
crypto_pk_t *
crypto_pk_copy_full(crypto_pk_t *env)
{
  RSA *new_key;
  int privatekey = 0;
  tor_assert(env);
  tor_assert(env->key);

  if (crypto_pk_private_ok(env)) {
    new_key = RSAPrivateKey_dup(env->key);
    privatekey = 1;
  } else {
    new_key = RSAPublicKey_dup(env->key);
  }
  if (!new_key) {
    /* LCOV_EXCL_START
     *
     * We can't cause RSA*Key_dup() to fail, so we can't really test this.
     */
    log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
            privatekey?"private":"public");
    crypto_log_errors(LOG_ERR,
                      privatekey ? "Duplicating a private key" :
                      "Duplicating a public key");
    tor_fragile_assert();
    return NULL;
    /* LCOV_EXCL_STOP */
  }

  return crypto_new_pk_from_rsa_(new_key);
}

/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key
 * in <b>env</b>, using the padding method <b>padding</b>.  On success,
 * write the result to <b>to</b>, and return the number of bytes
 * written.  On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen,
                         const char *from, size_t fromlen, int padding)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen<INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));

  r = RSA_public_encrypt((int)fromlen,
                         (unsigned char*)from, (unsigned char*)to,
                         env->key, crypto_get_rsa_padding(padding));
  if (r<0) {
    crypto_log_errors(LOG_WARN, "performing RSA encryption");
    return -1;
  }
  return r;
}

/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key
 * in <b>env</b>, using the padding method <b>padding</b>.  On success,
 * write the result to <b>to</b>, and return the number of bytes
 * written.  On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
                          size_t tolen,
                          const char *from, size_t fromlen,
                          int padding, int warnOnFailure)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(env->key);
  tor_assert(fromlen<INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));
  if (!crypto_pk_key_is_private(env))
    /* Not a private key */
    return -1;

  r = RSA_private_decrypt((int)fromlen,
                          (unsigned char*)from, (unsigned char*)to,
                          env->key, crypto_get_rsa_padding(padding));

  if (r<0) {
    crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG,
                      "performing RSA decryption");
    return -1;
  }
  return r;
}

/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the
 * public key in <b>env</b>, using PKCS1 padding.  On success, write the
 * signed data to <b>to</b>, and return the number of bytes written.
 * On failure, return -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_public_checksig(const crypto_pk_t *env, char *to,
                          size_t tolen,
                          const char *from, size_t fromlen)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));
  r = RSA_public_decrypt((int)fromlen,
                         (unsigned char*)from, (unsigned char*)to,
                         env->key, RSA_PKCS1_PADDING);

  if (r<0) {
    crypto_log_errors(LOG_INFO, "checking RSA signature");
    return -1;
  }
  return r;
}

/** Check a siglen-byte long signature at <b>sig</b> against
 * <b>datalen</b> bytes of data at <b>data</b>, using the public key
 * in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
 * SHA1(data).  Else return -1.
 */
int
crypto_pk_public_checksig_digest(crypto_pk_t *env, const char *data,
                               size_t datalen, const char *sig, size_t siglen)
{
  char digest[DIGEST_LEN];
  char *buf;
  size_t buflen;
  int r;

  tor_assert(env);
  tor_assert(data);
  tor_assert(sig);
  tor_assert(datalen < SIZE_T_CEILING);
  tor_assert(siglen < SIZE_T_CEILING);

  if (crypto_digest(digest,data,datalen)<0) {
    log_warn(LD_BUG, "couldn't compute digest");
    return -1;
  }
  buflen = crypto_pk_keysize(env);
  buf = tor_malloc(buflen);
  r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen);
  if (r != DIGEST_LEN) {
    log_warn(LD_CRYPTO, "Invalid signature");
    tor_free(buf);
    return -1;
  }
  if (tor_memneq(buf, digest, DIGEST_LEN)) {
    log_warn(LD_CRYPTO, "Signature mismatched with digest.");
    tor_free(buf);
    return -1;
  }
  tor_free(buf);

  return 0;
}

/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in
 * <b>env</b>, using PKCS1 padding.  On success, write the signature to
 * <b>to</b>, and return the number of bytes written.  On failure, return
 * -1.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
                       const char *from, size_t fromlen)
{
  int r;
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);
  tor_assert(tolen >= crypto_pk_keysize(env));
  if (!crypto_pk_key_is_private(env))
    /* Not a private key */
    return -1;

  r = RSA_private_encrypt((int)fromlen,
                          (unsigned char*)from, (unsigned char*)to,
                          (RSA*)env->key, RSA_PKCS1_PADDING);
  if (r<0) {
    crypto_log_errors(LOG_WARN, "generating RSA signature");
    return -1;
  }
  return r;
}

/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at
 * <b>from</b>; sign the data with the private key in <b>env</b>, and
 * store it in <b>to</b>.  Return the number of bytes written on
 * success, and -1 on failure.
 *
 * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
 * at least the length of the modulus of <b>env</b>.
 */
int
crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  int r;
  char digest[DIGEST_LEN];
  if (crypto_digest(digest,from,fromlen)<0)
    return -1;
  r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

/** Perform a hybrid (public/secret) encryption on <b>fromlen</b>
 * bytes of data from <b>from</b>, with padding type 'padding',
 * storing the results on <b>to</b>.
 *
 * Returns the number of bytes written on success, -1 on failure.
 *
 * The encrypted data consists of:
 *   - The source data, padded and encrypted with the public key, if the
 *     padded source data is no longer than the public key, and <b>force</b>
 *     is false, OR
 *   - The beginning of the source data prefixed with a 16-byte symmetric key,
 *     padded and encrypted with the public key; followed by the rest of
 *     the source data encrypted in AES-CTR mode with the symmetric key.
 */
int
crypto_pk_public_hybrid_encrypt(crypto_pk_t *env,
                                char *to, size_t tolen,
                                const char *from,
                                size_t fromlen,
                                int padding, int force)
{
  int overhead, outlen, r;
  size_t pkeylen, symlen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding));
  pkeylen = crypto_pk_keysize(env);

  if (!force && fromlen+overhead <= pkeylen) {
    /* It all fits in a single encrypt. */
    return crypto_pk_public_encrypt(env,to,
                                    tolen,
                                    from,fromlen,padding);
  }
  tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
  tor_assert(tolen >= pkeylen);

  char key[CIPHER_KEY_LEN];
  crypto_rand(key, sizeof(key)); /* generate a new key. */
  cipher = crypto_cipher_new(key);

  buf = tor_malloc(pkeylen+1);
  memcpy(buf, key, CIPHER_KEY_LEN);
  memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);

  /* Length of symmetrically encrypted data. */
  symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN);

  outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding);
  if (outlen!=(int)pkeylen) {
    goto err;
  }
  r = crypto_cipher_encrypt(cipher, to+outlen,
                            from+pkeylen-overhead-CIPHER_KEY_LEN, symlen);

  if (r<0) goto err;
  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen+symlen < INT_MAX);
  return (int)(outlen + symlen);
 err:

  memwipe(buf, 0, pkeylen);
  memwipe(key, 0, sizeof(key));
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** Invert crypto_pk_public_hybrid_encrypt. Returns the number of bytes
 * written on success, -1 on failure. */
int
crypto_pk_private_hybrid_decrypt(crypto_pk_t *env,
                                 char *to,
                                 size_t tolen,
                                 const char *from,
                                 size_t fromlen,
                                 int padding, int warnOnFailure)
{
  int outlen, r;
  size_t pkeylen;
  crypto_cipher_t *cipher = NULL;
  char *buf = NULL;

  tor_assert(fromlen < SIZE_T_CEILING);
  pkeylen = crypto_pk_keysize(env);

  if (fromlen <= pkeylen) {
    return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding,
                                     warnOnFailure);
  }

  buf = tor_malloc(pkeylen);
  outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding,
                                     warnOnFailure);
  if (outlen<0) {
    log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO,
           "Error decrypting public-key data");
    goto err;
  }
  if (outlen < CIPHER_KEY_LEN) {
    log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO,
           "No room for a symmetric key");
    goto err;
  }
  cipher = crypto_cipher_new(buf);
  if (!cipher) {
    goto err;
  }
  memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN);
  outlen -= CIPHER_KEY_LEN;
  tor_assert(tolen - outlen >= fromlen - pkeylen);
  r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen);
  if (r<0)
    goto err;
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  tor_assert(outlen + fromlen < INT_MAX);
  return (int)(outlen + (fromlen-pkeylen));
 err:
  memwipe(buf,0,pkeylen);
  tor_free(buf);
  crypto_cipher_free(cipher);
  return -1;
}

