diff options
Diffstat (limited to 'src/test/test_prob_distr.c')
-rw-r--r-- | src/test/test_prob_distr.c | 1428 |
1 files changed, 1428 insertions, 0 deletions
diff --git a/src/test/test_prob_distr.c b/src/test/test_prob_distr.c new file mode 100644 index 0000000000..ff23f01033 --- /dev/null +++ b/src/test/test_prob_distr.c @@ -0,0 +1,1428 @@ +/* Copyright (c) 2018, The Tor Project, Inc. */ +/* See LICENSE for licensing information */ + +/** + * \file test_prob_distr.c + * \brief Test probability distributions. + * \detail + * + * For each probability distribution we do two kinds of tests: + * + * a) We do numerical deterministic testing of their cdf/icdf/sf/isf functions + * and the various relationships between them for each distribution. We also + * do deterministic tests on their sampling functions. Test vectors for + * these tests were computed from alternative implementations and were + * eyeballed to make sure they make sense + * (e.g. src/test/prob_distr_mpfr_ref.c computes logit(p) using GNU mpfr + * with 200-bit precision and is then tested in test_logit_logistic()). + * + * b) We do stochastic hypothesis testing (G-test) to ensure that sampling from + * the given distributions is distributed properly. The stochastic tests are + * slow and their false positive rate is not well suited for CI, so they are + * currently disabled-by-default and put into 'tests-slow'. + */ + +#define PROB_DISTR_PRIVATE + +#include "orconfig.h" + +#include "test/test.h" + +#include "core/or/or.h" + +#include "lib/math/prob_distr.h" +#include "lib/math/fp.h" +#include "lib/crypt_ops/crypto_rand.h" + +#include <float.h> +#include <math.h> +#include <stdbool.h> +#include <stddef.h> +#include <stdint.h> +#include <stdio.h> +#include <stdlib.h> + +/** + * Return floor(d) converted to size_t, as a workaround for complaints + * under -Wbad-function-cast for (size_t)floor(d). + */ +static size_t +floor_to_size_t(double d) +{ + double integral_d = floor(d); + return (size_t)integral_d; +} + +/** + * Return ceil(d) converted to size_t, as a workaround for complaints + * under -Wbad-function-cast for (size_t)ceil(d). + */ +static size_t +ceil_to_size_t(double d) +{ + double integral_d = ceil(d); + return (size_t)integral_d; +} + +/* + * Geometric(p) distribution, supported on {1, 2, 3, ...}. + * + * Compute the probability mass function Geom(n; p) of the number of + * trials before the first success when success has probability p. + */ +static double +logpmf_geometric(unsigned n, double p) +{ + /* This is actually a check against 1, but we do >= so that the compiler + does not raise a -Wfloat-equal */ + if (p >= 1) { + if (n == 1) + return 0; + else + return -HUGE_VAL; + } + return (n - 1)*log1p(-p) + log(p); +} + +/** + * Compute the logistic function, translated in output by 1/2: + * logistichalf(x) = logistic(x) - 1/2. Well-conditioned on the entire + * real plane, with maximum condition number 1 at 0. + * + * This implementation gives relative error bounded by 5 eps. + */ +static double +logistichalf(double x) +{ + /* + * Rewrite this with the identity + * + * 1/(1 + e^{-x}) - 1/2 + * = (1 - 1/2 - e^{-x}/2)/(1 + e^{-x}) + * = (1/2 - e^{-x}/2)/(1 + e^{-x}) + * = (1 - e^{-x})/[2 (1 + e^{-x})] + * = -(e^{-x} - 1)/[2 (1 + e^{-x})], + * + * which we can evaluate by -expm1(-x)/[2 (1 + exp(-x))]. + * + * Suppose exp has error d0, + has error