1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
$Id$
Tor Path Specification
Roger Dingledine
Nick Mathewson
Note: This is an attempt to specify Tor as currently implemented. Future
versions of Tor will implement improved algorithms.
This document tries to cover how Tor chooses to build circuits and assign
streams to circuits. Other implementations MAY take other approaches, but
implementors should be aware of the anonymity and load-balancing implications
of their choices.
THIS SPEC ISN'T DONE OR CORRECT YET.
1. General operation
Tor begins building circuits as soon as it has enough directory
information to do so (see section 5.1 of dir-spec.txt). Some circuits are
built preemptively because we expect to need them later (for user
traffic), and some are built because of immediate need (for user traffic
that no current circuit can handle, for testing the network or our
reachability, and so on).
When a client application creates a new stream (by opening a SOCKS
connection or launching a resolve request), we attach it to an appropriate
open circuit if one exists, or wait if an appropriate circuit is
in-progress. We launch a new circuit only
if no current circuit can handle the request. We rotate circuits over
time to avoid some profiling attacks.
To build a circuit, we choose all the nodes we want to use, and then
construct the circuit. Sometimes, when we want a circuit that ends at a
given hop, and we have an appropriate unused circuit, we "cannibalize" the
existing circuit and extend it to the new terminus.
These processes are described in more detail below.
This document describes Tor's automatic path selection logic only; path
selection can be overridden by a controller (with the EXTENDCIRCUIT and
ATTACHSTREAM commands). Paths constructed through these means may
violate some constraints given below.
1b. Terminology
A "path" is an ordered sequence of nodes, not yet built as a circuit.
A "clean" circuit is one that has not yet been used for any traffic.
A "fast" or "stable" or "valid" node is one that has the 'Fast' or
'Stable' or 'Valid' flag
set respectively, based on our current directory information. A "fast"
or "stable" circuit is one consisting only of "fast" or "stable" nodes.
In an "exit" circuit, the final node is chosen based on waiting stream
requests if any, and in any case it avoids nodes with exit policy of
"reject *:*". An "internal" circuit, on the other hand, is one where
the final node is chosen just like a middle node (ignoring its exit
policy).
A "request" is a client-side stream or DNS resolve that needs to be
served by a circuit.
A "pending" circuit is one that we have started to build, but which has
not yet completed.
A circuit or path "supports" a request if it is okay to use the
circuit/path to fulfill the request, according to the rules given below.
A circuit or path "might support" a request if some aspect of the request
is unknown (usually its target IP), but we believe the path probably
supports the request according to the rules given below.
2. Building circuits
2.1. When we build
2.1.1. Clients build circuits preemptively
When running as a client, Tor tries to maintain at least a certain
number of clean circuits, so that new streams can be handled
quickly. To increase the likelihood of success, Tor tries to
predict what circuits will be useful by choosing from among nodes
that support the ports we have used in the recent past (by default
one hour). Specifically, on startup Tor tries to maintain one clean
fast exit circuit that allows connections to port 80, and at least
two fast clean stable internal circuits in case we get a resolve
request or hidden service request (at least three if we _run_ a
hidden service).
After that, Tor will adapt the circuits that it preemptively builds
based on the requests it sees from the user: it tries to have two fast
clean exit circuits available for every port seen within the past hour
(each circuit can be adequate for many predicted ports -- it doesn't
need two separate circuits for each port), and it tries to have the
above internal circuits available if we've seen resolves or hidden
service activity within the past hour. If there are 12 or more clean
circuits open, it doesn't open more even if it has more predictions.
Only stable circuits can "cover" a port that is listed in the
LongLivedPorts config option. Similarly, hidden service requests
to ports listed in LongLivedPorts make us create stable internal
circuits.
Note that if there are no requests from the user for an hour, Tor
will predict no use and build no preemptive circuits.
The Tor client SHOULD NOT store its list of predicted requests to a
persistent medium.
2.1.2. Clients build circuits on demand
Additionally, when a client request exists that no circuit (built or
pending) might support, we create a new circuit to support the request.
For exit connections, we pick an exit node that will handle the
most pending requests (choosing arbitrarily among ties), launch a
circuit to end there, and repeat until every unattached request
might be supported by a pending or built circuit. For internal
circuits, we pick an arbitrary acceptable path, repeating as needed.
In some cases we can reuse an already established circuit if it's
clean; see Section 2.3 (cannibalizing circuits) for details.
2.1.3. Servers build circuits for testing reachability and bandwidth
Tor servers test reachability of their ORPort once they have
successfully built a circuit (on start and whenever their IP address
changes). They build an ordinary fast internal circuit with themselves
as the last hop. As soon as any testing circuit succeeds, the Tor
server decides it's reachable and is willing to publish a descriptor.
We launch multiple testing circuits (one at a time), until we
have NUM_PARALLEL_TESTING_CIRC (4) such circuits open. Then we
do a "bandwidth test" by sending a certain number of relay drop
cells down each circuit: BandwidthRate * 10 / CELL_NETWORK_SIZE
total cells divided across the four circuits, but never more than
CIRCWINDOW_START (1000) cells total. This exercises both outgoing and
incoming bandwidth, and helps to jumpstart the observed bandwidth
(see dir-spec.txt).