/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>.
 * Return -1 on error, or the number of characters used on success.
 */
int
crypto_pk_asn1_encode(crypto_pk_t *pk, char *dest, size_t dest_len)
{
  int len;
  unsigned char *buf = NULL;

  len = i2d_RSAPublicKey(pk->key, &buf);
  if (len < 0 || buf == NULL)
    return -1;

  if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) {
    OPENSSL_free(buf);
    return -1;
  }
  /* We don't encode directly into 'dest', because that would be illegal
   * type-punning.  (C99 is smarter than me, C99 is smarter than me...)
   */
  memcpy(dest,buf,len);
  OPENSSL_free(buf);
  return len;
}

/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on
 * success and NULL on failure.
 */
crypto_pk_t *
crypto_pk_asn1_decode(const char *str, size_t len)
{
  RSA *rsa;
  unsigned char *buf;
  const unsigned char *cp;
  cp = buf = tor_malloc(len);
  memcpy(buf,str,len);
  rsa = d2i_RSAPublicKey(NULL, &cp, len);
  tor_free(buf);
  if (!rsa) {
    crypto_log_errors(LOG_WARN,"decoding public key");
    return NULL;
  }
  return crypto_new_pk_from_rsa_(rsa);
}

/** Given a private or public key <b>pk</b>, put a SHA1 hash of the
 * public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space).
 * Return 0 on success, -1 on failure.
 */
int
crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out)
{
  unsigned char *buf = NULL;
  int len;

  len = i2d_RSAPublicKey((RSA*)pk->key, &buf);
  if (len < 0 || buf == NULL)
    return -1;
  if (crypto_digest(digest_out, (char*)buf, len) < 0) {
    OPENSSL_free(buf);
    return -1;
  }
  OPENSSL_free(buf);
  return 0;
}

/** Compute all digests of the DER encoding of <b>pk</b>, and store them
 * in <b>digests_out</b>.  Return 0 on success, -1 on failure. */
int
crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
{
  unsigned char *buf = NULL;
  int len;

  len = i2d_RSAPublicKey(pk->key, &buf);
  if (len < 0 || buf == NULL)
    return -1;
  if (crypto_common_digests(digests_out, (char*)buf, len) < 0) {
    OPENSSL_free(buf);
    return -1;
  }
  OPENSSL_free(buf);
  return 0;
}

/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
 * every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
  int n = 0;
  char *end = out+outlen;
  tor_assert(outlen < SIZE_T_CEILING);

  while (*in && out<end) {
    *out++ = *in++;
    if (++n == 4 && *in && out<end) {
      n = 0;
      *out++ = ' ';
    }
  }
  tor_assert(out<end);
  *out = '\0';
}

/** Given a private or public key <b>pk</b>, put a fingerprint of the
 * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of
 * space).  Return 0 on success, -1 on failure.
 *
 * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding
 * of the public key, converted to hexadecimal, in upper case, with a
 * space after every four digits.
 *
 * If <b>add_space</b> is false, omit the spaces.
 */
int
crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space)
{
  char digest[DIGEST_LEN];
  char hexdigest[HEX_DIGEST_LEN+1];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN);
  if (add_space) {
    crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest);
  } else {
    strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1);
  }
  return 0;
}

/** Given a private or public key <b>pk</b>, put a hashed fingerprint of
 * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1
 * bytes of space).  Return 0 on success, -1 on failure.
 *
 * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest
 * of the ASN.1 encoding of the public key, converted to hexadecimal, in
 * upper case.
 */
int
crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
{
  char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN];
  if (crypto_pk_get_digest(pk, digest)) {
    return -1;
  }
  if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
    return -1;
  }
  base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
  return 0;
}

/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
 * Base64 encoding of the DER representation of the private key as a NUL
 * terminated string, and return it via <b>priv_out</b>.  Return 0 on
 * sucess, -1 on failure.
 *
 * It is the caller's responsibility to sanitize and free the resulting buffer.
 */
int
crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
{
  unsigned char *der = NULL;
  int der_len;
  int ret = -1;

  *priv_out = NULL;

  der_len = i2d_RSAPrivateKey(pk->key, &der);
  if (der_len < 0 || der == NULL)
    return ret;

  size_t priv_len = base64_encode_size(der_len, 0) + 1;
  char *priv = tor_malloc_zero(priv_len);
  if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
    *priv_out = priv;
    ret = 0;
  } else {
    tor_free(priv);
  }

  memwipe(der, 0, der_len);
  OPENSSL_free(der);
  return ret;
}

/** Given a string containing the Base64 encoded DER representation of the
 * private key <b>str</b>, decode and return the result on success, or NULL
 * on failure.
 */
crypto_pk_t *
crypto_pk_base64_decode(const char *str, size_t len)
{
  crypto_pk_t *pk = NULL;

  char *der = tor_malloc_zero(len + 1);
  int der_len = base64_decode(der, len, str, len);
  if (der_len <= 0) {
    log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
    goto out;
  }

  const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
  RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
  if (!rsa) {
    crypto_log_errors(LOG_WARN, "decoding private key");
    goto out;
  }

  pk = crypto_new_pk_from_rsa_(rsa);

  /* Make sure it's valid. */
  if (crypto_pk_check_key(pk) <= 0) {
    crypto_pk_free(pk);
    pk = NULL;
    goto out;
  }

 out:
  memwipe(der, 0, len + 1);
  tor_free(der);
  return pk;
}

/* symmetric crypto */

/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
 * <b>env</b>; on success, store the result to <b>to</b> and return 0.
 * Does not check for failure.
 */
int
crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
                      const char *from, size_t fromlen)
{
  tor_assert(env);
  tor_assert(env);
  tor_assert(from);
  tor_assert(fromlen);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  memcpy(to, from, fromlen);
  aes_crypt_inplace(env, to, fromlen);
  return 0;
}

/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
 * <b>env</b>; on success, store the result to <b>to</b> and return 0.
 * Does not check for failure.
 */
int
crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
                      const char *from, size_t fromlen)
{
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  memcpy(to, from, fromlen);
  aes_crypt_inplace(env, to, fromlen);
  return 0;
}

/** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>;
 * on success. Does not check for failure.
 */
void
crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len)
{
  tor_assert(len < SIZE_T_CEILING);
  aes_crypt_inplace(env, buf, len);
}

/** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in
 * <b>key</b> to the buffer in <b>to</b> of length
 * <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> plus
 * CIPHER_IV_LEN bytes for the initialization vector. On success, return the
 * number of bytes written, on failure, return -1.
 */
int
crypto_cipher_encrypt_with_iv(const char *key,
                              char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  crypto_cipher_t *cipher;
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);

  if (fromlen < 1)
    return -1;
  if (tolen < fromlen + CIPHER_IV_LEN)
    return -1;

  char iv[CIPHER_IV_LEN];
  crypto_rand(iv, sizeof(iv));
  cipher = crypto_cipher_new_with_iv(key, iv);

  memcpy(to, iv, CIPHER_IV_LEN);
  crypto_cipher_encrypt(cipher, to+CIPHER_IV_LEN, from, fromlen);
  crypto_cipher_free(cipher);
  memwipe(iv, 0, sizeof(iv));
  return (int)(fromlen + CIPHER_IV_LEN);
}

/** Decrypt <b>fromlen</b> bytes (at least 1+CIPHER_IV_LEN) from <b>from</b>
 * with the key in <b>key</b> to the buffer in <b>to</b> of length
 * <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> minus
 * CIPHER_IV_LEN bytes for the initialization vector. On success, return the
 * number of bytes written, on failure, return -1.
 */
int
crypto_cipher_decrypt_with_iv(const char *key,
                              char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  crypto_cipher_t *cipher;
  tor_assert(key);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);

  if (fromlen <= CIPHER_IV_LEN)
    return -1;
  if (tolen < fromlen - CIPHER_IV_LEN)
    return -1;

  cipher = crypto_cipher_new_with_iv(key, from);

  crypto_cipher_encrypt(cipher, to, from+CIPHER_IV_LEN, fromlen-CIPHER_IV_LEN);
  crypto_cipher_free(cipher);
  return (int)(fromlen - CIPHER_IV_LEN);
}

/* SHA-1 */

/** Compute the SHA1 digest of the <b>len</b> bytes on data stored in
 * <b>m</b>.  Write the DIGEST_LEN byte result into <b>digest</b>.
 * Return 0 on success, -1 on failure.
 */
int
crypto_digest(char *digest, const char *m, size_t len)
{
  tor_assert(m);
  tor_assert(digest);
  if (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL)
    return -1;
  return 0;
}

/** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
 * using the algorithm <b>algorithm</b>.  Write the DIGEST_LEN256-byte result
 * into <b>digest</b>.  Return 0 on success, -1 on failure. */
int
crypto_digest256(char *digest, const char *m, size_t len,
                 digest_algorithm_t algorithm)
{
  tor_assert(m);
  tor_assert(digest);
  tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);

  int ret = 0;
  if (algorithm == DIGEST_SHA256)
    ret = (SHA256((const uint8_t*)m,len,(uint8_t*)digest) != NULL);
  else
    ret = (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len)
           > -1);

  if (!ret)
    return -1;
  return 0;
}

/** Compute a 512-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
 * using the algorithm <b>algorithm</b>.  Write the DIGEST_LEN512-byte result
 * into <b>digest</b>.  Return 0 on success, -1 on failure. */
int
crypto_digest512(char *digest, const char *m, size_t len,
                 digest_algorithm_t algorithm)
{
  tor_assert(m);
  tor_assert(digest);
  tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);

  int ret = 0;
  if (algorithm == DIGEST_SHA512)
    ret = (SHA512((const unsigned char*)m,len,(unsigned char*)digest)
           != NULL);
  else
    ret = (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len)
           > -1);

  if (!ret)
    return -1;
  return 0;
}

/** Set the common_digests_t in <b>ds_out</b> to contain every digest on the
 * <b>len</b> bytes in <b>m</b> that we know how to compute.  Return 0 on
 * success, -1 on failure. */
int
crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len)
{
  tor_assert(ds_out);
  memset(ds_out, 0, sizeof(*ds_out));
  if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
    return -1;
  if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0)
    return -1;

  return 0;
}

/** Return the name of an algorithm, as used in directory documents. */
const char *
crypto_digest_algorithm_get_name(digest_algorithm_t alg)
{
  switch (alg) {
    case DIGEST_SHA1:
      return "sha1";
    case DIGEST_SHA256:
      return "sha256";
    case DIGEST_SHA512:
      return "sha512";
    case DIGEST_SHA3_256:
      return "sha3-256";
    case DIGEST_SHA3_512:
      return "sha3-512";
    default:
      // LCOV_EXCL_START
      tor_fragile_assert();
      return "??unknown_digest??";
      // LCOV_EXCL_STOP
  }
}

/** Given the name of a digest algorithm, return its integer value, or -1 if
 * the name is not recognized. */
int
crypto_digest_algorithm_parse_name(const char *name)
{
  if (!strcmp(name, "sha1"))
    return DIGEST_SHA1;
  else if (!strcmp(name, "sha256"))
    return DIGEST_SHA256;
  else if (!strcmp(name, "sha512"))
    return DIGEST_SHA512;
  else if (!strcmp(name, "sha3-256"))
    return DIGEST_SHA3_256;
  else if (!strcmp(name, "sha3-512"))
    return DIGEST_SHA3_512;
  else
    return -1;
}

/** Given an algorithm, return the digest length in bytes. */
size_t
crypto_digest_algorithm_get_length(digest_algorithm_t alg)
{
  switch (alg) {
    case DIGEST_SHA1:
      return DIGEST_LEN;
    case DIGEST_SHA256:
      return DIGEST256_LEN;
    case DIGEST_SHA512:
      return DIGEST512_LEN;
    case DIGEST_SHA3_256:
      return DIGEST256_LEN;
    case DIGEST_SHA3_512:
      return DIGEST512_LEN;
    default:
      tor_assert(0);              // LCOV_EXCL_LINE
      return 0; /* Unreachable */ // LCOV_EXCL_LINE
  }
}

/** Intermediate information about the digest of a stream of data. */
struct crypto_digest_t {
  digest_algorithm_t algorithm; /**< Which algorithm is in use? */
   /** State for the digest we're using.  Only one member of the
    * union is usable, depending on the value of <b>algorithm</b>. Note also
    * that space for other members might not even be allocated!
    */
  union {
    SHA_CTX sha1; /**< state for SHA1 */
    SHA256_CTX sha2; /**< state for SHA256 */
    SHA512_CTX sha512; /**< state for SHA512 */
    keccak_state sha3; /**< state for SHA3-[256,512] */
  } d;
};

/**
 * Return the number of bytes we need to malloc in order to get a
 * crypto_digest_t for <b>alg</b>, or the number of bytes we need to wipe
 * when we free one.
 */
static size_t
crypto_digest_alloc_bytes(digest_algorithm_t alg)
{
  /* Helper: returns the number of bytes in the 'f' field of 'st' */
#define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f ))
  /* Gives the length of crypto_digest_t through the end of the field 'd' */
#define END_OF_FIELD(f) (STRUCT_OFFSET(crypto_digest_t, f) + \
                         STRUCT_FIELD_SIZE(crypto_digest_t, f))
  switch (alg) {
    case DIGEST_SHA1:
      return END_OF_FIELD(d.sha1);
    case DIGEST_SHA256:
      return END_OF_FIELD(d.sha2);
    case DIGEST_SHA512:
      return END_OF_FIELD(d.sha512);
    case DIGEST_SHA3_256:
    case DIGEST_SHA3_512:
      return END_OF_FIELD(d.sha3);
    default:
      tor_assert(0); // LCOV_EXCL_LINE
      return 0;      // LCOV_EXCL_LINE
  }
#undef END_OF_FIELD
#undef STRUCT_FIELD_SIZE
}

/**
 * Internal function: create and return a new digest object for 'algorithm'.
 * Does not typecheck the algorithm.
 */
static crypto_digest_t *
crypto_digest_new_internal(digest_algorithm_t algorithm)
{
  crypto_digest_t *r = tor_malloc(crypto_digest_alloc_bytes(algorithm));
  r->algorithm = algorithm;

  switch (algorithm)
    {
    case DIGEST_SHA1:
      SHA1_Init(&r->d.sha1);
      break;
    case DIGEST_SHA256:
      SHA256_Init(&r->d.sha2);
      break;
    case DIGEST_SHA512:
      SHA512_Init(&r->d.sha512);
      break;
    case DIGEST_SHA3_256:
      keccak_digest_init(&r->d.sha3, 256);
      break;
    case DIGEST_SHA3_512:
      keccak_digest_init(&r->d.sha3, 512);
      break;
    default:
      tor_assert_unreached();
    }

  return r;
}

/** Allocate and return a new digest object to compute SHA1 digests.
 */
crypto_digest_t *
crypto_digest_new(void)
{
  return crypto_digest_new_internal(DIGEST_SHA1);
}

/** Allocate and return a new digest object to compute 256-bit digests
 * using <b>algorithm</b>. */
crypto_digest_t *
crypto_digest256_new(digest_algorithm_t algorithm)
{
  tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
  return crypto_digest_new_internal(algorithm);
}

/** Allocate and return a new digest object to compute 512-bit digests
 * using <b>algorithm</b>. */
crypto_digest_t *
crypto_digest512_new(digest_algorithm_t algorithm)
{
  tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
  return crypto_digest_new_internal(algorithm);
}

/** Deallocate a digest object.
 */
void
crypto_digest_free(crypto_digest_t *digest)
{
  if (!digest)
    return;
  size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
  memwipe(digest, 0, bytes);
  tor_free(digest);
}

/** Add <b>len</b> bytes from <b>data</b> to the digest object.
 */
void
crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
                        size_t len)
{
  tor_assert(digest);
  tor_assert(data);
  /* Using the SHA*_*() calls directly means we don't support doing
   * SHA in hardware. But so far the delay of getting the question
   * to the hardware, and hearing the answer, is likely higher than
   * just doing it ourselves. Hashes are fast.
   */
  switch (digest->algorithm) {
    case DIGEST_SHA1:
      SHA1_Update(&digest->d.sha1, (void*)data, len);
      break;
    case DIGEST_SHA256:
      SHA256_Update(&digest->d.sha2, (void*)data, len);
      break;
    case DIGEST_SHA512:
      SHA512_Update(&digest->d.sha512, (void*)data, len);
      break;
    case DIGEST_SHA3_256: /* FALLSTHROUGH */
    case DIGEST_SHA3_512:
      keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len);
      break;
    default:
      /* LCOV_EXCL_START */
      tor_fragile_assert();
      break;
      /* LCOV_EXCL_STOP */
  }
}

/** Compute the hash of the data that has been passed to the digest
 * object; write the first out_len bytes of the result to <b>out</b>.
 * <b>out_len</b> must be \<= DIGEST512_LEN.
 */
void
crypto_digest_get_digest(crypto_digest_t *digest,
                         char *out, size_t out_len)
{
  unsigned char r[DIGEST512_LEN];
  crypto_digest_t tmpenv;
  tor_assert(digest);
  tor_assert(out);
  tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm));

  /* The SHA-3 code handles copying into a temporary ctx, and also can handle
   * short output buffers by truncating appropriately. */
  if (digest->algorithm == DIGEST_SHA3_256 ||
      digest->algorithm == DIGEST_SHA3_512) {
    keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len);
    return;
  }

  const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
  /* memcpy into a temporary ctx, since SHA*_Final clears the context */
  memcpy(&tmpenv, digest, alloc_bytes);
  switch (digest->algorithm) {
    case DIGEST_SHA1:
      SHA1_Final(r, &tmpenv.d.sha1);
      break;
    case DIGEST_SHA256:
      SHA256_Final(r, &tmpenv.d.sha2);
      break;
    case DIGEST_SHA512:
      SHA512_Final(r, &tmpenv.d.sha512);
      break;
//LCOV_EXCL_START
    case DIGEST_SHA3_256: /* FALLSTHROUGH */
    case DIGEST_SHA3_512:
    default:
      log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm);
      /* This is fatal, because it should never happen. */
      tor_assert_unreached();
      break;
//LCOV_EXCL_STOP
  }
  memcpy(out, r, out_len);
  memwipe(r, 0, sizeof(r));
}

