summaryrefslogtreecommitdiff
path: root/src/common/crypto.c
blob: 9fcd17742cbc51af1d0333df755f4f3a02e4b95b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
/* Copyright (c) 2001, Matej Pfajfar.
 * Copyright (c) 2001-2004, Roger Dingledine.
 * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
 * Copyright (c) 2007-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */

/**
 * \file crypto.c
 * \brief Wrapper functions to present a consistent interface to
 * public-key and symmetric cryptography operations from OpenSSL and
 * other places.
 **/

#include "orconfig.h"

#ifdef _WIN32
#include <winsock2.h>
#include <windows.h>
#include <wincrypt.h>
/* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually
 * use either definition. */
#undef OCSP_RESPONSE
#endif /* defined(_WIN32) */

#define CRYPTO_PRIVATE
#include "crypto.h"
#include "compat_openssl.h"
#include "crypto_curve25519.h"
#include "crypto_ed25519.h"
#include "crypto_format.h"
#include "crypto_rsa.h"
#include "crypto_digest.h"

DISABLE_GCC_WARNING(redundant-decls)

#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/conf.h>
#include <openssl/hmac.h>

ENABLE_GCC_WARNING(redundant-decls)

#if __GNUC__ && GCC_VERSION >= 402
#if GCC_VERSION >= 406
#pragma GCC diagnostic pop
#else
#pragma GCC diagnostic warning "-Wredundant-decls"
#endif
#endif /* __GNUC__ && GCC_VERSION >= 402 */

#ifdef HAVE_CTYPE_H
#include <ctype.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
#ifdef HAVE_SYS_SYSCALL_H
#include <sys/syscall.h>
#endif
#ifdef HAVE_SYS_RANDOM_H
#include <sys/random.h>
#endif

#include "torlog.h"
#include "torint.h"
#include "aes.h"
#include "util.h"
#include "container.h"
#include "compat.h"
#include "sandbox.h"
#include "util_format.h"

#include "keccak-tiny/keccak-tiny.h"

/** Longest recognized */
#define MAX_DNS_LABEL_SIZE 63

/** Largest strong entropy request */
#define MAX_STRONGEST_RAND_SIZE 256

/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
 * while we're waiting for the second.*/
struct crypto_dh_t {
  DH *dh; /**< The openssl DH object */
};

static int tor_check_dh_key(int severity, const BIGNUM *bn);

/** Boolean: has OpenSSL's crypto been initialized? */
static int crypto_early_initialized_ = 0;

/** Boolean: has OpenSSL's crypto been initialized? */
static int crypto_global_initialized_ = 0;

/** Log all pending crypto errors at level <b>severity</b>.  Use
 * <b>doing</b> to describe our current activities.
 */
static void
crypto_log_errors(int severity, const char *doing)
{
  unsigned long err;
  const char *msg, *lib, *func;
  while ((err = ERR_get_error()) != 0) {
    msg = (const char*)ERR_reason_error_string(err);
    lib = (const char*)ERR_lib_error_string(err);
    func = (const char*)ERR_func_error_string(err);
    if (!msg) msg = "(null)";
    if (!lib) lib = "(null)";
    if (!func) func = "(null)";
    if (BUG(!doing)) doing = "(null)";
    tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
              doing, msg, lib, func);
  }
}

#ifndef DISABLE_ENGINES
/** Log any OpenSSL engines we're using at NOTICE. */
static void
log_engine(const char *fn, ENGINE *e)
{
  if (e) {
    const char *name, *id;
    name = ENGINE_get_name(e);
    id = ENGINE_get_id(e);
    log_notice(LD_CRYPTO, "Default OpenSSL engine for %s is %s [%s]",
               fn, name?name:"?", id?id:"?");
  } else {
    log_info(LD_CRYPTO, "Using default implementation for %s", fn);
  }
}
#endif /* !defined(DISABLE_ENGINES) */

#ifndef DISABLE_ENGINES
/** Try to load an engine in a shared library via fully qualified path.
 */
static ENGINE *
try_load_engine(const char *path, const char *engine)
{
  ENGINE *e = ENGINE_by_id("dynamic");
  if (e) {
    if (!ENGINE_ctrl_cmd_string(e, "ID", engine, 0) ||
        !ENGINE_ctrl_cmd_string(e, "DIR_LOAD", "2", 0) ||
        !ENGINE_ctrl_cmd_string(e, "DIR_ADD", path, 0) ||
        !ENGINE_ctrl_cmd_string(e, "LOAD", NULL, 0)) {
      ENGINE_free(e);
      e = NULL;
    }
  }
  return e;
}
#endif /* !defined(DISABLE_ENGINES) */

/** Make sure that openssl is using its default PRNG. Return 1 if we had to
 * adjust it; 0 otherwise. */
STATIC int
crypto_force_rand_ssleay(void)
{
  RAND_METHOD *default_method;
  default_method = RAND_OpenSSL();
  if (RAND_get_rand_method() != default_method) {
    log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
               "a replacement the OpenSSL RNG. Resetting it to the default "
               "implementation.");
    RAND_set_rand_method(default_method);
    return 1;
  }
  return 0;
}

static int have_seeded_siphash = 0;

/** Set up the siphash key if we haven't already done so. */
int
crypto_init_siphash_key(void)
{
  struct sipkey key;
  if (have_seeded_siphash)
    return 0;

  crypto_rand((char*) &key, sizeof(key));
  siphash_set_global_key(&key);
  have_seeded_siphash = 1;
  return 0;
}

/** Initialize the crypto library.  Return 0 on success, -1 on failure.
 */
int
crypto_early_init(void)
{
  if (!crypto_early_initialized_) {

    crypto_early_initialized_ = 1;