Tor servers also test reachability of their DirPort once they have
established a circuit, but they use an ordinary exit circuit for
this purpose.
2.1.4. Hidden-service circuits
See section 4 below.
2.1.5. Rate limiting of failed circuits
If we fail to build a circuit N times in a X second period (see Section
2.3 for how this works), we stop building circuits until the X seconds
have elapsed.
XXXX
2.1.6. When to tear down circuits
XXXX
2.2. Path selection and constraints
We choose the path for each new circuit before we build it. We choose the
exit node first, followed by the other nodes in the circuit. All paths
we generate obey the following constraints:
- We do not choose the same router twice for the same path.
- We do not choose any router in the same family as another in the same
path.
- We do not choose more than one router in a given /16 subnet
(unless EnforceDistinctSubnets is 0).
- We don't choose any non-running or non-valid router unless we have
been configured to do so. By default, we are configured to allow
non-valid routers in "middle" and "rendezvous" positions.
- If we're using Guard nodes, the first node must be a Guard (see 5
below)
- XXXX Choosing the length
For circuits that do not need to be not "fast", when choosing among
multiple candidates for a path element, we choose randomly.
For "fast" circuits, we pick a given router as an exit with probability
proportional to its advertised bandwidth [the smaller of the 'rate' and
'observed' arguments to the "bandwidth" element in its descriptor]. If a
router's advertised bandwidth is greater than MAX_BELIEVABLE_BANDWIDTH
(1.5 MB/s), we clip to that value.
For non-exit positions on "fast" circuits, we pick routers as above, but
we weight the clipped advertised bandwidth of Exit-flagged nodes depending
on the fraction of bandwidth available from non-Exit nodes. Call the
total clipped advertised bandwidth for Exit nodes under consideration E,
and the total clipped advertised bandwidth for non-Exit nodes under
consideration N. If E<N/2, we do not consider Exit-flagged nodes.
Otherwise, we weight their bandwidth with the factor (E-N/2)/(N+E-N/2) ==
(2E - N)/(2E + N). This ensures that bandwidth is evenly distributed over
nodes in 3-hop paths.
Additionally, we may be building circuits with one or more requests in
mind. Each kind of request puts certain constraints on paths:
- All service-side introduction circuits and all rendezvous paths
should be Stable.
- All connection requests for connections that we think will need to
stay open a long time require Stable circuits. Currently, Tor decides
this by examining the request's target port, and comparing it to a
list of "long-lived" ports. (Default: 21, 22, 706, 1863, 5050,
5190, 5222, 5223, 6667, 6697, 8300.)
- DNS resolves require an exit node whose exit policy is not equivalent
to "reject *:*".
- Reverse DNS resolves require a version of Tor with advertised eventdns
support (available in Tor 0.1.2.1-alpha-dev and later).
- All connection requests require an exit node whose exit policy
supports their target address and port (if known), or which "might
support it" (if the address isn't known). See 2.2.1.
- Rules for Fast? XXXXX
2.2.1. Choosing an exit
If we know what IP address we want to connect to or resolve, we can
trivially tell whether a given router will support it by simulating
its declared exit policy.
Because we often connect to addresses of the form hostname:port, we do not
always know the target IP address when we select an exit node. In these
cases, we need to pick an exit node that "might support" connections to a
given address port with an unknown address. An exit node "might support"
such a connection if any clause that accepts any connections to that port
precedes all clauses (if any) that reject all connections to that port.
Unless requested to do so by the user, we never choose an exit server
flagged as "BadExit" by more than half of the authorities who advertise
themselves as listing bad exits.
2.2.2. User configuration
Users can alter the default behavior for path selection with configuration
options.
- If "ExitNodes" is provided, then every request requires an exit node on
the ExitNodes list. (If a request is supported by no nodes on that list,
and StrictExitNodes is false, then Tor treats that request as if
ExitNodes were not provided.)
- "EntryNodes" and "StrictEntryNodes" behave analogously.
- If a user tries to connect to or resolve a hostname of the form
<target>.<servername>.exit, the request is rewritten to a request for
<target>, and the request is only supported by the exit whose nickname
or fingerprint is <servername>.
2.3. Cannibalizing circuits
If we need a circuit and have a clean one already established, in
some cases we can adapt the clean circuit for our new
purpose. Specifically,
For hidden service interactions, we can "cannibalize" a clean internal
circuit if one is available, so we don't need to build those circuits
from scratch on demand.
We can also cannibalize clean circuits when the client asks to exit
at a given node -- either via the ".exit" notation or because the
destination is running at the same location as an exit node.
2.4. Handling failure
If an attempt to extend a circuit fails (either because the first create
failed or a subsequent extend failed) then the circuit is torn down and is
no longer pending. (XXXX really?) Requests that might have been
supported by the pending circuit thus become unsupported, and a new
circuit needs to be constructed.
If a stream "begin" attempt fails with an EXITPOLICY error, we
decide that the exit node's exit policy is not correctly advertised,
so we treat the exit node as if it were a non-exit until we retrieve
a fresh descriptor for it.