d1, expm1 has error + * d2, and / has error d3, so we evaluate + * + * -(1 + d2) (1 + d3) (e^{-x} - 1) + * / [2 (1 + d1) (1 + (1 + d0) e^{-x})]. + * + * In the denominator, + * + * 1 + (1 + d0) e^{-x} + * = 1 + e^{-x} + d0 e^{-x} + * = (1 + e^{-x}) (1 + d0 e^{-x}/(1 + e^{-x})), + * + * so the relative error of the numerator is + * + * d' = d2 + d3 + d2 d3, + * and of the denominator, + * d'' = d1 + d0 e^{-x}/(1 + e^{-x}) + d0 d1 e^{-x}/(1 + e^{-x}) + * = d1 + d0 L(-x) + d0 d1 L(-x), + * + * where L(-x) is logistic(-x). By Lemma 1 the relative error + * of the quotient is bounded by + * + * 2|d2 + d3 + d2 d3 - d1 - d0 L(x) + d0 d1 L(x)|, + * + * Since 0 < L(x) < 1, this is bounded by + * + * 2|d2| + 2|d3| + 2|d2 d3| + 2|d1| + 2|d0| + 2|d0 d1| + * <= 4 eps + 2 eps^2. + */ + if (x < log(DBL_EPSILON/8)) { + /* + * Avoid overflow in e^{-x}. When x < log(eps/4), we + * we further have x < logit(eps/4), so that + * logistic(x) < eps/4. Hence the relative error of + * logistic(x) - 1/2 from -1/2 is bounded by eps/2, and + * so the relative error of -1/2 from logistic(x) - 1/2 + * is bounded by eps. + */ + return -0.5; + } else { + return -expm1(-x)/(2*(1 + exp(-x))); + } +} + +/** + * Compute the log of the sum of the exps. Caller should arrange the + * array in descending order to minimize error because I don't want to + * deal with using temporary space and the one caller in this file + * arranges that anyway. + * + * Warning: This implementation does not handle infinite or NaN inputs + * sensibly, because I don't need that here at the moment. (NaN, or + * -inf and +inf together, should yield NaN; +inf and finite should + * yield +inf; otherwise all -inf should be ignored because exp(-inf) = + * 0.) + */ +static double +logsumexp(double *A, size_t n) +{ + double maximum, sum; + size_t i; + + if (n == 0) + return log(0); + + maximum = A[0]; + for (i = 1; i < n; i++) { + if (A[i] > maximum) + maximum = A[i]; + } + + sum = 0; + for (i = n; i --> 0;) + sum += exp(A[i] - maximum); + + return log(sum) + maximum; +} + +/** + * Compute log(1 - e^x). Defined only for negative x so that e^x < 1. + * This is the complement of a probability in log space. + */ +static double +log1mexp(double x) +{ + + /* + * We want to compute log on [0, 1/2) but log1p on [1/2, +inf), + * so partition x at -log(2) = log(1/2). + */ + if (-log(2) < x) + return log(-expm1(x)); + else + return log1p(-exp(x)); +} + +/* + * Tests of numerical errors in computing logit, logistic, and the + * various cdfs, sfs, icdfs, and isfs. + */ + +#define arraycount(A) (sizeof(A)/sizeof(A[0])) + +/** Return relative error between <b>actual</b> and <b>expected</b>. + * Special cases: If <b>expected</b> is zero or infinite, return 1 if + * <b>actual</b> is equal to <b>expected</b> and 0 if not, since the + * usual notion of relative error is undefined but we only use this + * for testing relerr(e, a) <= bound. If either is NaN, return NaN, + * which has the property that NaN <= bound is false no matter what + * bound is. + * + * Beware: if you test !