/** Allocate and return a new digest object with the same state as
 * <b>digest</b>
 */
crypto_digest_t *
crypto_digest_dup(const crypto_digest_t *digest)
{
  tor_assert(digest);
  const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
  return tor_memdup(digest, alloc_bytes);
}

/** Replace the state of the digest object <b>into</b> with the state
 * of the digest object <b>from</b>.  Requires that 'into' and 'from'
 * have the same digest type.
 */
void
crypto_digest_assign(crypto_digest_t *into,
                     const crypto_digest_t *from)
{
  tor_assert(into);
  tor_assert(from);
  tor_assert(into->algorithm == from->algorithm);
  const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm);
  memcpy(into,from,alloc_bytes);
}

/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
 * at <b>digest_out</b> to the hash of the concatenation of those strings,
 * plus the optional string <b>append</b>, computed with the algorithm
 * <b>alg</b>.
 * <b>out_len</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist(char *digest_out, size_t len_out,
                        const smartlist_t *lst,
                        const char *append,
                        digest_algorithm_t alg)
{
  crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg);
}

/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
 * at <b>digest_out</b> to the hash of the concatenation of: the
 * optional string <b>prepend</b>, those strings,
 * and the optional string <b>append</b>, computed with the algorithm
 * <b>alg</b>.
 * <b>len_out</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
                        const char *prepend,
                        const smartlist_t *lst,
                        const char *append,
                        digest_algorithm_t alg)
{
  crypto_digest_t *d = crypto_digest_new_internal(alg);
  if (prepend)
    crypto_digest_add_bytes(d, prepend, strlen(prepend));
  SMARTLIST_FOREACH(lst, const char *, cp,
                    crypto_digest_add_bytes(d, cp, strlen(cp)));
  if (append)
    crypto_digest_add_bytes(d, append, strlen(append));
  crypto_digest_get_digest(d, digest_out, len_out);
  crypto_digest_free(d);
}

/** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using
 * the <b>key</b> of length <b>key_len</b>.  Store the DIGEST256_LEN-byte
 * result in <b>hmac_out</b>. Asserts on failure.
 */
void
crypto_hmac_sha256(char *hmac_out,
                   const char *key, size_t key_len,
                   const char *msg, size_t msg_len)
{
  unsigned char *rv = NULL;
  /* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */
  tor_assert(key_len < INT_MAX);
  tor_assert(msg_len < INT_MAX);
  tor_assert(hmac_out);
  rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
            (unsigned char*)hmac_out, NULL);
  tor_assert(rv);
}

/** Compute a MAC using SHA3-256 of <b>msg_len</b> bytes in <b>msg</b> using a
 * <b>key</b> of length <b>key_len</b> and a <b>salt</b> of length
 * <b>salt_len</b>. Store the result of <b>len_out</b> bytes in in
 * <b>mac_out</b>. This function can't fail. */
void
crypto_mac_sha3_256(uint8_t *mac_out, size_t len_out,
                    const uint8_t *key, size_t key_len,
                    const uint8_t *msg, size_t msg_len)
{
  crypto_digest_t *digest;

  const uint64_t key_len_netorder = tor_htonll(key_len);

  tor_assert(mac_out);
  tor_assert(key);
  tor_assert(msg);

  digest = crypto_digest256_new(DIGEST_SHA3_256);

  /* Order matters here that is any subsystem using this function should
   * expect this very precise ordering in the MAC construction. */
  crypto_digest_add_bytes(digest, (const char *) &key_len_netorder,
                          sizeof(key_len_netorder));
  crypto_digest_add_bytes(digest, (const char *) key, key_len);
  crypto_digest_add_bytes(digest, (const char *) msg, msg_len);
  crypto_digest_get_digest(digest, (char *) mac_out, len_out);
  crypto_digest_free(digest);
}

/** Internal state for a eXtendable-Output Function (XOF). */
struct crypto_xof_t {
  keccak_state s;
};

/** Allocate a new XOF object backed by SHAKE-256.  The security level
 * provided is a function of the length of the output used.  Read and
 * understand FIPS-202 A.2 "Additional Consideration for Extendable-Output
 * Functions" before using this construct.
 */
crypto_xof_t *
crypto_xof_new(void)
{
  crypto_xof_t *xof;
  xof = tor_malloc(sizeof(crypto_xof_t));
  keccak_xof_init(&xof->s, 256);
  return xof;
}

/** Absorb bytes into a XOF object.  Must not be called after a call to
 * crypto_xof_squeeze_bytes() for the same instance, and will assert
 * if attempted.
 */
void
crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len)
{
  int i = keccak_xof_absorb(&xof->s, data, len);
  tor_assert(i == 0);
}

/** Squeeze bytes out of a XOF object.  Calling this routine will render
 * the XOF instance ineligible to absorb further data.
 */
void
crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len)
{
  int i = keccak_xof_squeeze(&xof->s, out, len);
  tor_assert(i == 0);
}

/** Cleanse and deallocate a XOF object. */
void
crypto_xof_free(crypto_xof_t *xof)
{
  if (!xof)
    return;
  memwipe(xof, 0, sizeof(crypto_xof_t));
  tor_free(xof);
}

/* DH */

/** Our DH 'g' parameter */
#define DH_GENERATOR 2

/** Shared P parameter for our circuit-crypto DH key exchanges. */
static BIGNUM *dh_param_p = NULL;
/** Shared P parameter for our TLS DH key exchanges. */
static BIGNUM *dh_param_p_tls = NULL;
/** Shared G parameter for our DH key exchanges. */
static BIGNUM *dh_param_g = NULL;

/** Validate a given set of Diffie-Hellman parameters.  This is moderately
 * computationally expensive (milliseconds), so should only be called when
 * the DH parameters change. Returns 0 on success, * -1 on failure.
 */
static int
crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g)
{
  DH *dh = NULL;
  int ret = -1;

  /* Copy into a temporary DH object, just so that DH_check() can be called. */
  if (!(dh = DH_new()))
      goto out;
#ifdef OPENSSL_1_1_API
  BIGNUM *dh_p, *dh_g;
  if (!(dh_p = BN_dup(p)))
    goto out;
  if (!(dh_g = BN_dup(g)))
    goto out;
  if (!DH_set0_pqg(dh, dh_p, NULL, dh_g))
    goto out;
#else
  if (!(dh->p = BN_dup(p)))
    goto out;
  if (!(dh->g = BN_dup(g)))
    goto out;
#endif

  /* Perform the validation. */
  int codes = 0;
  if (!DH_check(dh, &codes))
    goto out;
  if (BN_is_word(g, DH_GENERATOR_2)) {
    /* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters
     *
     * OpenSSL checks the prime is congruent to 11 when g = 2; while the
     * IETF's primes are congruent to 23 when g = 2.
     */
    BN_ULONG residue = BN_mod_word(p, 24);
    if (residue == 11 || residue == 23)
      codes &= ~DH_NOT_SUITABLE_GENERATOR;
  }
  if (codes != 0) /* Specifics on why the params suck is irrelevant. */
    goto out;

  /* Things are probably not evil. */
  ret = 0;

 out:
  if (dh)
    DH_free(dh);
  return ret;
}

/** Set the global Diffie-Hellman generator, used for both TLS and internal
 * DH stuff.
 */
static void
crypto_set_dh_generator(void)
{
  BIGNUM *generator;
  int r;

  if (dh_param_g)
    return;

  generator = BN_new();
  tor_assert(generator);

  r = BN_set_word(generator, DH_GENERATOR);
  tor_assert(r);

  dh_param_g = generator;
}

/** Set the global TLS Diffie-Hellman modulus.  Use the Apache mod_ssl DH
 * modulus. */
void
crypto_set_tls_dh_prime(void)
{
  BIGNUM *tls_prime = NULL;
  int r;

  /* If the space is occupied, free the previous TLS DH prime */
  if (BUG(dh_param_p_tls)) {
    /* LCOV_EXCL_START
     *
     * We shouldn't be calling this twice.
     */
    BN_clear_free(dh_param_p_tls);
    dh_param_p_tls = NULL;
    /* LCOV_EXCL_STOP */
  }

  tls_prime = BN_new();
  tor_assert(tls_prime);

  /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see
   * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this
   * prime.
   */
  r = BN_hex2bn(&tls_prime,
               "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98"
               "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A"
               "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7"
               "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68"
               "B0E7393E0F24218EB3");
  tor_assert(r);

  tor_assert(tls_prime);

  dh_param_p_tls = tls_prime;
  crypto_set_dh_generator();
  tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g));
}