    ERR_load_crypto_strings();
    OpenSSL_add_all_algorithms();

    setup_openssl_threading();

    unsigned long version_num = OpenSSL_version_num();
    const char *version_str = OpenSSL_version(OPENSSL_VERSION);
    if (version_num == OPENSSL_VERSION_NUMBER &&
        !strcmp(version_str, OPENSSL_VERSION_TEXT)) {
      log_info(LD_CRYPTO, "OpenSSL version matches version from headers "
                 "(%lx: %s).", version_num, version_str);
    } else {
      log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the "
               "version we're running with. If you get weird crashes, that "
               "might be why. (Compiled with %lx: %s; running with %lx: %s).",
               (unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT,
               version_num, version_str);
    }

    crypto_force_rand_ssleay();

    if (crypto_seed_rng() < 0)
      return -1;
    if (crypto_init_siphash_key() < 0)
      return -1;

    curve25519_init();
    ed25519_init();
  }
  return 0;
}

/** Initialize the crypto library.  Return 0 on success, -1 on failure.
 */
int
crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
{
  if (!crypto_global_initialized_) {
    if (crypto_early_init() < 0)
      return -1;

    crypto_global_initialized_ = 1;

    if (useAccel > 0) {
#ifdef DISABLE_ENGINES
      (void)accelName;
      (void)accelDir;
      log_warn(LD_CRYPTO, "No OpenSSL hardware acceleration support enabled.");
#else
      ENGINE *e = NULL;

      log_info(LD_CRYPTO, "Initializing OpenSSL engine support.");
      ENGINE_load_builtin_engines();
      ENGINE_register_all_complete();

      if (accelName) {
        if (accelDir) {
          log_info(LD_CRYPTO, "Trying to load dynamic OpenSSL engine \"%s\""
                   " via path \"%s\".", accelName, accelDir);
          e = try_load_engine(accelName, accelDir);
        } else {
          log_info(LD_CRYPTO, "Initializing dynamic OpenSSL engine \"%s\""
                   " acceleration support.", accelName);
          e = ENGINE_by_id(accelName);
        }
        if (!e) {
          log_warn(LD_CRYPTO, "Unable to load dynamic OpenSSL engine \"%s\".",
                   accelName);
        } else {
          log_info(LD_CRYPTO, "Loaded dynamic OpenSSL engine \"%s\".",
                   accelName);
        }
      }
      if (e) {
        log_info(LD_CRYPTO, "Loaded OpenSSL hardware acceleration engine,"
                 " setting default ciphers.");
        ENGINE_set_default(e, ENGINE_METHOD_ALL);
      }
      /* Log, if available, the intersection of the set of algorithms
         used by Tor and the set of algorithms available in the engine */
      log_engine("RSA", ENGINE_get_default_RSA());
      log_engine("DH", ENGINE_get_default_DH());
#ifdef OPENSSL_1_1_API
      log_engine("EC", ENGINE_get_default_EC());
#else
      log_engine("ECDH", ENGINE_get_default_ECDH());
      log_engine("ECDSA", ENGINE_get_default_ECDSA());
#endif /* defined(OPENSSL_1_1_API) */
      log_engine("RAND", ENGINE_get_default_RAND());
      log_engine("RAND (which we will not use)", ENGINE_get_default_RAND());
      log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
      log_engine("3DES-CBC", ENGINE_get_cipher_engine(NID_des_ede3_cbc));
      log_engine("AES-128-ECB", ENGINE_get_cipher_engine(NID_aes_128_ecb));
      log_engine("AES-128-CBC", ENGINE_get_cipher_engine(NID_aes_128_cbc));
#ifdef NID_aes_128_ctr
      log_engine("AES-128-CTR", ENGINE_get_cipher_engine(NID_aes_128_ctr));
#endif
#ifdef NID_aes_128_gcm
      log_engine("AES-128-GCM", ENGINE_get_cipher_engine(NID_aes_128_gcm));
#endif
      log_engine("AES-256-CBC", ENGINE_get_cipher_engine(NID_aes_256_cbc));
#ifdef NID_aes_256_gcm
      log_engine("AES-256-GCM", ENGINE_get_cipher_engine(NID_aes_256_gcm));
#endif

#endif /* defined(DISABLE_ENGINES) */
    } else {
      log_info(LD_CRYPTO, "NOT using OpenSSL engine support.");
    }

    if (crypto_force_rand_ssleay()) {
      if (crypto_seed_rng() < 0)
        return -1;
    }

    evaluate_evp_for_aes(-1);
    evaluate_ctr_for_aes();
  }
  return 0;
}

/** Free crypto resources held by this thread. */
void
crypto_thread_cleanup(void)
{
#ifndef NEW_THREAD_API
  ERR_remove_thread_state(NULL);
#endif
}

/** Used by tortls.c: Get the DH* from a crypto_dh_t.
 */
DH *
crypto_dh_get_dh_(crypto_dh_t *dh)
{
  return dh->dh;
}

/** Allocate and return a new symmetric cipher using the provided key and iv.
 * The key is <b>bits</b> bits long; the IV is CIPHER_IV_LEN bytes.  Both
 * must be provided. Key length must be 128, 192, or 256 */
crypto_cipher_t *
crypto_cipher_new_with_iv_and_bits(const uint8_t *key,
                                   const uint8_t *iv,
                                   int bits)
{
  tor_assert(key);
  tor_assert(iv);

  return aes_new_cipher((const uint8_t*)key, (const uint8_t*)iv, bits);
}

/** Allocate and return a new symmetric cipher using the provided key and iv.
 * The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes.  Both
 * must be provided.
 */
crypto_cipher_t *
crypto_cipher_new_with_iv(const char *key, const char *iv)
{
  return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)iv,
                                            128);
}

/** Return a new crypto_cipher_t with the provided <b>key</b> and an IV of all
 * zero bytes and key length <b>bits</b>.  Key length must be 128, 192, or
 * 256. */
crypto_cipher_t *
crypto_cipher_new_with_bits(const char *key, int bits)
{
  char zeroiv[CIPHER_IV_LEN];
  memset(zeroiv, 0, sizeof(zeroiv));
  return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)zeroiv,
                                            bits);
}

/** Return a new crypto_cipher_t with the provided <b>key</b> (of
 * CIPHER_KEY_LEN bytes) and an IV of all zero bytes.  */
crypto_cipher_t *
crypto_cipher_new(const char *key)
{
  return crypto_cipher_new_with_bits(key, 128);
}

/** Free a symmetric cipher.
 */
void
crypto_cipher_free_(crypto_cipher_t *env)
{
  if (!env)
    return;

  aes_cipher_free(env);
}

/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
 * every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
  int n = 0;
  char *end = out+outlen;
  tor_assert(outlen < SIZE_T_CEILING);

  while (*in && out<end) {
    *out++ = *in++;
    if (++n == 4 && *in && out<end) {
      n = 0;
      *out++ = ' ';
    }
  }
  tor_assert(out<end);
  *out = '\0';
}

/* symmetric crypto */

/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
 * <b>env</b>; on success, store the result to <b>to</b> and return 0.
 * Does not check for failure.
 */
int
crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
                      const char *from, size_t fromlen)
{
  tor_assert(env);
  tor_assert(env);
  tor_assert(from);
  tor_assert(fromlen);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  memcpy(to, from, fromlen);
  aes_crypt_inplace(env, to, fromlen);
  return 0;
}