(relerr(e, a) > bound), then then the result + * is true when a is NaN because NaN > bound is false too. See + * CHECK_RELERR for correct use to decide when to report failure. + */ +static double +relerr(double expected, double actual) +{ + /* + * To silence -Wfloat-equal, we have to test for equality using + * inequalities: we have (fabs(expected) <= 0) iff (expected == 0), + * and (actual <= expected && actual >= expected) iff actual == + * expected whether expected is zero or infinite. + */ + if (fabs(expected) <= 0 || tor_isinf(expected)) { + if (actual <= expected && actual >= expected) + return 0; + else + return 1; + } else { + return fabs((expected - actual)/expected); + } +} + +/** Check that relative error of <b>expected</b> and <b>actual</b> is within + * <b>relerr_bound</b>. Caller must arrange to have i and relerr_bound in + * scope. */ +#define CHECK_RELERR(expected, actual) do { \ + double check_expected = (expected); \ + double check_actual = (actual); \ + const char *str_expected = #expected; \ + const char *str_actual = #actual; \ + double check_relerr = relerr(expected, actual); \ + if (!(relerr(check_expected, check_actual) <= relerr_bound)) { \ + log_warn(LD_GENERAL, "%s:%d: case %u: relerr(%s=%.17e, %s=%.17e)" \ + " = %.17e > %.17e\n", \ + __func__, __LINE__, (unsigned) i, \ + str_expected, check_expected, \ + str_actual, check_actual, \ + check_relerr, relerr_bound); \ + ok = false; \ + } \ +} while (0) + +/* Check that a <= b. + * Caller must arrange to have i in scope. */ +#define CHECK_LE(a, b) do { \ + double check_a = (a); \ + double check_b = (b); \ + const char *str_a = #a; \ + const char *str_b = #b; \ + if (!(check_a <= check_b)) { \ + log_warn(LD_GENERAL, "%s:%d: case %u: %s=%.17e > %s=%.17e\n", \ + __func__, __LINE__, (unsigned) i, \ + str_a, check_a, str_b, check_b); \ + ok = false; \ + } \ +} while (0) + +/** + * Test the logit and logistic functions. Confirm that they agree with + * the cdf, sf, icdf, and isf of the standard Logistic distribution. + * Confirm that the sampler for the standard logistic distribution maps + * [0, 1] into the right subinterval for the inverse transform, for + * this implementation. + */ +static void +test_logit_logistic(void *arg) +{ + (void) arg; + + static const struct { + double x; /* x = logit(p) */ + double p; /* p = logistic(x) */ + double phalf; /* p - 1/2 = logistic(x) - 1/2 */ + } cases[] = { + { -HUGE_VAL, 0, -0.5 }, + { -1000, 0, -0.5 }, + { -710, 4.47628622567513e-309, -0.5 }, + { -708, 3.307553003638408e-308, -0.5 }, + { -2, .11920292202211755, -.3807970779778824 }, + { -1.0000001, .2689414017088022, -.23105859829119776 }, + { -1, .2689414213699951, -.23105857863000487 }, + { -0.9999999, .26894144103118883, -.2310585589688111 }, + /* see src/test/prob_distr_mpfr_ref.c for computation */ + { -4.000000000537333e-5, .49999, -1.0000000000010001e-5 }, + { -4.000000000533334e-5, .49999, -.00001 }, + { -4.000000108916878e-9, .499999999, -1.0000000272292198e-9 }, + { -4e-9, .499999999, -1e-9 }, + { -4e-16, .5, -1e-16 }, + { -4e-300, .5, -1e-300 }, + { 0, .5, 0 }, + { 4e-300, .5, 1e-300 }, + { 4e-16, .5, 1e-16 }, + { 3.999999886872274e-9, .500000001, 9.999999717180685e-10 }, + { 4e-9, .500000001, 1e-9 }, + { 4.0000000005333336e-5, .50001, .00001 }, + { 8.000042667076272e-3, .502, .002 }, + { 0.9999999, .7310585589688111, .2310585589688111 }, + { 1, .7310585786300049, .23105857863000487 }, + { 1.0000001, .7310585982911977, .23105859829119774 }, + { 2, .8807970779778823, .3807970779778824 }, + { 708, 1, .5 }, + { 710, 1, .5 }, + { 1000, 1, .5 }, + { HUGE_VAL, 1, .5 }, + }; + double relerr_bound = 3e-15; /* >10eps */ + size_t i; + bool ok = true; + + for (i = 0; i < arraycount(cases); i++) { + double x = cases[i].x; + double p = cases[i].p; + double phalf = cases[i].phalf; + + /* + * cdf is logistic, icdf is logit, and symmetry for + * sf/isf. + */ + CHECK_RELERR(logistic(x), cdf_logistic(x, 0, 1)); + CHECK_RELERR(logistic(-x), sf_logistic(x, 0, 1)); + CHECK_RELERR(logit(p), icdf_logistic(p, 0, 1)); + CHECK_RELERR(-logit(p), isf_logistic(p, 0, 1)); + + CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2, 0, 2)); + CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2, 0, 2)); + CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0, 2)/2); + CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, 2)/2); + + CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x/2, 0, .5)); + CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x/2, 0, .5)); + CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0,.5)*2); + CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, .5)*2); + + CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2 + 1, 1, 2)); + CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2 + 1, 1, 2)); + + /* + * For p near 0 and p near 1/2, the arithmetic of + * translating by 1 loses precision. + */ + if (fabs(p) > DBL_EPSILON && fabs(p) < 0.4) { + CHECK_RELERR(icdf_logistic(p, 0, 1), + (icdf_logistic(p, 1, 2) - 1)/2); + CHECK_RELERR(isf_logistic(p, 0, 1), + (isf_logistic(p, 1, 2) - 1)/2); + } + + CHECK_RELERR(p, logistic(x)); + CHECK_RELERR(phalf, logistichalf(x)); + + /* + * On the interior floating-point numbers, either logit or + * logithalf had better give the correct answer. + * + * For probabilities near 0, we can get much finer resolution with + * logit, and for probabilities near 1/2, we can get much finer + * resolution with logithalf by representing them using p - 1/2. + * + * E.g., we can write -.00001 for phalf, and .49999 for p, but the + * difference 1/2 - .00001 gives 1.0000000000010001e-5 in binary64 + * arithmetic. So test logit(.49999) which should give the same + * answer as logithalf(-1.0000000000010001e-5), namely + * -4.000000000537333e-5, and also test logithalf(-.00001) which + * gives -4.000000000533334e-5 instead -- but don't expect + * logit(.49999) to give -4.000000000533334e-5 even though it looks + * like 1/2 - .00001. + * + * A naive implementation of logit will just use log(p/(1 - p)) and + * give the answer -4.000000000551673e-05 for .49999, which is + * wrong in a lot of digits, which happens because log is + * ill-conditioned near 1 and thus amplifies whatever relative + * error we made in computing p/(1 - p). + */ + if ((0 < p && p < 1) || tor_isinf(x)) { + if (phalf >= p - 0.5 && phalf <= p - 0.5) + CHECK_RELERR(x, logit(p)); + if (p >= 0.5 + phalf && p <= 0.5 + phalf) + CHECK_RELERR(x, logithalf(phalf)); + } + + CHECK_RELERR(-phalf, logistichalf(-x)); + if (fabs(phalf) < 0.5 || tor_isinf(x)) + CHECK_RELERR(-x, logithalf(-phalf)); + if (p < 1 || tor_isinf(x)) { + CHECK_RELERR(1 - p, logistic(-x)); + if (p > .75 || tor_isinf(x)) + CHECK_RELERR(-x, logit(1 - p)); + } else { + CHECK_LE(logistic(-x), 1e-300); + } + } + + for (i = 0; i <= 100; i++) { + double p0 = (double)i/100; + + CHECK_RELERR(logit(p0/(1 + M_E)), sample_logistic(0, 0, p0)); + CHECK_RELERR(-logit(p0/(1 + M_E)), sample_logistic(1, 0, p0)); + CHECK_RELERR(logithalf(p0*(0.5 - 1/(1 + M_E))), + sample_logistic(0, 1, p0)); + CHECK_RELERR(-logithalf(p0*(0.5 - 