/** Initialize dh_param_p and dh_param_g if they are not already
 * set. */
static void
init_dh_param(void)
{
  BIGNUM *circuit_dh_prime;
  int r;
  if (BUG(dh_param_p && dh_param_g))
    return; // LCOV_EXCL_LINE This function isn't supposed to be called twice.

  circuit_dh_prime = BN_new();
  tor_assert(circuit_dh_prime);

  /* This is from rfc2409, section 6.2.  It's a safe prime, and
     supposedly it equals:
        2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
  */
  r = BN_hex2bn(&circuit_dh_prime,
                "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
                "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
                "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
                "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
                "49286651ECE65381FFFFFFFFFFFFFFFF");
  tor_assert(r);

  /* Set the new values as the global DH parameters. */
  dh_param_p = circuit_dh_prime;
  crypto_set_dh_generator();
  tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g));

  if (!dh_param_p_tls) {
    crypto_set_tls_dh_prime();
  }
}

/** Number of bits to use when choosing the x or y value in a Diffie-Hellman
 * handshake.  Since we exponentiate by this value, choosing a smaller one
 * lets our handhake go faster.
 */
#define DH_PRIVATE_KEY_BITS 320

/** Allocate and return a new DH object for a key exchange. Returns NULL on
 * failure.
 */
crypto_dh_t *
crypto_dh_new(int dh_type)
{
  crypto_dh_t *res = tor_malloc_zero(sizeof(crypto_dh_t));

  tor_assert(dh_type == DH_TYPE_CIRCUIT || dh_type == DH_TYPE_TLS ||
             dh_type == DH_TYPE_REND);

  if (!dh_param_p)
    init_dh_param();

  if (!(res->dh = DH_new()))
    goto err;

#ifdef OPENSSL_1_1_API
  BIGNUM *dh_p = NULL, *dh_g = NULL;

  if (dh_type == DH_TYPE_TLS) {
    dh_p = BN_dup(dh_param_p_tls);
  } else {
    dh_p = BN_dup(dh_param_p);
  }
  if (!dh_p)
    goto err;

  dh_g = BN_dup(dh_param_g);
  if (!dh_g) {
    BN_free(dh_p);
    goto err;
  }

  if (!DH_set0_pqg(res->dh, dh_p, NULL, dh_g)) {
    goto err;
  }

  if (!DH_set_length(res->dh, DH_PRIVATE_KEY_BITS))
    goto err;
#else
  if (dh_type == DH_TYPE_TLS) {
    if (!(res->dh->p = BN_dup(dh_param_p_tls)))
      goto err;
  } else {
    if (!(res->dh->p = BN_dup(dh_param_p)))
      goto err;
  }

  if (!(res->dh->g = BN_dup(dh_param_g)))
    goto err;

  res->dh->length = DH_PRIVATE_KEY_BITS;
#endif

  return res;
 err:
  /* LCOV_EXCL_START
   * This error condition is only reached when an allocation fails */
  crypto_log_errors(LOG_WARN, "creating DH object");
  if (res->dh) DH_free(res->dh); /* frees p and g too */
  tor_free(res);
  return NULL;
  /* LCOV_EXCL_STOP */
}

/** Return a copy of <b>dh</b>, sharing its internal state. */
crypto_dh_t *
crypto_dh_dup(const crypto_dh_t *dh)
{
  crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t));
  tor_assert(dh);
  tor_assert(dh->dh);
  dh_new->dh = dh->dh;
  DH_up_ref(dh->dh);
  return dh_new;
}

/** Return the length of the DH key in <b>dh</b>, in bytes.
 */
int
crypto_dh_get_bytes(crypto_dh_t *dh)
{
  tor_assert(dh);
  return DH_size(dh->dh);
}

/** Generate \<x,g^x\> for our part of the key exchange.  Return 0 on
 * success, -1 on failure.
 */
int
crypto_dh_generate_public(crypto_dh_t *dh)
{
#ifndef OPENSSL_1_1_API
 again:
#endif
  if (!DH_generate_key(dh->dh)) {
    /* LCOV_EXCL_START
     * To test this we would need some way to tell openssl to break DH. */
    crypto_log_errors(LOG_WARN, "generating DH key");
    return -1;
    /* LCOV_EXCL_STOP */
  }
#ifdef OPENSSL_1_1_API
  /* OpenSSL 1.1.x doesn't appear to let you regenerate a DH key, without
   * recreating the DH object.  I have no idea what sort of aliasing madness
   * can occur here, so do the check, and just bail on failure.
   */
  const BIGNUM *pub_key, *priv_key;
  DH_get0_key(dh->dh, &pub_key, &priv_key);
  if (tor_check_dh_key(LOG_WARN, pub_key)<0) {
    log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid.  I guess once-in-"
             "the-universe chances really do happen.  Treating as a failure.");
    return -1;
  }
#else
  if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) {
    /* LCOV_EXCL_START
     * If this happens, then openssl's DH implementation is busted. */
    log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid.  I guess once-in-"
             "the-universe chances really do happen.  Trying again.");
    /* Free and clear the keys, so OpenSSL will actually try again. */
    BN_clear_free(dh->dh->pub_key);
    BN_clear_free(dh->dh->priv_key);
    dh->dh->pub_key = dh->dh->priv_key = NULL;
    goto again;
    /* LCOV_EXCL_STOP */
  }
#endif
  return 0;
}

/** Generate g^x as necessary, and write the g^x for the key exchange
 * as a <b>pubkey_len</b>-byte value into <b>pubkey</b>. Return 0 on
 * success, -1 on failure.  <b>pubkey_len</b> must be \>= DH_BYTES.
 */
int
crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
{
  int bytes;
  tor_assert(dh);

  const BIGNUM *dh_pub;

#ifdef OPENSSL_1_1_API
  const BIGNUM *dh_priv;
  DH_get0_key(dh->dh, &dh_pub, &dh_priv);
#else
  dh_pub = dh->dh->pub_key;
#endif

  if (!dh_pub) {
    if (crypto_dh_generate_public(dh)<0)
      return -1;
    else {
#ifdef OPENSSL_1_1_API
      DH_get0_key(dh->dh, &dh_pub, &dh_priv);
#else
      dh_pub = dh->dh->pub_key;
#endif
    }
  }

  tor_assert(dh_pub);
  bytes = BN_num_bytes(dh_pub);
  tor_assert(bytes >= 0);
  if (pubkey_len < (size_t)bytes) {
    log_warn(LD_CRYPTO,
             "Weird! pubkey_len (%d) was smaller than DH_BYTES (%d)",
             (int) pubkey_len, bytes);
    return -1;
  }

  memset(pubkey, 0, pubkey_len);
  BN_bn2bin(dh_pub, (unsigned char*)(pubkey+(pubkey_len-bytes)));

  return 0;
}

/** Check for bad Diffie-Hellman public keys (g^x).  Return 0 if the key is
 * okay (in the subgroup [2,p-2]), or -1 if it's bad.
 * See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips.
 */
static int
tor_check_dh_key(int severity, const BIGNUM *bn)
{
  BIGNUM *x;
  char *s;
  tor_assert(bn);
  x = BN_new();
  tor_assert(x);
  if (BUG(!dh_param_p))
    init_dh_param(); //LCOV_EXCL_LINE we already checked whether we did this.
  BN_set_word(x, 1);
  if (BN_cmp(bn,x)<=0) {
    log_fn(severity, LD_CRYPTO, "DH key must be at least 2.");
    goto err;
  }
  BN_copy(x,dh_param_p);
  BN_sub_word(x, 1);
  if (BN_cmp(bn,x)>=0) {
    log_fn(severity, LD_CRYPTO, "DH key must be at most p-2.");
    goto err;
  }
  BN_clear_free(x);
  return 0;
 err:
  BN_clear_free(x);
  s = BN_bn2hex(bn);
  log_fn(severity, LD_CRYPTO, "Rejecting insecure DH key [%s]", s);
  OPENSSL_free(s);
  return -1;
}