/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
 * <b>env</b>; on success, store the result to <b>to</b> and return 0.
 * Does not check for failure.
 */
int
crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
                      const char *from, size_t fromlen)
{
  tor_assert(env);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < SIZE_T_CEILING);

  memcpy(to, from, fromlen);
  aes_crypt_inplace(env, to, fromlen);
  return 0;
}

/** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>;
 * on success. Does not check for failure.
 */
void
crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len)
{
  tor_assert(len < SIZE_T_CEILING);
  aes_crypt_inplace(env, buf, len);
}

/** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in
 * <b>key</b> to the buffer in <b>to</b> of length
 * <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> plus
 * CIPHER_IV_LEN bytes for the initialization vector. On success, return the
 * number of bytes written, on failure, return -1.
 */
int
crypto_cipher_encrypt_with_iv(const char *key,
                              char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  crypto_cipher_t *cipher;
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);

  if (fromlen < 1)
    return -1;
  if (tolen < fromlen + CIPHER_IV_LEN)
    return -1;

  char iv[CIPHER_IV_LEN];
  crypto_rand(iv, sizeof(iv));
  cipher = crypto_cipher_new_with_iv(key, iv);

  memcpy(to, iv, CIPHER_IV_LEN);
  crypto_cipher_encrypt(cipher, to+CIPHER_IV_LEN, from, fromlen);
  crypto_cipher_free(cipher);
  memwipe(iv, 0, sizeof(iv));
  return (int)(fromlen + CIPHER_IV_LEN);
}

/** Decrypt <b>fromlen</b> bytes (at least 1+CIPHER_IV_LEN) from <b>from</b>
 * with the key in <b>key</b> to the buffer in <b>to</b> of length
 * <b>tolen</b>. <b>tolen</b> must be at least <b>fromlen</b> minus
 * CIPHER_IV_LEN bytes for the initialization vector. On success, return the
 * number of bytes written, on failure, return -1.
 */
int
crypto_cipher_decrypt_with_iv(const char *key,
                              char *to, size_t tolen,
                              const char *from, size_t fromlen)
{
  crypto_cipher_t *cipher;
  tor_assert(key);
  tor_assert(from);
  tor_assert(to);
  tor_assert(fromlen < INT_MAX);

  if (fromlen <= CIPHER_IV_LEN)
    return -1;
  if (tolen < fromlen - CIPHER_IV_LEN)
    return -1;

  cipher = crypto_cipher_new_with_iv(key, from);

  crypto_cipher_encrypt(cipher, to, from+CIPHER_IV_LEN, fromlen-CIPHER_IV_LEN);
  crypto_cipher_free(cipher);
  return (int)(fromlen - CIPHER_IV_LEN);
}

/* DH */

/** Our DH 'g' parameter */
#define DH_GENERATOR 2

/** Shared P parameter for our circuit-crypto DH key exchanges. */
static BIGNUM *dh_param_p = NULL;
/** Shared P parameter for our TLS DH key exchanges. */
static BIGNUM *dh_param_p_tls = NULL;
/** Shared G parameter for our DH key exchanges. */
static BIGNUM *dh_param_g = NULL;

/** Validate a given set of Diffie-Hellman parameters.  This is moderately
 * computationally expensive (milliseconds), so should only be called when
 * the DH parameters change. Returns 0 on success, * -1 on failure.
 */
static int
crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g)
{
  DH *dh = NULL;
  int ret = -1;

  /* Copy into a temporary DH object, just so that DH_check() can be called. */
  if (!(dh = DH_new()))
      goto out;
#ifdef OPENSSL_1_1_API
  BIGNUM *dh_p, *dh_g;
  if (!(dh_p = BN_dup(p)))
    goto out;
  if (!(dh_g = BN_dup(g)))
    goto out;
  if (!DH_set0_pqg(dh, dh_p, NULL, dh_g))
    goto out;
#else /* !(defined(OPENSSL_1_1_API)) */
  if (!(dh->p = BN_dup(p)))
    goto out;
  if (!(dh->g = BN_dup(g)))
    goto out;
#endif /* defined(OPENSSL_1_1_API) */

  /* Perform the validation. */
  int codes = 0;
  if (!DH_check(dh, &codes))
    goto out;
  if (BN_is_word(g, DH_GENERATOR_2)) {
    /* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters
     *
     * OpenSSL checks the prime is congruent to 11 when g = 2; while the
     * IETF's primes are congruent to 23 when g = 2.
     */
    BN_ULONG residue = BN_mod_word(p, 24);
    if (residue == 11 || residue == 23)
      codes &= ~DH_NOT_SUITABLE_GENERATOR;
  }
  if (codes != 0) /* Specifics on why the params suck is irrelevant. */
    goto out;

  /* Things are probably not evil. */
  ret = 0;

 out:
  if (dh)
    DH_free(dh);
  return ret;
}

/** Set the global Diffie-Hellman generator, used for both TLS and internal
 * DH stuff.
 */
static void
crypto_set_dh_generator(void)
{
  BIGNUM *generator;
  int r;

  if (dh_param_g)
    return;

  generator = BN_new();
  tor_assert(generator);

  r = BN_set_word(generator, DH_GENERATOR);
  tor_assert(r);

  dh_param_g = generator;
}

/** Set the global TLS Diffie-Hellman modulus.  Use the Apache mod_ssl DH
 * modulus. */
void
crypto_set_tls_dh_prime(void)
{
  BIGNUM *tls_prime = NULL;
  int r;

  /* If the space is occupied, free the previous TLS DH prime */
  if (BUG(dh_param_p_tls)) {
    /* LCOV_EXCL_START
     *
     * We shouldn't be calling this twice.
     */
    BN_clear_free(dh_param_p_tls);
    dh_param_p_tls = NULL;
    /* LCOV_EXCL_STOP */
  }

  tls_prime = BN_new();
  tor_assert(tls_prime);

  /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see
   * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this
   * prime.
   */
  r = BN_hex2bn(&tls_prime,
               "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98"
               "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A"
               "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7"
               "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68"
               "B0E7393E0F24218EB3");
  tor_assert(r);

  tor_assert(tls_prime);

  dh_param_p_tls = tls_prime;
  crypto_set_dh_generator();
  tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g));
}

/** Initialize dh_param_p and dh_param_g if they are not already
 * set. */
static void
init_dh_param(void)
{
  BIGNUM *circuit_dh_prime;
  int r;
  if (BUG(dh_param_p && dh_param_g))
    return; // LCOV_EXCL_LINE This function isn't supposed to be called twice.

  circuit_dh_prime = BN_new();
  tor_assert(circuit_dh_prime);

  /* This is from rfc2409, section 6.2.  It's a safe prime, and
     supposedly it equals:
        2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
  */
  r = BN_hex2bn(&circuit_dh_prime,
                "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
                "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
                "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
                "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
                "49286651ECE65381FFFFFFFFFFFFFFFF");
  tor_assert(r);