1/(1 + M_E))), + sample_logistic(1, 1, p0)); + } + + if (!ok) + printf("fail logit/logistic / logistic cdf/sf\n"); + + tt_assert(ok); + + done: + ; +} + +/** + * Test the cdf, sf, icdf, and isf of the LogLogistic distribution. + */ +static void +test_log_logistic(void *arg) +{ + (void) arg; + + static const struct { + /* x is a point in the support of the LogLogistic distribution */ + double x; + /* 'p' is the probability that a random variable X for a given LogLogistic + * probability ditribution will take value less-or-equal to x */ + double p; + /* 'np' is the probability that a random variable X for a given LogLogistic + * probability distribution will take value greater-or-equal to x. */ + double np; + } cases[] = { + { 0, 0, 1 }, + { 1e-300, 1e-300, 1 }, + { 1e-17, 1e-17, 1 }, + { 1e-15, 1e-15, .999999999999999 }, + { .1, .09090909090909091, .90909090909090909 }, + { .25, .2, .8 }, + { .5, .33333333333333333, .66666666666666667 }, + { .75, .42857142857142855, .5714285714285714 }, + { .9999, .49997499874993756, .5000250012500626 }, + { .99999999, .49999999749999996, .5000000025 }, + { .999999999999999, .49999999999999994, .5000000000000002 }, + { 1, .5, .5 }, + }; + double relerr_bound = 3e-15; + size_t i; + bool ok = true; + + for (i = 0; i < arraycount(cases); i++) { + double x = cases[i].x; + double p = cases[i].p; + double np = cases[i].np; + + CHECK_RELERR(p, cdf_log_logistic(x, 1, 1)); + CHECK_RELERR(p, cdf_log_logistic(x/2, .5, 1)); + CHECK_RELERR(p, cdf_log_logistic(x*2, 2, 1)); + CHECK_RELERR(p, cdf_log_logistic(sqrt(x), 1, 2)); + CHECK_RELERR(p, cdf_log_logistic(sqrt(x)/2, .5, 2)); + CHECK_RELERR(p, cdf_log_logistic(sqrt(x)*2, 2, 2)); + if (2*sqrt(DBL_MIN) < x) { + CHECK_RELERR(p, cdf_log_logistic(x*x, 1, .5)); + CHECK_RELERR(p, cdf_log_logistic(x*x/2, .5, .5)); + CHECK_RELERR(p, cdf_log_logistic(x*x*2, 2, .5)); + } + + CHECK_RELERR(np, sf_log_logistic(x, 1, 1)); + CHECK_RELERR(np, sf_log_logistic(x/2, .5, 1)); + CHECK_RELERR(np, sf_log_logistic(x*2, 2, 1)); + CHECK_RELERR(np, sf_log_logistic(sqrt(x), 1, 2)); + CHECK_RELERR(np, sf_log_logistic(sqrt(x)/2, .5, 2)); + CHECK_RELERR(np, sf_log_logistic(sqrt(x)*2, 2, 2)); + if (2*sqrt(DBL_MIN) < x) { + CHECK_RELERR(np, sf_log_logistic(x*x, 1, .5)); + CHECK_RELERR(np, sf_log_logistic(x*x/2, .5, .5)); + CHECK_RELERR(np, sf_log_logistic(x*x*2, 2, .5)); + } + + CHECK_RELERR(np, cdf_log_logistic(1/x, 1, 1)); + CHECK_RELERR(np, cdf_log_logistic(1/(2*x), .5, 1)); + CHECK_RELERR(np, cdf_log_logistic(2/x, 2, 1)); + CHECK_RELERR(np, cdf_log_logistic(1/sqrt(x), 1, 2)); + CHECK_RELERR(np, cdf_log_logistic(1/(2*sqrt(x)), .5, 2)); + CHECK_RELERR(np, cdf_log_logistic(2/sqrt(x), 2, 2)); + if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) { + CHECK_RELERR(np, cdf_log_logistic(1/(x*x), 1, .5)); + CHECK_RELERR(np, cdf_log_logistic(1/(2*x*x), .5, .5)); + CHECK_RELERR(np, cdf_log_logistic(2/(x*x), 2, .5)); + } + + CHECK_RELERR(p, sf_log_logistic(1/x, 1, 1)); + CHECK_RELERR(p, sf_log_logistic(1/(2*x), .5, 1)); + CHECK_RELERR(p, sf_log_logistic(2/x, 2, 1)); + CHECK_RELERR(p, sf_log_logistic(1/sqrt(x), 1, 2)); + CHECK_RELERR(p, sf_log_logistic(1/(2*sqrt(x)), .5, 2)); + CHECK_RELERR(p, sf_log_logistic(2/sqrt(x), 2, 2)); + if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) { + CHECK_RELERR(p, sf_log_logistic(1/(x*x), 