/** Given a DH key exchange object, and our peer's value of g^y (as a
 * <b>pubkey_len</b>-byte value in <b>pubkey</b>) generate
 * <b>secret_bytes_out</b> bytes of shared key material and write them
 * to <b>secret_out</b>.  Return the number of bytes generated on success,
 * or -1 on failure.
 *
 * (We generate key material by computing
 *         SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
 * where || is concatenation.)
 */
ssize_t
crypto_dh_compute_secret(int severity, crypto_dh_t *dh,
                         const char *pubkey, size_t pubkey_len,
                         char *secret_out, size_t secret_bytes_out)
{
  char *secret_tmp = NULL;
  BIGNUM *pubkey_bn = NULL;
  size_t secret_len=0, secret_tmp_len=0;
  int result=0;
  tor_assert(dh);
  tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
  tor_assert(pubkey_len < INT_MAX);

  if (!(pubkey_bn = BN_bin2bn((const unsigned char*)pubkey,
                              (int)pubkey_len, NULL)))
    goto error;
  if (tor_check_dh_key(severity, pubkey_bn)<0) {
    /* Check for invalid public keys. */
    log_fn(severity, LD_CRYPTO,"Rejected invalid g^x");
    goto error;
  }
  secret_tmp_len = crypto_dh_get_bytes(dh);
  secret_tmp = tor_malloc(secret_tmp_len);
  result = DH_compute_key((unsigned char*)secret_tmp, pubkey_bn, dh->dh);
  if (result < 0) {
    log_warn(LD_CRYPTO,"DH_compute_key() failed.");
    goto error;
  }
  secret_len = result;
  if (crypto_expand_key_material_TAP((uint8_t*)secret_tmp, secret_len,
                                     (uint8_t*)secret_out, secret_bytes_out)<0)
    goto error;
  secret_len = secret_bytes_out;

  goto done;
 error:
  result = -1;
 done:
  crypto_log_errors(LOG_WARN, "completing DH handshake");
  if (pubkey_bn)
    BN_clear_free(pubkey_bn);
  if (secret_tmp) {
    memwipe(secret_tmp, 0, secret_tmp_len);
    tor_free(secret_tmp);
  }
  if (result < 0)
    return result;
  else
    return secret_len;
}

/** Given <b>key_in_len</b> bytes of negotiated randomness in <b>key_in</b>
 * ("K"), expand it into <b>key_out_len</b> bytes of negotiated key material in
 * <b>key_out</b> by taking the first <b>key_out_len</b> bytes of
 *    H(K | [00]) | H(K | [01]) | ....
 *
 * This is the key expansion algorithm used in the "TAP" circuit extension
 * mechanism; it shouldn't be used for new protocols.
 *
 * Return 0 on success, -1 on failure.
 */
int
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
                               uint8_t *key_out, size_t key_out_len)
{
  int i, r = -1;
  uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
  uint8_t digest[DIGEST_LEN];

  /* If we try to get more than this amount of key data, we'll repeat blocks.*/
  tor_assert(key_out_len <= DIGEST_LEN*256);

  memcpy(tmp, key_in, key_in_len);
  for (cp = key_out, i=0; cp < key_out+key_out_len;
       ++i, cp += DIGEST_LEN) {
    tmp[key_in_len] = i;
    if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1) < 0)
      goto exit;
    memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
  }

  r = 0;
 exit:
  memwipe(tmp, 0, key_in_len+1);
  tor_free(tmp);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

/** Expand some secret key material according to RFC5869, using SHA256 as the
 * underlying hash.  The <b>key_in_len</b> bytes at <b>key_in</b> are the
 * secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
 * <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
 * and "info" parameters respectively.  On success, write <b>key_out_len</b>
 * bytes to <b>key_out</b> and return 0.  Assert on failure.
 */
int
crypto_expand_key_material_rfc5869_sha256(
                                    const uint8_t *key_in, size_t key_in_len,
                                    const uint8_t *salt_in, size_t salt_in_len,
                                    const uint8_t *info_in, size_t info_in_len,
                                    uint8_t *key_out, size_t key_out_len)
{
  uint8_t prk[DIGEST256_LEN];
  uint8_t tmp[DIGEST256_LEN + 128 + 1];
  uint8_t mac[DIGEST256_LEN];
  int i;
  uint8_t *outp;
  size_t tmp_len;

  crypto_hmac_sha256((char*)prk,
                     (const char*)salt_in, salt_in_len,
                     (const char*)key_in, key_in_len);

  /* If we try to get more than this amount of key data, we'll repeat blocks.*/
  tor_assert(key_out_len <= DIGEST256_LEN * 256);
  tor_assert(info_in_len <= 128);
  memset(tmp, 0, sizeof(tmp));
  outp = key_out;
  i = 1;

  while (key_out_len) {
    size_t n;
    if (i > 1) {
      memcpy(tmp, mac, DIGEST256_LEN);
      memcpy(tmp+DIGEST256_LEN, info_in, info_in_len);
      tmp[DIGEST256_LEN+info_in_len] = i;
      tmp_len = DIGEST256_LEN + info_in_len + 1;
    } else {
      memcpy(tmp, info_in, info_in_len);
      tmp[info_in_len] = i;
      tmp_len = info_in_len + 1;
    }
    crypto_hmac_sha256((char*)mac,
                       (const char*)prk, DIGEST256_LEN,
                       (const char*)tmp, tmp_len);
    n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN;
    memcpy(outp, mac, n);
    key_out_len -= n;
    outp += n;
    ++i;
  }

  memwipe(tmp, 0, sizeof(tmp));
  memwipe(mac, 0, sizeof(mac));
  return 0;
}

/** Free a DH key exchange object.
 */
void
crypto_dh_free(crypto_dh_t *dh)
{
  if (!dh)
    return;
  tor_assert(dh->dh);
  DH_free(dh->dh);
  tor_free(dh);
}

/* random numbers */

/** How many bytes of entropy we add at once.
 *
 * This is how much entropy OpenSSL likes to add right now, so maybe it will
 * work for us too. */
#define ADD_ENTROPY 32

/** Set the seed of the weak RNG to a random value. */
void
crypto_seed_weak_rng(tor_weak_rng_t *rng)
{
  unsigned seed;
  crypto_rand((void*)&seed, sizeof(seed));
  tor_init_weak_random(rng, seed);
}

#ifdef TOR_UNIT_TESTS
int break_strongest_rng_syscall = 0;
int break_strongest_rng_fallback = 0;
#endif

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
 * failure.  A maximum request size of 256 bytes is imposed.
 */
static int
crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
{
  tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);

#ifdef TOR_UNIT_TESTS
  if (break_strongest_rng_syscall)
    return -1;
#endif

#if defined(_WIN32)
  static int provider_set = 0;
  static HCRYPTPROV provider;

  if (!provider_set) {
    if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
                             CRYPT_VERIFYCONTEXT)) {
      log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
      return -1;
    }
    provider_set = 1;
  }
  if (!CryptGenRandom(provider, out_len, out)) {
    log_warn(LD_CRYPTO, "Can't get entropy from CryptoAPI.");
    return -1;
  }

  return 0;
#elif defined(__linux__) && defined(SYS_getrandom)
  static int getrandom_works = 1; /* Be optimitic about our chances... */

  /* getrandom() isn't as straight foward as getentropy(), and has
   * no glibc wrapper.
   *
   * As far as I can tell from getrandom(2) and the source code, the
   * requests we issue will always succeed (though it will block on the
   * call if /dev/urandom isn't seeded yet), since we are NOT specifying
   * GRND_NONBLOCK and the request is <= 256 bytes.
   *
   * The manpage is unclear on what happens if a signal interrupts the call
   * while the request is blocked due to lack of entropy....
   *
   * We optimistically assume that getrandom() is available and functional
   * because it is the way of the future, and 2 branch mispredicts pale in
   * comparision to the overheads involved with failing to open
   * /dev/srandom followed by opening and reading from /dev/urandom.
   */
  if (PREDICT_LIKELY(getrandom_works)) {
    long ret;
    /* A flag of '0' here means to read from '/dev/urandom', and to
     * block if insufficient entropy is available to service the
     * request.
     */
    const unsigned int flags = 0;
    do {
      ret = syscall(SYS_getrandom, out, out_len, flags);
    } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));

    if (PREDICT_UNLIKELY(ret == -1)) {
      /* LCOV_EXCL_START we can't actually make the syscall fail in testing. */
      tor_assert(errno != EAGAIN);
      tor_assert(errno != EINTR);

      /* Probably ENOSYS. */
      log_warn(LD_CRYPTO, "Can't get entropy from getrandom().");
      getrandom_works = 0; /* Don't bother trying again. */
      return -1;
      /* LCOV_EXCL_STOP */
    }

    tor_assert(ret == (long)out_len);
    return 0;
  }

  return -1; /* getrandom() previously failed unexpectedly. */
#elif defined(HAVE_GETENTROPY)
  /* getentropy() is what Linux's getrandom() wants to be when it grows up.
   * the only gotcha is that requests are limited to 256 bytes.
   */
  return getentropy(out, out_len);
#else
  (void) out;
#endif

  /* This platform doesn't have a supported syscall based random. */
  return -1;
}

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * via the per-platform fallback mechanism, storing it into <b>out</b>.
 * Return 0 on success, -1 on failure.  A maximum request size of 256 bytes
 * is imposed.
 */
static int
crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
{
#ifdef TOR_UNIT_TESTS
  if (break_strongest_rng_fallback)
    return -1;
#endif