  /* Set the new values as the global DH parameters. */
  dh_param_p = circuit_dh_prime;
  crypto_set_dh_generator();
  tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g));

  if (!dh_param_p_tls) {
    crypto_set_tls_dh_prime();
  }
}

/** Number of bits to use when choosing the x or y value in a Diffie-Hellman
 * handshake.  Since we exponentiate by this value, choosing a smaller one
 * lets our handhake go faster.
 */
#define DH_PRIVATE_KEY_BITS 320

/** Allocate and return a new DH object for a key exchange. Returns NULL on
 * failure.
 */
crypto_dh_t *
crypto_dh_new(int dh_type)
{
  crypto_dh_t *res = tor_malloc_zero(sizeof(crypto_dh_t));

  tor_assert(dh_type == DH_TYPE_CIRCUIT || dh_type == DH_TYPE_TLS ||
             dh_type == DH_TYPE_REND);

  if (!dh_param_p)
    init_dh_param();

  if (!(res->dh = DH_new()))
    goto err;

#ifdef OPENSSL_1_1_API
  BIGNUM *dh_p = NULL, *dh_g = NULL;

  if (dh_type == DH_TYPE_TLS) {
    dh_p = BN_dup(dh_param_p_tls);
  } else {
    dh_p = BN_dup(dh_param_p);
  }
  if (!dh_p)
    goto err;

  dh_g = BN_dup(dh_param_g);
  if (!dh_g) {
    BN_free(dh_p);
    goto err;
  }

  if (!DH_set0_pqg(res->dh, dh_p, NULL, dh_g)) {
    goto err;
  }

  if (!DH_set_length(res->dh, DH_PRIVATE_KEY_BITS))
    goto err;
#else /* !(defined(OPENSSL_1_1_API)) */
  if (dh_type == DH_TYPE_TLS) {
    if (!(res->dh->p = BN_dup(dh_param_p_tls)))
      goto err;
  } else {
    if (!(res->dh->p = BN_dup(dh_param_p)))
      goto err;
  }

  if (!(res->dh->g = BN_dup(dh_param_g)))
    goto err;

  res->dh->length = DH_PRIVATE_KEY_BITS;
#endif /* defined(OPENSSL_1_1_API) */

  return res;

  /* LCOV_EXCL_START
   * This error condition is only reached when an allocation fails */
 err:
  crypto_log_errors(LOG_WARN, "creating DH object");
  if (res->dh) DH_free(res->dh); /* frees p and g too */
  tor_free(res);
  return NULL;
  /* LCOV_EXCL_STOP */
}

/** Return a copy of <b>dh</b>, sharing its internal state. */
crypto_dh_t *
crypto_dh_dup(const crypto_dh_t *dh)
{
  crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t));
  tor_assert(dh);
  tor_assert(dh->dh);
  dh_new->dh = dh->dh;
  DH_up_ref(dh->dh);
  return dh_new;
}

/** Return the length of the DH key in <b>dh</b>, in bytes.
 */
int
crypto_dh_get_bytes(crypto_dh_t *dh)
{
  tor_assert(dh);
  return DH_size(dh->dh);
}

/** Generate \<x,g^x\> for our part of the key exchange.  Return 0 on
 * success, -1 on failure.
 */
int
crypto_dh_generate_public(crypto_dh_t *dh)
{
#ifndef OPENSSL_1_1_API
 again:
#endif
  if (!DH_generate_key(dh->dh)) {
    /* LCOV_EXCL_START
     * To test this we would need some way to tell openssl to break DH. */
    crypto_log_errors(LOG_WARN, "generating DH key");
    return -1;
    /* LCOV_EXCL_STOP */
  }
#ifdef OPENSSL_1_1_API
  /* OpenSSL 1.1.x doesn't appear to let you regenerate a DH key, without
   * recreating the DH object.  I have no idea what sort of aliasing madness
   * can occur here, so do the check, and just bail on failure.
   */
  const BIGNUM *pub_key, *priv_key;
  DH_get0_key(dh->dh, &pub_key, &priv_key);
  if (tor_check_dh_key(LOG_WARN, pub_key)<0) {
    log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid.  I guess once-in-"
             "the-universe chances really do happen.  Treating as a failure.");
    return -1;
  }
#else /* !(defined(OPENSSL_1_1_API)) */
  if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) {
    /* LCOV_EXCL_START
     * If this happens, then openssl's DH implementation is busted. */
    log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid.  I guess once-in-"
             "the-universe chances really do happen.  Trying again.");
    /* Free and clear the keys, so OpenSSL will actually try again. */
    BN_clear_free(dh->dh->pub_key);
    BN_clear_free(dh->dh->priv_key);
    dh->dh->pub_key = dh->dh->priv_key = NULL;
    goto again;
    /* LCOV_EXCL_STOP */
  }
#endif /* defined(OPENSSL_1_1_API) */
  return 0;
}

/** Generate g^x as necessary, and write the g^x for the key exchange
 * as a <b>pubkey_len</b>-byte value into <b>pubkey</b>. Return 0 on
 * success, -1 on failure.  <b>pubkey_len</b> must be \>= DH_BYTES.
 */
int
crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
{
  int bytes;
  tor_assert(dh);

  const BIGNUM *dh_pub;

#ifdef OPENSSL_1_1_API
  const BIGNUM *dh_priv;
  DH_get0_key(dh->dh, &dh_pub, &dh_priv);
#else
  dh_pub = dh->dh->pub_key;
#endif /* defined(OPENSSL_1_1_API) */

  if (!dh_pub) {
    if (crypto_dh_generate_public(dh)<0)
      return -1;
    else {
#ifdef OPENSSL_1_1_API
      DH_get0_key(dh->dh, &dh_pub, &dh_priv);
#else
      dh_pub = dh->dh->pub_key;
#endif
    }
  }

  tor_assert(dh_pub);
  bytes = BN_num_bytes(dh_pub);
  tor_assert(bytes >= 0);
  if (pubkey_len < (size_t)bytes) {
    log_warn(LD_CRYPTO,
             "Weird! pubkey_len (%d) was smaller than DH_BYTES (%d)",
             (int) pubkey_len, bytes);
    return -1;
  }

  memset(pubkey, 0, pubkey_len);
  BN_bn2bin(dh_pub, (unsigned char*)(pubkey+(pubkey_len-bytes)));

  return 0;
}

/** Check for bad Diffie-Hellman public keys (g^x).  Return 0 if the key is
 * okay (in the subgroup [2,p-2]), or -1 if it's bad.
 * See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips.
 */
static int
tor_check_dh_key(int severity, const BIGNUM *bn)
{
  BIGNUM *x;
  char *s;
  tor_assert(bn);
  x = BN_new();
  tor_assert(x);
  if (BUG(!dh_param_p))
    init_dh_param(); //LCOV_EXCL_LINE we already checked whether we did this.
  BN_set_word(x, 1);
  if (BN_cmp(bn,x)<=0) {
    log_fn(severity, LD_CRYPTO, "DH key must be at least 2.");
    goto err;
  }
  BN_copy(x,dh_param_p);
  BN_sub_word(x, 1);
  if (BN_cmp(bn,x)>=0) {
    log_fn(severity, LD_CRYPTO, "DH key must be at most p-2.");
    goto err;
  }
  BN_clear_free(x);
  return 0;
 err:
  BN_clear_free(x);
  s = BN_bn2hex(bn);
  log_fn(severity, LD_CRYPTO, "Rejecting insecure DH key [%s]", s);
  OPENSSL_free(s);
  return -1;
}