1, .5)); + CHECK_RELERR(p, sf_log_logistic(1/(2*x*x), .5, .5)); + CHECK_RELERR(p, sf_log_logistic(2/(x*x), 2, .5)); + } + + CHECK_RELERR(x, icdf_log_logistic(p, 1, 1)); + CHECK_RELERR(x/2, icdf_log_logistic(p, .5, 1)); + CHECK_RELERR(x*2, icdf_log_logistic(p, 2, 1)); + CHECK_RELERR(x, icdf_log_logistic(p, 1, 1)); + CHECK_RELERR(sqrt(x)/2, icdf_log_logistic(p, .5, 2)); + CHECK_RELERR(sqrt(x)*2, icdf_log_logistic(p, 2, 2)); + CHECK_RELERR(sqrt(x), icdf_log_logistic(p, 1, 2)); + CHECK_RELERR(x*x/2, icdf_log_logistic(p, .5, .5)); + CHECK_RELERR(x*x*2, icdf_log_logistic(p, 2, .5)); + + if (np < .9) { + CHECK_RELERR(x, isf_log_logistic(np, 1, 1)); + CHECK_RELERR(x/2, isf_log_logistic(np, .5, 1)); + CHECK_RELERR(x*2, isf_log_logistic(np, 2, 1)); + CHECK_RELERR(sqrt(x), isf_log_logistic(np, 1, 2)); + CHECK_RELERR(sqrt(x)/2, isf_log_logistic(np, .5, 2)); + CHECK_RELERR(sqrt(x)*2, isf_log_logistic(np, 2, 2)); + CHECK_RELERR(x*x, isf_log_logistic(np, 1, .5)); + CHECK_RELERR(x*x/2, isf_log_logistic(np, .5, .5)); + CHECK_RELERR(x*x*2, isf_log_logistic(np, 2, .5)); + + CHECK_RELERR(1/x, icdf_log_logistic(np, 1, 1)); + CHECK_RELERR(1/(2*x), icdf_log_logistic(np, .5, 1)); + CHECK_RELERR(2/x, icdf_log_logistic(np, 2, 1)); + CHECK_RELERR(1/sqrt(x), icdf_log_logistic(np, 1, 2)); + CHECK_RELERR(1/(2*sqrt(x)), + icdf_log_logistic(np, .5, 2)); + CHECK_RELERR(2/sqrt(x), icdf_log_logistic(np, 2, 2)); + CHECK_RELERR(1/(x*x), icdf_log_logistic(np, 1, .5)); + CHECK_RELERR(1/(2*x*x), icdf_log_logistic(np, .5, .5)); + CHECK_RELERR(2/(x*x), icdf_log_logistic(np, 2, .5)); + } + + CHECK_RELERR(1/x, isf_log_logistic(p, 1, 1)); + CHECK_RELERR(1/(2*x), isf_log_logistic(p, .5, 1)); + CHECK_RELERR(2/x, isf_log_logistic(p, 2, 1)); + CHECK_RELERR(1/sqrt(x), isf_log_logistic(p, 1, 2)); + CHECK_RELERR(1/(2*sqrt(x)), isf_log_logistic(p, .5, 2)); + CHECK_RELERR(2/sqrt(x), isf_log_logistic(p, 2, 2)); + CHECK_RELERR(1/(x*x), isf_log_logistic(p, 1, .5)); + CHECK_RELERR(1/(2*x*x), isf_log_logistic(p, .5, .5)); + CHECK_RELERR(2/(x*x), isf_log_logistic(p, 2, .5)); + } + + for (i = 0; i <= 100; i++) { + double p0 = (double)i/100; + + CHECK_RELERR(0.5*p0/(1 - 0.5*p0), sample_log_logistic(0, p0)); + CHECK_RELERR((1 - 0.5*p0)/(0.5*p0), + sample_log_logistic(1, p0)); + } + + if (!ok) + printf("fail log logistic cdf/sf\n"); + + tt_assert(ok); + + done: + ; +} + +/** + * Test the cdf, sf, icdf, isf of the Weibull distribution. + */ +static void +test_weibull(void *arg) +{ + (void) arg; + + static const struct { + /* x is a point in the support of the Weibull distribution */ + double x; + /* 'p' is the probability that a random variable X for a given Weibull + * probability ditribution will take value less-or-equal to x */ + double p; + /* 'np' is the probability that a random variable X for a given Weibull + * probability distribution will take value greater-or-equal to x. */ + double np; + } cases[] = { + { 0, 0, 1 }, + { 1e-300, 1e-300, 1 }, + { 1e-17, 1e-17, 1 }, + { .1, .09516258196404043, .9048374180359595 }, + { .5, .3934693402873666, .6065306597126334 }, + { .6931471805599453, .5, .5 }, + { 1, .6321205588285577, .36787944117144233 }, + { 10, .9999546000702375, 4.5399929762484854e-5 }, + { 36, .9999999999999998, 2.319522830243569e-16 }, + { 37, .9999999999999999, 8.533047625744066e-17 }, + { 38, 1, 3.1391327920480296e-17 }, + { 100, 1, 3.720075976020836e-44 }, + { 708, 1, 3.307553003638408e-308 }, + { 710, 1, 