#ifdef _WIN32
  /* Windows exclusively uses crypto_strongest_rand_syscall(). */
  (void)out;
  (void)out_len;
  return -1;
#else
  static const char *filenames[] = {
    "/dev/srandom", "/dev/urandom", "/dev/random", NULL
  };
  int fd, i;
  size_t n;

  for (i = 0; filenames[i]; ++i) {
    log_debug(LD_FS, "Considering %s for entropy", filenames[i]);
    fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
    if (fd<0) continue;
    log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
    n = read_all(fd, (char*)out, out_len, 0);
    close(fd);
    if (n != out_len) {
      /* LCOV_EXCL_START
       * We can't make /dev/foorandom actually fail. */
      log_warn(LD_CRYPTO,
               "Error reading from entropy source (read only %lu bytes).",
               (unsigned long)n);
      return -1;
      /* LCOV_EXCL_STOP */
    }

    return 0;
  }

  return -1;
#endif
}

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * storing it into <b>out</b>. Return 0 on success, -1 on failure.  A maximum
 * request size of 256 bytes is imposed.
 */
STATIC int
crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
{
  static const size_t sanity_min_size = 16;
  static const int max_attempts = 3;
  tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);

  /* For buffers >= 16 bytes (128 bits), we sanity check the output by
   * zero filling the buffer and ensuring that it actually was at least
   * partially modified.
   *
   * Checking that any individual byte is non-zero seems like it would
   * fail too often (p = out_len * 1/256) for comfort, but this is an
   * "adjust according to taste" sort of check.
   */
  memwipe(out, 0, out_len);
  for (int i = 0; i < max_attempts; i++) {
    /* Try to use the syscall/OS favored mechanism to get strong entropy. */
    if (crypto_strongest_rand_syscall(out, out_len) != 0) {
      /* Try to use the less-favored mechanism to get strong entropy. */
      if (crypto_strongest_rand_fallback(out, out_len) != 0) {
        /* Welp, we tried.  Hopefully the calling code terminates the process
         * since we're basically boned without good entropy.
         */
        log_warn(LD_CRYPTO,
                 "Cannot get strong entropy: no entropy source found.");
        return -1;
      }
    }

    if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
      return 0;
  }

  /* LCOV_EXCL_START
   *
   * We tried max_attempts times to fill a buffer >= 128 bits long,
   * and each time it returned all '0's.  Either the system entropy
   * source is busted, or the user should go out and buy a ticket to
   * every lottery on the planet.
   */
  log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");

  return -1;
  /* LCOV_EXCL_STOP */
}

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * storing it into <b>out</b>.
 */
void
crypto_strongest_rand(uint8_t *out, size_t out_len)
{
#define DLEN SHA512_DIGEST_LENGTH
  /* We're going to hash DLEN bytes from the system RNG together with some
   * bytes from the openssl PRNG, in order to yield DLEN bytes.
   */
  uint8_t inp[DLEN*2];
  uint8_t tmp[DLEN];
  tor_assert(out);
  while (out_len) {
    crypto_rand((char*) inp, DLEN);
    if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
      // LCOV_EXCL_START
      log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
              "important key. Exiting.");
      /* Die with an assertion so we get a stack trace. */
      tor_assert(0);
      // LCOV_EXCL_STOP
    }
    if (out_len >= DLEN) {
      SHA512(inp, sizeof(inp), out);
      out += DLEN;
      out_len -= DLEN;
    } else {
      SHA512(inp, sizeof(inp), tmp);
      memcpy(out, tmp, out_len);
      break;
    }
  }
  memwipe(tmp, 0, sizeof(tmp));
  memwipe(inp, 0, sizeof(inp));
#undef DLEN
}

/** Seed OpenSSL's random number generator with bytes from the operating
 * system.  Return 0 on success, -1 on failure.
 */
int
crypto_seed_rng(void)
{
  int rand_poll_ok = 0, load_entropy_ok = 0;
  uint8_t buf[ADD_ENTROPY];

  /* OpenSSL has a RAND_poll function that knows about more kinds of
   * entropy than we do.  We'll try calling that, *and* calling our own entropy
   * functions.  If one succeeds, we'll accept the RNG as seeded. */
  rand_poll_ok = RAND_poll();
  if (rand_poll_ok == 0)
    log_warn(LD_CRYPTO, "RAND_poll() failed."); // LCOV_EXCL_LINE

  load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
  if (load_entropy_ok) {
    RAND_seed(buf, sizeof(buf));
  }

  memwipe(buf, 0, sizeof(buf));

  if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
    return 0;
  else
    return -1;
}

/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
 * for unit tests.
 *
 * This function is not allowed to fail; if it would fail to generate strong
 * entropy, it must terminate the process instead.
 */
MOCK_IMPL(void,
crypto_rand, (char *to, size_t n))
{
  crypto_rand_unmocked(to, n);
}

/** Write <b>n</b> bytes of strong random data to <b>to</b>.  Most callers
 * will want crypto_rand instead.
 *
 * This function is not allowed to fail; if it would fail to generate strong
 * entropy, it must terminate the process instead.
 */
void
crypto_rand_unmocked(char *to, size_t n)
{
  int r;
  if (n == 0)
    return;

  tor_assert(n < INT_MAX);
  tor_assert(to);
  r = RAND_bytes((unsigned char*)to, (int)n);
  /* We consider a PRNG failure non-survivable. Let's assert so that we get a
   * stack trace about where it happened.
   */
  tor_assert(r >= 0);
}

/** Return a pseudorandom integer, chosen uniformly from the values
 * between 0 and <b>max</b>-1 inclusive.  <b>max</b> must be between 1 and
 * INT_MAX+1, inclusive. */
int
crypto_rand_int(unsigned int max)
{
  unsigned int val;
  unsigned int cutoff;
  tor_assert(max <= ((unsigned int)INT_MAX)+1);
  tor_assert(max > 0); /* don't div by 0 */

  /* We ignore any values that are >= 'cutoff,' to avoid biasing the
   * distribution with clipping at the upper end of unsigned int's
   * range.
   */
  cutoff = UINT_MAX - (UINT_MAX%max);
  while (1) {
    crypto_rand((char*)&val, sizeof(val));
    if (val < cutoff)
      return val % max;
  }
}

/** Return a pseudorandom integer, chosen uniformly from the values i such
 * that min <= i < max.
 *
 * <b>min</b> MUST be in range [0, <b>max</b>).
 * <b>max</b> MUST be in range (min, INT_MAX].
 */
int
crypto_rand_int_range(unsigned int min, unsigned int max)
{
  tor_assert(min < max);
  tor_assert(max <= INT_MAX);

  /* The overflow is avoided here because crypto_rand_int() returns a value
   * between 0 and (max - min) inclusive. */
  return min + crypto_rand_int(max - min);
}

/** As crypto_rand_int_range, but supports uint64_t. */
uint64_t
crypto_rand_uint64_range(uint64_t min, uint64_t max)
{
  tor_assert(min < max);
  return min + crypto_rand_uint64(max - min);
}

/** As crypto_rand_int_range, but supports time_t. */
time_t
crypto_rand_time_range(time_t min, time_t max)
{
  tor_assert(min < max);
  return min + (time_t)crypto_rand_uint64(max - min);
}

/** Return a pseudorandom 64-bit integer, chosen uniformly from the values
 * between 0 and <b>max</b>-1 inclusive. */
uint64_t
crypto_rand_uint64(uint64_t max)
{
  uint64_t val;
  uint64_t cutoff;
  tor_assert(max < UINT64_MAX);
  tor_assert(max > 0); /* don't div by 0 */

  /* We ignore any values that are >= 'cutoff,' to avoid biasing the
   * distribution with clipping at the upper end of unsigned int's
   * range.
   */
  cutoff = UINT64_MAX - (UINT64_MAX%max);
  while (1) {
    crypto_rand((char*)&val, sizeof(val));
    if (val < cutoff)
      return val % max;
  }
}

/** Return a pseudorandom double d, chosen uniformly from the range
 * 0.0 <= d < 1.0.
 */
double
crypto_rand_double(void)
{
  /* We just use an unsigned int here; we don't really care about getting
   * more than 32 bits of resolution */
  unsigned int u;
  crypto_rand((char*)&u, sizeof(u));
#if SIZEOF_INT == 4
#define UINT_MAX_AS_DOUBLE 4294967296.0
#elif SIZEOF_INT == 8
#define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19
#else
#error SIZEOF_INT is neither 4 nor 8
#endif
  return ((double)u) / UINT_MAX_AS_DOUBLE;
}