/** Given a DH key exchange object, and our peer's value of g^y (as a
 * <b>pubkey_len</b>-byte value in <b>pubkey</b>) generate
 * <b>secret_bytes_out</b> bytes of shared key material and write them
 * to <b>secret_out</b>.  Return the number of bytes generated on success,
 * or -1 on failure.
 *
 * (We generate key material by computing
 *         SHA1( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
 * where || is concatenation.)
 */
ssize_t
crypto_dh_compute_secret(int severity, crypto_dh_t *dh,
                         const char *pubkey, size_t pubkey_len,
                         char *secret_out, size_t secret_bytes_out)
{
  char *secret_tmp = NULL;
  BIGNUM *pubkey_bn = NULL;
  size_t secret_len=0, secret_tmp_len=0;
  int result=0;
  tor_assert(dh);
  tor_assert(secret_bytes_out/DIGEST_LEN <= 255);
  tor_assert(pubkey_len < INT_MAX);

  if (!(pubkey_bn = BN_bin2bn((const unsigned char*)pubkey,
                              (int)pubkey_len, NULL)))
    goto error;
  if (tor_check_dh_key(severity, pubkey_bn)<0) {
    /* Check for invalid public keys. */
    log_fn(severity, LD_CRYPTO,"Rejected invalid g^x");
    goto error;
  }
  secret_tmp_len = crypto_dh_get_bytes(dh);
  secret_tmp = tor_malloc(secret_tmp_len);
  result = DH_compute_key((unsigned char*)secret_tmp, pubkey_bn, dh->dh);
  if (result < 0) {
    log_warn(LD_CRYPTO,"DH_compute_key() failed.");
    goto error;
  }
  secret_len = result;
  if (crypto_expand_key_material_TAP((uint8_t*)secret_tmp, secret_len,
                                     (uint8_t*)secret_out, secret_bytes_out)<0)
    goto error;
  secret_len = secret_bytes_out;

  goto done;
 error:
  result = -1;
 done:
  crypto_log_errors(LOG_WARN, "completing DH handshake");
  if (pubkey_bn)
    BN_clear_free(pubkey_bn);
  if (secret_tmp) {
    memwipe(secret_tmp, 0, secret_tmp_len);
    tor_free(secret_tmp);
  }
  if (result < 0)
    return result;
  else
    return secret_len;
}

/** Given <b>key_in_len</b> bytes of negotiated randomness in <b>key_in</b>
 * ("K"), expand it into <b>key_out_len</b> bytes of negotiated key material in
 * <b>key_out</b> by taking the first <b>key_out_len</b> bytes of
 *    H(K | [00]) | H(K | [01]) | ....
 *
 * This is the key expansion algorithm used in the "TAP" circuit extension
 * mechanism; it shouldn't be used for new protocols.
 *
 * Return 0 on success, -1 on failure.
 */
int
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
                               uint8_t *key_out, size_t key_out_len)
{
  int i, r = -1;
  uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
  uint8_t digest[DIGEST_LEN];

  /* If we try to get more than this amount of key data, we'll repeat blocks.*/
  tor_assert(key_out_len <= DIGEST_LEN*256);

  memcpy(tmp, key_in, key_in_len);
  for (cp = key_out, i=0; cp < key_out+key_out_len;
       ++i, cp += DIGEST_LEN) {
    tmp[key_in_len] = i;
    if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1) < 0)
      goto exit;
    memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
  }

  r = 0;
 exit:
  memwipe(tmp, 0, key_in_len+1);
  tor_free(tmp);
  memwipe(digest, 0, sizeof(digest));
  return r;
}

/** Expand some secret key material according to RFC5869, using SHA256 as the
 * underlying hash.  The <b>key_in_len</b> bytes at <b>key_in</b> are the
 * secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
 * <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
 * and "info" parameters respectively.  On success, write <b>key_out_len</b>
 * bytes to <b>key_out</b> and return 0.  Assert on failure.
 */
int
crypto_expand_key_material_rfc5869_sha256(
                                    const uint8_t *key_in, size_t key_in_len,
                                    const uint8_t *salt_in, size_t salt_in_len,
                                    const uint8_t *info_in, size_t info_in_len,
                                    uint8_t *key_out, size_t key_out_len)
{
  uint8_t prk[DIGEST256_LEN];
  uint8_t tmp[DIGEST256_LEN + 128 + 1];
  uint8_t mac[DIGEST256_LEN];
  int i;
  uint8_t *outp;
  size_t tmp_len;

  crypto_hmac_sha256((char*)prk,
                     (const char*)salt_in, salt_in_len,
                     (const char*)key_in, key_in_len);

  /* If we try to get more than this amount of key data, we'll repeat blocks.*/
  tor_assert(key_out_len <= DIGEST256_LEN * 256);
  tor_assert(info_in_len <= 128);
  memset(tmp, 0, sizeof(tmp));
  outp = key_out;
  i = 1;

  while (key_out_len) {
    size_t n;
    if (i > 1) {
      memcpy(tmp, mac, DIGEST256_LEN);
      memcpy(tmp+DIGEST256_LEN, info_in, info_in_len);
      tmp[DIGEST256_LEN+info_in_len] = i;
      tmp_len = DIGEST256_LEN + info_in_len + 1;
    } else {
      memcpy(tmp, info_in, info_in_len);
      tmp[info_in_len] = i;
      tmp_len = info_in_len + 1;
    }
    crypto_hmac_sha256((char*)mac,
                       (const char*)prk, DIGEST256_LEN,
                       (const char*)tmp, tmp_len);
    n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN;
    memcpy(outp, mac, n);
    key_out_len -= n;
    outp += n;
    ++i;
  }

  memwipe(tmp, 0, sizeof(tmp));
  memwipe(mac, 0, sizeof(mac));
  return 0;
}

/** Free a DH key exchange object.
 */
void
crypto_dh_free_(crypto_dh_t *dh)
{
  if (!dh)
    return;
  tor_assert(dh->dh);
  DH_free(dh->dh);
  tor_free(dh);
}