XXXX
3. Attaching streams to circuits
When a circuit that might support a request is built, Tor tries to attach
the request's stream to the circuit and sends a BEGIN, BEGIN_DIR,
or RESOLVE relay
cell as appropriate. If the request completes unsuccessfully, Tor
considers the reason given in the CLOSE relay cell. [XXX yes, and?]
After a request has remained unattached for SocksTimeout (2 minutes
by default), Tor abandons the attempt and signals an error to the
client as appropriate (e.g., by closing the SOCKS connection).
XXX Timeouts and when Tor auto-retries.
* What stream-end-reasons are appropriate for retrying.
If no reply to BEGIN/RESOLVE, then the stream will timeout and fail.
4. Hidden-service related circuits
XXX Tracking expected hidden service use (client-side and hidserv-side)
5. Guard nodes
We use Guard nodes (also called "helper nodes" in the literature) to
prevent certain profiling attacks. Here's the risk: if we choose entry and
exit nodes at random, and an attacker controls C out of N servers
(ignoring advertised bandwidth), then the
attacker will control the entry and exit node of any given circuit with
probability (C/N)^2. But as we make many different circuits over time,
then the probability that the attacker will see a sample of about (C/N)^2
of our traffic goes to 1. Since statistical sampling works, the attacker
can be sure of learning a profile of our behavior.
If, on the other hand, we picked an entry node and held it fixed, we would
have probability C/N of choosing a bad entry and being profiled, and
probability (N-C)/N of choosing a good entry and not being profiled.
When guard nodes are enabled, Tor maintains an ordered list of entry nodes
as our chosen guards, and store this list persistently to disk. If a Guard
node becomes unusable, rather than replacing it, Tor adds new guards to the
end of the list. When it comes time to choose an entry, Tor chooses at
random from among the first NumEntryGuards (default 3) usable guards on the
list. If there are not at least 2 usable guards on the list, Tor adds
routers until there are, or until there are no more usable routers to add.
A guard is unusable if any of the following hold:
- it is not marked as a Guard by the networkstatuses,
- it is not marked Valid (and the user hasn't set AllowInvalid entry)
- it is not marked Running
- Tor couldn't reach it the last time it tried to connect
A guard is unusable for a particular circuit if any of the rules for path
selection in 2.2 are not met. In particular, if the circuit is "fast"
and the guard is not Fast, or if the circuit is "stable" and the guard is
not Stable, or if the guard has already been chosen as the exit node in
that circuit, Tor can't use it as a guard node for that circuit.
If the guard is excluded because of its status in the networkstatuses for
over 30 days, Tor removes it from the list entirely, preserving order.
If Tor fails to connect to an otherwise usable guard, it retries
periodically: every hour for six hours, every 4 hours for 3 days, every
18 hours for a week, and every 36 hours thereafter. Additionally, Tor
retries unreachable guards the first time it adds a new guard to the list,
since it is possible that the old guards were only marked as unreachable
because the network was unreachable or down.
Tor does not add a guard persistently to the list until the first time we
have connected to it successfully.
X. Old notes
X.1. Do we actually do this?
How to deal with network down.
- While all helpers are down/unreachable and there are no established
or on-the-way testing circuits, launch a testing circuit. (Do this
periodically in the same way we try to establish normal circuits
when things are working normally.)
(Testing circuits are a special type of circuit, that streams won't
attach to by accident.)
- When a testing circuit succeeds, mark all helpers up and hold
the testing circuit open.
- If a connection to a helper succeeds, close all testing circuits.
Else mark that helper down and try another.
- If the last helper is marked down and we already have a testing
circuit established, then add the first hop of that testing circuit
to the end of our helper node list, close that testing circuit,
and go back to square one. (Actually, rather than closing the
testing circuit, can we get away with converting it to a normal
circuit and beginning to use it immediately?)
[Do we actually do any of the above? If so, let's spec it. If not, let's
remove it. -NM]
X.2. A thing we could do to deal with reachability.
And as a bonus, it leads to an answer to Nick's attack ("If I pick
my helper nodes all on 18.0.0.0:*, then I move, you'll know where I
bootstrapped") -- the answer is to pick your original three helper nodes
without regard for reachability. Then the above algorithm will add some
more that are reachable for you, and if you move somewhere, it's more
likely (though not certain) that some of the originals will become useful.
Is that smart or just complex?
X.3. Some stuff that worries me about entry guards. 2006 Jun, Nickm.
It is unlikely for two users to have the same set of entry guards.
Observing a user is sufficient to learn its entry guards. So, as we move
around, entry guards make us linkable. If we want to change guards when
our location (IP? subnet?) changes, we have two bad options. We could
- Drop the old guards. But if we go back to our old location,
we'll not use our old guards. For a laptop that sometimes gets used
from work and sometimes from home, this is pretty fatal.
- Remember the old guards as associated with the old location, and use
them again if we ever go back to the old location. This would be
nasty, since it would force us to record where we've been.
[Do we do any of this now? If not, this should move into 099-misc or
098-todo. -NM]
|