1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/* Copyright (c) 2003-2004, Roger Dingledine
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
* Copyright (c) 2007-2015, The Tor Project, Inc. */
/* See LICENSE for licensing information */
#define _GNU_SOURCE
#include "orconfig.h"
#include <stdlib.h>
#include "compat.h"
#include "compat_threads.h"
#include "util.h"
#include "torlog.h"
#ifdef HAVE_SYS_EVENTFD_H
#include <sys/eventfd.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/** Return a newly allocated, ready-for-use mutex. */
tor_mutex_t *
tor_mutex_new(void)
{
tor_mutex_t *m = tor_malloc_zero(sizeof(tor_mutex_t));
tor_mutex_init(m);
return m;
}
/** Return a newly allocated, ready-for-use mutex. This one might be
* non-recursive, if that's faster. */
tor_mutex_t *
tor_mutex_new_nonrecursive(void)
{
tor_mutex_t *m = tor_malloc_zero(sizeof(tor_mutex_t));
tor_mutex_init_nonrecursive(m);
return m;
}
/** Release all storage and system resources held by <b>m</b>. */
void
tor_mutex_free(tor_mutex_t *m)
{
if (!m)
return;
tor_mutex_uninit(m);
tor_free(m);
}
/** Allocate and return a new condition variable. */
tor_cond_t *
tor_cond_new(void)
{
tor_cond_t *cond = tor_malloc(sizeof(tor_cond_t));
if (tor_cond_init(cond)<0)
tor_free(cond);
return cond;
}
/** Free all storage held in <b>c</b>. */
void
tor_cond_free(tor_cond_t *c)
{
if (!c)
return;
tor_cond_uninit(c);
tor_free(c);
}
/** Identity of the "main" thread */
static unsigned long main_thread_id = -1;
/** Start considering the current thread to be the 'main thread'. This has
* no effect on anything besides in_main_thread(). */
void
set_main_thread(void)
{
main_thread_id = tor_get_thread_id();
}
/** Return true iff called from the main thread. */
int
in_main_thread(void)
{
return main_thread_id == tor_get_thread_id();
}
#if defined(HAVE_EVENTFD) || defined(HAVE_PIPE)
/* non-interruptable versions */
static int
write_ni(int fd, const void *buf, size_t n)
{
int r;
again:
r = (int) write(fd, buf, n);
if (r < 0 && errno == EINTR)
goto again;
return r;
}
static int
read_ni(int fd, void *buf, size_t n)
{
int r;
again:
r = (int) read(fd, buf, n);
if (r < 0 && errno == EINTR)
goto again;
return r;
}
#endif
/* non-interruptable versions */
static int
send_ni(int fd, const void *buf, size_t n, int flags)
{
int r;
again:
r = (int) send(fd, buf, n, flags);
if (r < 0 && errno == EINTR)
goto again;
return r;
}
static int
recv_ni(int fd, void *buf, size_t n, int flags)
{
int r;
again:
r = (int) recv(fd, buf, n, flags);
if (r < 0 && errno == EINTR)
goto again;
return r;
}
#ifdef HAVE_EVENTFD
static int
eventfd_alert(int fd)
{
uint64_t u = 1;
int r = write_ni(fd, (void*)&u, sizeof(u));
if (r < 0 && errno != EAGAIN)
return -1;
return 0;
}
static int
eventfd_drain(int fd)
{
uint64_t u = 0;
int r = read_ni(fd, (void*)&u, sizeof(u));
if (r < 0 && errno != EAGAIN)
return -1;
return 0;
}
#endif
#ifdef HAVE_PIPE
static int
pipe_alert(int fd)
{
ssize_t r = write_ni(fd, "x", 1);
if (r < 0 && errno != EAGAIN)
return -1;
return 0;
}
static int
pipe_drain(int fd)
{
char buf[32];
ssize_t r;