/* random numbers */

/** How many bytes of entropy we add at once.
 *
 * This is how much entropy OpenSSL likes to add right now, so maybe it will
 * work for us too. */
#define ADD_ENTROPY 32

/** Set the seed of the weak RNG to a random value. */
void
crypto_seed_weak_rng(tor_weak_rng_t *rng)
{
  unsigned seed;
  crypto_rand((void*)&seed, sizeof(seed));
  tor_init_weak_random(rng, seed);
}

#ifdef TOR_UNIT_TESTS
int break_strongest_rng_syscall = 0;
int break_strongest_rng_fallback = 0;
#endif

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
 * failure.  A maximum request size of 256 bytes is imposed.
 */
static int
crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
{
  tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);

  /* We only log at notice-level here because in the case that this function
   * fails the crypto_strongest_rand_raw() caller will log with a warning-level
   * message and let crypto_strongest_rand() error out and finally terminating
   * Tor with an assertion error.
   */

#ifdef TOR_UNIT_TESTS
  if (break_strongest_rng_syscall)
    return -1;
#endif

#if defined(_WIN32)
  static int provider_set = 0;
  static HCRYPTPROV provider;

  if (!provider_set) {
    if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
                             CRYPT_VERIFYCONTEXT)) {
      log_notice(LD_CRYPTO, "Unable to set Windows CryptoAPI provider [1].");
      return -1;
    }
    provider_set = 1;
  }
  if (!CryptGenRandom(provider, out_len, out)) {
    log_notice(LD_CRYPTO, "Unable get entropy from the Windows CryptoAPI.");
    return -1;
  }

  return 0;
#elif defined(__linux__) && defined(SYS_getrandom)
  static int getrandom_works = 1; /* Be optimistic about our chances... */

  /* getrandom() isn't as straightforward as getentropy(), and has
   * no glibc wrapper.
   *
   * As far as I can tell from getrandom(2) and the source code, the
   * requests we issue will always succeed (though it will block on the
   * call if /dev/urandom isn't seeded yet), since we are NOT specifying
   * GRND_NONBLOCK and the request is <= 256 bytes.
   *
   * The manpage is unclear on what happens if a signal interrupts the call
   * while the request is blocked due to lack of entropy....
   *
   * We optimistically assume that getrandom() is available and functional
   * because it is the way of the future, and 2 branch mispredicts pale in
   * comparison to the overheads involved with failing to open
   * /dev/srandom followed by opening and reading from /dev/urandom.
   */
  if (PREDICT_LIKELY(getrandom_works)) {
    long ret;
    /* A flag of '0' here means to read from '/dev/urandom', and to
     * block if insufficient entropy is available to service the
     * request.
     */
    const unsigned int flags = 0;
    do {
      ret = syscall(SYS_getrandom, out, out_len, flags);
    } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));

    if (PREDICT_UNLIKELY(ret == -1)) {
      /* LCOV_EXCL_START we can't actually make the syscall fail in testing. */
      tor_assert(errno != EAGAIN);
      tor_assert(errno != EINTR);

      /* Useful log message for errno. */
      if (errno == ENOSYS) {
        log_notice(LD_CRYPTO, "Can't get entropy from getrandom()."
                   " You are running a version of Tor built to support"
                   " getrandom(), but the kernel doesn't implement this"
                   " function--probably because it is too old?"
                   " Trying fallback method instead.");
      } else {
        log_notice(LD_CRYPTO, "Can't get entropy from getrandom(): %s."
                              " Trying fallback method instead.",
                   strerror(errno));
      }

      getrandom_works = 0; /* Don't bother trying again. */
      return -1;
      /* LCOV_EXCL_STOP */
    }

    tor_assert(ret == (long)out_len);
    return 0;
  }

  return -1; /* getrandom() previously failed unexpectedly. */
#elif defined(HAVE_GETENTROPY)
  /* getentropy() is what Linux's getrandom() wants to be when it grows up.
   * the only gotcha is that requests are limited to 256 bytes.
   */
  return getentropy(out, out_len);
#else
  (void) out;
#endif /* defined(_WIN32) || ... */

  /* This platform doesn't have a supported syscall based random. */
  return -1;
}

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * via the per-platform fallback mechanism, storing it into <b>out</b>.
 * Return 0 on success, -1 on failure.  A maximum request size of 256 bytes
 * is imposed.
 */
static int
crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
{
#ifdef TOR_UNIT_TESTS
  if (break_strongest_rng_fallback)
    return -1;
#endif

#ifdef _WIN32
  /* Windows exclusively uses crypto_strongest_rand_syscall(). */
  (void)out;
  (void)out_len;
  return -1;
#else /* !(defined(_WIN32)) */
  static const char *filenames[] = {
    "/dev/srandom", "/dev/urandom", "/dev/random", NULL
  };
  int fd, i;
  size_t n;

  for (i = 0; filenames[i]; ++i) {
    log_debug(LD_FS, "Considering %s as entropy source", filenames[i]);
    fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
    if (fd<0) continue;
    log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
    n = read_all(fd, (char*)out, out_len, 0);
    close(fd);
    if (n != out_len) {
      /* LCOV_EXCL_START
       * We can't make /dev/foorandom actually fail. */
      log_notice(LD_CRYPTO,
                 "Error reading from entropy source %s (read only %lu bytes).",
                 filenames[i],
                 (unsigned long)n);
      return -1;
      /* LCOV_EXCL_STOP */
    }

    return 0;
  }

  return -1;
#endif /* defined(_WIN32) */
}

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * storing it into <b>out</b>. Return 0 on success, -1 on failure.  A maximum
 * request size of 256 bytes is imposed.
 */
STATIC int
crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
{
  static const size_t sanity_min_size = 16;
  static const int max_attempts = 3;
  tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);