/** Generate and return a new random hostname starting with <b>prefix</b>,
 * ending with <b>suffix</b>, and containing no fewer than
 * <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
 * characters. Does not check for failure.
 *
 * Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
 **/
char *
crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
                       const char *suffix)
{
  char *result, *rand_bytes;
  int randlen, rand_bytes_len;
  size_t resultlen, prefixlen;

  if (max_rand_len > MAX_DNS_LABEL_SIZE)
    max_rand_len = MAX_DNS_LABEL_SIZE;
  if (min_rand_len > max_rand_len)
    min_rand_len = max_rand_len;

  randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1);

  prefixlen = strlen(prefix);
  resultlen = prefixlen + strlen(suffix) + randlen + 16;

  rand_bytes_len = ((randlen*5)+7)/8;
  if (rand_bytes_len % 5)
    rand_bytes_len += 5 - (rand_bytes_len%5);
  rand_bytes = tor_malloc(rand_bytes_len);
  crypto_rand(rand_bytes, rand_bytes_len);

  result = tor_malloc(resultlen);
  memcpy(result, prefix, prefixlen);
  base32_encode(result+prefixlen, resultlen-prefixlen,
                rand_bytes, rand_bytes_len);
  tor_free(rand_bytes);
  strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen));

  return result;
}

/** Return a randomly chosen element of <b>sl</b>; or NULL if <b>sl</b>
 * is empty. */
void *
smartlist_choose(const smartlist_t *sl)
{
  int len = smartlist_len(sl);
  if (len)
    return smartlist_get(sl,crypto_rand_int(len));
  return NULL; /* no elements to choose from */
}

/** Scramble the elements of <b>sl</b> into a random order. */
void
smartlist_shuffle(smartlist_t *sl)
{
  int i;
  /* From the end of the list to the front, choose at random from the
     positions we haven't looked at yet, and swap that position into the
     current position.  Remember to give "no swap" the same probability as
     any other swap. */
  for (i = smartlist_len(sl)-1; i > 0; --i) {
    int j = crypto_rand_int(i+1);
    smartlist_swap(sl, i, j);
  }
}

/**
 * Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to
 * the value <b>byte</b>.
 * If <b>mem</b> is NULL or <b>sz</b> is zero, nothing happens.
 *
 * This function is preferable to memset, since many compilers will happily
 * optimize out memset() when they can convince themselves that the data being
 * cleared will never be read.
 *
 * Right now, our convention is to use this function when we are wiping data
 * that's about to become inaccessible, such as stack buffers that are about
 * to go out of scope or structures that are about to get freed.  (In
 * practice, it appears that the compilers we're currently using will optimize
 * out the memset()s for stack-allocated buffers, but not those for
 * about-to-be-freed structures. That could change, though, so we're being
 * wary.)  If there are live reads for the data, then you can just use
 * memset().
 */
void
memwipe(void *mem, uint8_t byte, size_t sz)
{
  if (sz == 0) {
    return;
  }
  /* If sz is nonzero, then mem must not be NULL. */
  tor_assert(mem != NULL);

  /* Data this large is likely to be an underflow. */
  tor_assert(sz < SIZE_T_CEILING);

  /* Because whole-program-optimization exists, we may not be able to just
   * have this function call "memset".  A smart compiler could inline it, then
   * eliminate dead memsets, and declare itself to be clever. */

#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY)
  /* Here's what you do on windows. */
  SecureZeroMemory(mem,sz);
#elif defined(HAVE_RTLSECUREZEROMEMORY)
  RtlSecureZeroMemory(mem,sz);
#elif defined(HAVE_EXPLICIT_BZERO)
  /* The BSDs provide this. */
  explicit_bzero(mem, sz);
#elif defined(HAVE_MEMSET_S)
  /* This is in the C99 standard. */
  memset_s(mem, sz, 0, sz);
#else
  /* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
   * based on the pointer value, then uses that junk to update a global
   * variable.  It's an elaborate ruse to trick the compiler into not
   * optimizing out the "wipe this memory" code.  Read it if you like zany
   * programming tricks! In later versions of Tor, we should look for better
   * not-optimized-out memory wiping stuff...
   *
   * ...or maybe not.  In practice, there are pure-asm implementations of
   * OPENSSL_cleanse() on most platforms, which ought to do the job.
   **/

  OPENSSL_cleanse(mem, sz);
#endif

  /* Just in case some caller of memwipe() is relying on getting a buffer
   * filled with a particular value, fill the buffer.
   *
   * If this function gets inlined, this memset might get eliminated, but
   * that's okay: We only care about this particular memset in the case where
   * the caller should have been using memset(), and the memset() wouldn't get
   * eliminated.  In other words, this is here so that we won't break anything
   * if somebody accidentally calls memwipe() instead of memset().
   **/
  memset(mem, byte, sz);
}

#ifndef OPENSSL_THREADS
#error OpenSSL has been built without thread support. Tor requires an \
 OpenSSL library with thread support enabled.
#endif

#ifndef NEW_THREAD_API
/** Helper: OpenSSL uses this callback to manipulate mutexes. */
static void
openssl_locking_cb_(int mode, int n, const char *file, int line)
{
  (void)file;
  (void)line;
  if (!openssl_mutexes_)
    /* This is not a really good fix for the
     * "release-freed-lock-from-separate-thread-on-shutdown" problem, but
     * it can't hurt. */
    return;
  if (mode & CRYPTO_LOCK)
    tor_mutex_acquire(openssl_mutexes_[n]);
  else
    tor_mutex_release(openssl_mutexes_[n]);
}

static void
tor_set_openssl_thread_id(CRYPTO_THREADID *threadid)
{
  CRYPTO_THREADID_set_numeric(threadid, tor_get_thread_id());
}
#endif

#if 0
/* This code is disabled, because OpenSSL never actually uses these callbacks.
 */

/** OpenSSL helper type: wraps a Tor mutex so that OpenSSL can use it
 * as a lock. */
struct CRYPTO_dynlock_value {
  tor_mutex_t *lock;
};

/** OpenSSL callback function to allocate a lock: see CRYPTO_set_dynlock_*
 * documentation in OpenSSL's docs for more info. */
static struct CRYPTO_dynlock_value *
openssl_dynlock_create_cb_(const char *file, int line)
{
  struct CRYPTO_dynlock_value *v;
  (void)file;
  (void)line;
  v = tor_malloc(sizeof(struct CRYPTO_dynlock_value));
  v->lock = tor_mutex_new();
  return v;
}

/** OpenSSL callback function to acquire or release a lock: see
 * CRYPTO_set_dynlock_* documentation in OpenSSL's docs for more info. */
static void
openssl_dynlock_lock_cb_(int mode, struct CRYPTO_dynlock_value *v,
                         const char *file, int line)
{
  (void)file;
  (void)line;
  if (mode & CRYPTO_LOCK)
    tor_mutex_acquire(v->lock);
  else
    tor_mutex_release(v->lock);
}

/** OpenSSL callback function to free a lock: see CRYPTO_set_dynlock_*
 * documentation in OpenSSL's docs for more info. */
static void
openssl_dynlock_destroy_cb_(struct CRYPTO_dynlock_value *v,
                            const char *file, int line)
{
  (void)file;
  (void)line;
  tor_mutex_free(v->lock);
  tor_free(v);
}
#endif

/** @{ */
/** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being
 * multithreaded. Returns 0. */
static int
setup_openssl_threading(void)
{
#ifndef NEW_THREAD_API
  int i;
  int n = CRYPTO_num_locks();
  n_openssl_mutexes_ = n;
  openssl_mutexes_ = tor_calloc(n, sizeof(tor_mutex_t *));
  for (i=0; i < n; ++i)
    openssl_mutexes_[i] = tor_mutex_new();
  CRYPTO_set_locking_callback(openssl_locking_cb_);
  CRYPTO_THREADID_set_callback(tor_set_openssl_thread_id);
#endif
#if 0
  CRYPTO_set_dynlock_create_callback(openssl_dynlock_create_cb_);
  CRYPTO_set_dynlock_lock_callback(openssl_dynlock_lock_cb_);
  CRYPTO_set_dynlock_destroy_callback(openssl_dynlock_destroy_cb_);
#endif
  return 0;
}

/** Uninitialize the crypto library. Return 0 on success. Does not detect
 * failure.
 */
int
crypto_global_cleanup(void)
{
  EVP_cleanup();
#ifndef NEW_THREAD_API
  ERR_remove_thread_state(NULL);
#endif
  ERR_free_strings();

  if (dh_param_p)
    BN_clear_free(dh_param_p);
  if (dh_param_p_tls)
    BN_clear_free(dh_param_p_tls);
  if (dh_param_g)
    BN_clear_free(dh_param_g);

#ifndef DISABLE_ENGINES
  ENGINE_cleanup();
#endif

  CONF_modules_unload(1);
  CRYPTO_cleanup_all_ex_data();

#ifndef NEW_THREAD_API
  if (n_openssl_mutexes_) {
    int n = n_openssl_mutexes_;
    tor_mutex_t **ms = openssl_mutexes_;
    int i;
    openssl_mutexes_ = NULL;
    n_openssl_mutexes_ = 0;
    for (i=0;i<n;++i) {
      tor_mutex_free(ms[i]);
    }
    tor_free(ms);
  }
#endif

  tor_free(crypto_openssl_version_str);
  tor_free(crypto_openssl_header_version_str);
  return 0;
}

/** @} */