while ((r = read_ni(fd, buf, sizeof(buf))) >= 0)
;
if (r == 0 || errno != EAGAIN)
return -1;
return 0;
}
#endif
static int
sock_alert(tor_socket_t fd)
{
ssize_t r = send_ni(fd, "x", 1, 0);
if (r < 0 && !ERRNO_IS_EAGAIN(tor_socket_errno(fd)))
return -1;
return 0;
}
static int
sock_drain(tor_socket_t fd)
{
char buf[32];
ssize_t r;
while ((r = recv_ni(fd, buf, sizeof(buf), 0)) >= 0)
;
if (r == 0 || !ERRNO_IS_EAGAIN(tor_socket_errno(fd)))
return -1;
return 0;
}
/** Allocate a new set of alert sockets, and set the appropriate function
* pointers, in <b>socks_out</b>. */
int
alert_sockets_create(alert_sockets_t *socks_out, uint32_t flags)
{
tor_socket_t socks[2] = { TOR_INVALID_SOCKET, TOR_INVALID_SOCKET };
#ifdef HAVE_EVENTFD
/* First, we try the Linux eventfd() syscall. This gives a 64-bit counter
* associated with a single file descriptor. */
#if defined(EFD_CLOEXEC) && defined(EFD_NONBLOCK)
if (!(flags & ASOCKS_NOEVENTFD2))
socks[0] = eventfd(0, EFD_CLOEXEC|EFD_NONBLOCK);
#endif
if (socks[0] < 0 && !(flags & ASOCKS_NOEVENTFD)) {
socks[0] = eventfd(0,0);
if (socks[0] >= 0) {
if (fcntl(socks[0], F_SETFD, FD_CLOEXEC) < 0 ||
set_socket_nonblocking(socks[0]) < 0) {
close(socks[0]);
return -1;
}
}
}
if (socks[0] >= 0) {
socks_out->read_fd = socks_out->write_fd = socks[0];
socks_out->alert_fn = eventfd_alert;
socks_out->drain_fn = eventfd_drain;
return 0;
}
#endif
#ifdef HAVE_PIPE2
/* Now we're going to try pipes. First type the pipe2() syscall, if we
* have it, so we can save some calls... */
if (!(flags & ASOCKS_NOPIPE2) &&
pipe2(socks, O_NONBLOCK|O_CLOEXEC) == 0) {
socks_out->read_fd = socks[0];
socks_out->write_fd = socks[1];
socks_out->alert_fn = pipe_alert;
socks_out->drain_fn = pipe_drain;
return 0;
}
#endif
#ifdef HAVE_PIPE
/* Now try the regular pipe() syscall. Pipes have a bit lower overhead than
* socketpairs, fwict. */
if (!(flags & ASOCKS_NOPIPE) &&
pipe(socks) == 0) {
if (fcntl(socks[0], F_SETFD, FD_CLOEXEC) < 0 ||
fcntl(socks[1], F_SETFD, FD_CLOEXEC) < 0 ||
set_socket_nonblocking(socks[0]) < 0 ||
set_socket_nonblocking(socks[1]) < 0) {
close(socks[0]);
close(socks[1]);
return -1;
}
socks_out->read_fd = socks[0];
socks_out->write_fd = socks[1];
socks_out->alert_fn = pipe_alert;
socks_out->drain_fn = pipe_drain;
return 0;
}
#endif
/* If nothing else worked, fall back on socketpair(). */
if (!(flags & ASOCKS_NOSOCKETPAIR) &&
tor_socketpair(AF_UNIX, SOCK_STREAM, 0, socks) == 0) {
if (set_socket_nonblocking(socks[0]) < 0 ||
set_socket_nonblocking(socks[1])) {
tor_close_socket(socks[0]);
tor_close_socket(socks[1]);
return -1;
}
socks_out->read_fd = socks[0];
socks_out->write_fd = socks[1];
socks_out->alert_fn = sock_alert;
socks_out->drain_fn = sock_drain;
return 0;
}
return -1;
}
/** Close the sockets in <b>socks</b>. */
void
alert_sockets_close(alert_sockets_t *socks)
{
if (socks->alert_fn == sock_alert) {
/* they are sockets. */
tor_close_socket(socks->read_fd);
tor_close_socket(socks->write_fd);
} else {
close(socks->read_fd);
if (socks->write_fd != socks->read_fd)
close(socks->write_fd);
}
socks->read_fd = socks->write_fd = -1;
}
|