  /* For buffers >= 16 bytes (128 bits), we sanity check the output by
   * zero filling the buffer and ensuring that it actually was at least
   * partially modified.
   *
   * Checking that any individual byte is non-zero seems like it would
   * fail too often (p = out_len * 1/256) for comfort, but this is an
   * "adjust according to taste" sort of check.
   */
  memwipe(out, 0, out_len);
  for (int i = 0; i < max_attempts; i++) {
    /* Try to use the syscall/OS favored mechanism to get strong entropy. */
    if (crypto_strongest_rand_syscall(out, out_len) != 0) {
      /* Try to use the less-favored mechanism to get strong entropy. */
      if (crypto_strongest_rand_fallback(out, out_len) != 0) {
        /* Welp, we tried.  Hopefully the calling code terminates the process
         * since we're basically boned without good entropy.
         */
        log_warn(LD_CRYPTO,
                 "Cannot get strong entropy: no entropy source found.");
        return -1;
      }
    }

    if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
      return 0;
  }

  /* LCOV_EXCL_START
   *
   * We tried max_attempts times to fill a buffer >= 128 bits long,
   * and each time it returned all '0's.  Either the system entropy
   * source is busted, or the user should go out and buy a ticket to
   * every lottery on the planet.
   */
  log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");

  return -1;
  /* LCOV_EXCL_STOP */
}

/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
 * storing it into <b>out</b>.
 */
void
crypto_strongest_rand(uint8_t *out, size_t out_len)
{
#define DLEN SHA512_DIGEST_LENGTH
  /* We're going to hash DLEN bytes from the system RNG together with some
   * bytes from the openssl PRNG, in order to yield DLEN bytes.
   */
  uint8_t inp[DLEN*2];
  uint8_t tmp[DLEN];
  tor_assert(out);
  while (out_len) {
    crypto_rand((char*) inp, DLEN);
    if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
      // LCOV_EXCL_START
      log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
              "important key. Exiting.");
      /* Die with an assertion so we get a stack trace. */
      tor_assert(0);
      // LCOV_EXCL_STOP
    }
    if (out_len >= DLEN) {
      SHA512(inp, sizeof(inp), out);
      out += DLEN;
      out_len -= DLEN;
    } else {
      SHA512(inp, sizeof(inp), tmp);
      memcpy(out, tmp, out_len);
      break;
    }
  }
  memwipe(tmp, 0, sizeof(tmp));
  memwipe(inp, 0, sizeof(inp));
#undef DLEN
}

/** Seed OpenSSL's random number generator with bytes from the operating
 * system.  Return 0 on success, -1 on failure.
 */
int
crypto_seed_rng(void)
{
  int rand_poll_ok = 0, load_entropy_ok = 0;
  uint8_t buf[ADD_ENTROPY];

  /* OpenSSL has a RAND_poll function that knows about more kinds of
   * entropy than we do.  We'll try calling that, *and* calling our own entropy
   * functions.  If one succeeds, we'll accept the RNG as seeded. */
  rand_poll_ok = RAND_poll();
  if (rand_poll_ok == 0)
    log_warn(LD_CRYPTO, "RAND_poll() failed."); // LCOV_EXCL_LINE

  load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
  if (load_entropy_ok) {
    RAND_seed(buf, sizeof(buf));
  }

  memwipe(buf, 0, sizeof(buf));

  if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
    return 0;
  else
    return -1;
}

/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
 * for unit tests.
 *
 * This function is not allowed to fail; if it would fail to generate strong
 * entropy, it must terminate the process instead.
 */
MOCK_IMPL(void,
crypto_rand, (char *to, size_t n))
{
  crypto_rand_unmocked(to, n);
}

/** Write <b>n</b> bytes of strong random data to <b>to</b>.  Most callers
 * will want crypto_rand instead.
 *
 * This function is not allowed to fail; if it would fail to generate strong
 * entropy, it must terminate the process instead.
 */
void
crypto_rand_unmocked(char *to, size_t n)
{
  int r;
  if (n == 0)
    return;

  tor_assert(n < INT_MAX);
  tor_assert(to);
  r = RAND_bytes((unsigned char*)to, (int)n);
  /* We consider a PRNG failure non-survivable. Let's assert so that we get a
   * stack trace about where it happened.
   */
  tor_assert(r >= 0);
}

/** Return a pseudorandom integer, chosen uniformly from the values
 * between 0 and <b>max</b>-1 inclusive.  <b>max</b> must be between 1 and
 * INT_MAX+1, inclusive. */
int
crypto_rand_int(unsigned int max)
{
  unsigned int val;
  unsigned int cutoff;
  tor_assert(max <= ((unsigned int)INT_MAX)+1);
  tor_assert(max > 0); /* don't div by 0 */

  /* We ignore any values that are >= 'cutoff,' to avoid biasing the
   * distribution with clipping at the upper end of unsigned int's
   * range.
   */
  cutoff = UINT_MAX - (UINT_MAX%max);
  while (1) {
    crypto_rand((char*)&val, sizeof(val));
    if (val < cutoff)
      return val % max;
  }
}

/** Return a pseudorandom integer, chosen uniformly from the values i such
 * that min <= i < max.
 *
 * <b>min</b> MUST be in range [0, <b>max</b>).
 * <b>max</b> MUST be in range (min, INT_MAX].
 */
int
crypto_rand_int_range(unsigned int min, unsigned int max)
{
  tor_assert(min < max);
  tor_assert(max <= INT_MAX);

  /* The overflow is avoided here because crypto_rand_int() returns a value
   * between 0 and (max - min) inclusive. */
  return min + crypto_rand_int(max - min);
}

/** As crypto_rand_int_range, but supports uint64_t. */
uint64_t
crypto_rand_uint64_range(uint64_t min, uint64_t max)
{
  tor_assert(min < max);
  return min + crypto_rand_uint64(max - min);
}

/** As crypto_rand_int_range, but supports time_t. */
time_t
crypto_rand_time_range(time_t min, time_t max)
{
  tor_assert(min < max);
  return min + (time_t)crypto_rand_uint64(max - min);
}

/** Return a pseudorandom 64-bit integer, chosen uniformly from the values
 * between 0 and <b>max</b>-1 inclusive. */
uint64_t
crypto_rand_uint64(uint64_t max)
{
  uint64_t val;
  uint64_t cutoff;
  tor_assert(max < UINT64_MAX);
  tor_assert(max > 0); /* don't div by 0 */

  /* We ignore any values that are >= 'cutoff,' to avoid biasing the
   * distribution with clipping at the upper end of unsigned int's
   * range.
   */
  cutoff = UINT64_MAX - (UINT64_MAX%max);
  while (1) {
    crypto_rand((char*)&val, sizeof(val));
    if (val < cutoff)
      return val % max;
  }
}

/** Return a pseudorandom double d, chosen uniformly from the range
 * 0.0 <= d < 1.0.
 */
double
crypto_rand_double(void)
{
  /* We just use an unsigned int here; we don't really care about getting
   * more than 32 bits of resolution */
  unsigned int u;
  crypto_rand((char*)&u, sizeof(u));
#if SIZEOF_INT == 4
#define UINT_MAX_AS_DOUBLE 4294967296.0
#elif SIZEOF_INT == 8
#define UINT_MAX_AS_DOUBLE 1.8446744073709552e+19
#else
#error SIZEOF_INT is neither 4 nor 8
#endif /* SIZEOF_INT == 4 || ... */
  return ((double)u) / UINT_MAX_AS_DOUBLE;
}

/** Generate and return a new random hostname starting with <b>prefix</b>,
 * ending with <b>suffix</b>, and containing no fewer than
 * <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
 * characters. Does not check for failure.
 *
 * Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
 **/
char *
crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
                       const char *suffix)
{
  char *result, *rand_bytes;
  int randlen, rand_bytes_len;
  size_t resultlen, prefixlen;

  if (max_rand_len > MAX_DNS_LABEL_SIZE)
    max_rand_len = MAX_DNS_LABEL_SIZE;
  if (min_rand_len > max_rand_len)
    min_rand_len = max_rand_len;

  randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1);

  prefixlen = strlen(prefix);
  resultlen = prefixlen + strlen(suffix) + randlen + 16;

  rand_bytes_len = ((randlen*5)+7)/8;
  if (rand_bytes_len % 5)
    rand_bytes_len += 5 - (rand_bytes_len%5);
  rand_bytes = tor_malloc(rand_bytes_len);
  crypto_rand(rand_bytes, rand_bytes_len);

  result = tor_malloc(resultlen);
  memcpy(result, prefix, prefixlen);
  base32_encode(result+prefixlen, resultlen-prefixlen,
                rand_bytes, rand_bytes_len);
  tor_free(rand_bytes);
  strlcpy(result+prefixlen+randlen, suffix, resultlen-(prefixlen+randlen));

  return result;
}

/** Return a randomly chosen element of <b>sl</b>; or NULL if <b>sl</b>
 * is empty. */
void *
smartlist_choose(const smartlist_t *sl)
{
  int len = smartlist_len(sl);
  if (len)
    return smartlist_get(sl,crypto_rand_int(len));
  return NULL; /* no elements to choose from */
}

/** Scramble the elements of <b>sl</b> into a random order. */
void
smartlist_shuffle(smartlist_t *sl)
{
  int i;
  /* From the end of the list to the front, choose at random from the
     positions we haven't looked at yet, and swap that position into the
     current position.  Remember to give "no swap" the same probability as
     any other swap. */
  for (i = smartlist_len(sl)-1; i > 0; --i) {
    int j = crypto_rand_int(i+1);
    smartlist_swap(sl, i, j);
  }
}

/**
 * Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to
 * the value <b>byte</b>.
 * If <b>mem</b> is NULL or <b>sz</b> is zero, nothing happens.
 *
 * This function is preferable to memset, since many compilers will happily
 * optimize out memset() when they can convince themselves that the data being
 * cleared will never be read.
 *
 * Right now, our convention is to use this function when we are wiping data
 * that's about to become inaccessible, such as stack buffers that are about
 * to go out of scope or structures that are about to get freed.  (In
 * practice, it appears that the compilers we're currently using will optimize
 * out the memset()s for stack-allocated buffers, but not those for
 * about-to-be-freed structures. That could change, though, so we're being
 * wary.)  If there are live reads for the data, then you can just use
 * memset().
 */
void
memwipe(void *mem, uint8_t byte, size_t sz)
{
  if (sz == 0) {
    return;
  }
  /* If sz is nonzero, then mem must not be NULL. */
  tor_assert(mem != NULL);

  /* Data this large is likely to be an underflow. */
  tor_assert(sz < SIZE_T_CEILING);

  /* Because whole-program-optimization exists, we may not be able to just
   * have this function call "memset".  A smart compiler could inline it, then
   * eliminate dead memsets, and declare itself to be clever. */

#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY)
  /* Here's what you do on windows. */
  SecureZeroMemory(mem,sz);
#elif defined(HAVE_RTLSECUREZEROMEMORY)
  RtlSecureZeroMemory(mem,sz);
#elif defined(HAVE_EXPLICIT_BZERO)
  /* The BSDs provide this. */
  explicit_bzero(mem, sz);
#elif defined(HAVE_MEMSET_S)
  /* This is in the C99 standard. */
  memset_s(mem, sz, 0, sz);
#else
  /* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
   * based on the pointer value, then uses that junk to update a global
   * variable.  It's an elaborate ruse to trick the compiler into not
   * optimizing out the "wipe this memory" code.  Read it if you like zany
   * programming tricks! In later versions of Tor, we should look for better
   * not-optimized-out memory wiping stuff...
   *
   * ...or maybe not.  In practice, there are pure-asm implementations of
   * OPENSSL_cleanse() on most platforms, which ought to do the job.
   **/

  OPENSSL_cleanse(mem, sz);
#endif /* defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY) || ... */

  /* Just in case some caller of memwipe() is relying on getting a buffer
   * filled with a particular value, fill the buffer.
   *
   * If this function gets inlined, this memset might get eliminated, but
   * that's okay: We only care about this particular memset in the case where
   * the caller should have been using memset(), and the memset() wouldn't get
   * eliminated.  In other words, this is here so that we won't break anything
   * if somebody accidentally calls memwipe() instead of memset().
   **/
  memset(mem, byte, sz);
}

/** @{ */
/** Uninitialize the crypto library. Return 0 on success. Does not detect
 * failure.
 */
int
crypto_global_cleanup(void)
{
  EVP_cleanup();
#ifndef NEW_THREAD_API
  ERR_remove_thread_state(NULL);
#endif
  ERR_free_strings();

  if (dh_param_p)
    BN_clear_free(dh_param_p);
  if (dh_param_p_tls)
    BN_clear_free(dh_param_p_tls);
  if (dh_param_g)
    BN_clear_free(dh_param_g);

  dh_param_p = dh_param_p_tls = dh_param_g = NULL;

#ifndef DISABLE_ENGINES
  ENGINE_cleanup();
#endif

  CONF_modules_unload(1);
  CRYPTO_cleanup_all_ex_data();

  crypto_openssl_free_all();

  crypto_early_initialized_ = 0;
  crypto_global_initialized_ = 0;
  have_seeded_siphash = 0;
  siphash_unset_global_key();

  return 0;
}

/** @} */

#ifdef USE_DMALLOC
/** Tell the crypto library to use Tor's allocation functions rather than
 * calling libc's allocation functions directly. Return 0 on success, -1
 * on failure. */
int
crypto_use_tor_alloc_functions(void)
{
  int r = CRYPTO_set_mem_ex_functions(tor_malloc_, tor_realloc_, tor_free_);
  return r ? 0 : -1;
}
#endif /* defined(USE_DMALLOC) */