4.47628622567513e-309 }, + { 1000, 1, 0 }, + { HUGE_VAL, 1, 0 }, + }; + double relerr_bound = 3e-15; + size_t i; + bool ok = true; + + for (i = 0; i < arraycount(cases); i++) { + double x = cases[i].x; + double p = cases[i].p; + double np = cases[i].np; + + CHECK_RELERR(p, cdf_weibull(x, 1, 1)); + CHECK_RELERR(p, cdf_weibull(x/2, .5, 1)); + CHECK_RELERR(p, cdf_weibull(x*2, 2, 1)); + /* For 0 < x < sqrt(DBL_MIN), x^2 loses lots of bits. */ + if (x <= 0 || + sqrt(DBL_MIN) <= x) { + CHECK_RELERR(p, cdf_weibull(x*x, 1, .5)); + CHECK_RELERR(p, cdf_weibull(x*x/2, .5, .5)); + CHECK_RELERR(p, cdf_weibull(x*x*2, 2, .5)); + } + CHECK_RELERR(p, cdf_weibull(sqrt(x), 1, 2)); + CHECK_RELERR(p, cdf_weibull(sqrt(x)/2, .5, 2)); + CHECK_RELERR(p, cdf_weibull(sqrt(x)*2, 2, 2)); + CHECK_RELERR(np, sf_weibull(x, 1, 1)); + CHECK_RELERR(np, sf_weibull(x/2, .5, 1)); + CHECK_RELERR(np, sf_weibull(x*2, 2, 1)); + CHECK_RELERR(np, sf_weibull(x*x, 1, .5)); + CHECK_RELERR(np, sf_weibull(x*x/2, .5, .5)); + CHECK_RELERR(np, sf_weibull(x*x*2, 2, .5)); + if (x >= 10) { + /* + * exp amplifies the error of sqrt(x)^2 + * proportionally to exp(x); for large inputs + * this is significant. + */ + double t = -expm1(-x*(2*DBL_EPSILON + DBL_EPSILON)); + relerr_bound = t + DBL_EPSILON + t*DBL_EPSILON; + if (relerr_bound < 3e-15) + /* + * The tests are written only to 16 + * decimal places anyway even if your + * `double' is, say, i387 binary80, for + * whatever reason. + */ + relerr_bound = 3e-15; + CHECK_RELERR(np, sf_weibull(sqrt(x), 1, 2)); + CHECK_RELERR(np, sf_weibull(sqrt(x)/2, .5, 2)); + CHECK_RELERR(np, sf_weibull(sqrt(x)*2, 2, 2)); + } + + if (p <= 0.75) { + /* + * For p near 1, not enough precision near 1 to + * recover x. + */ + CHECK_RELERR(x, icdf_weibull(p, 1, 1)); + CHECK_RELERR(x/2, icdf_weibull(p, .5, 1)); + CHECK_RELERR(x*2, icdf_weibull(p, 2, 1)); + } + if (p >= 0.25 && !tor_isinf(x) && np > 0) { + /* + * For p near 0, not enough precision in np + * near 1 to recover x. For 0, isf gives inf, + * even if p is precise enough for the icdf to + * work. + */ + CHECK_RELERR(x, isf_weibull(np, 1, 1)); + CHECK_RELERR(x/2, isf_weibull(np, .5, 1)); + CHECK_RELERR(x*2, isf_weibull(np, 2, 1)); + } + } + + for (i = 0; i <= 100; i++) { + double p0 = (double)i/100; + + CHECK_RELERR(3*sqrt(-log(p0/2)), sample_weibull(0, p0, 3, 2)); + CHECK_RELERR(3*sqrt(-log1p(-p0/2)), + sample_weibull(1, p0, 3, 2)); + } + + if (!ok) + printf("fail Weibull cdf/sf\n"); + + tt_assert(ok); + + done: + ; +} + +/** + * Test the cdf, sf, icdf, and isf of the generalized Pareto + * distribution. + */ +static void +test_genpareto(void *arg) +{ + (void) arg; + + struct { + /* xi is the 'xi' parameter of the generalized Pareto distribution, and the + * rest are the same as in the above tests */ + double xi, x, p, np; + } cases[] = { + { 0, 0, 0, 1 }, + { 1e-300, .004, 3.992010656008528e-3, .9960079893439915 }, + { 1e-300, .1, .09516258196404043, .9048374180359595 }, + { 1e-300, 1, .6321205588285577, .36787944117144233 }, + { 1e-300, 10, .9999546000702375, 4.5399929762484854e-5 }, + { 1e-200, 1e-16, 9.999999999999999e-17, .9999999999999999 }, + { 1e-16, 1e-200, 9.999999999999998e-201, 1 }, + { 1e-16, 1e-16, 1e-16, 1 }, + { 1e-16, .004, 3.992010656008528e-3, .9960079893439915 }, + { 1e-16, .1, .09516258196404043, .9048374180359595 }, + { 1e-16, 1, .6321205588285577, .36787944117144233 }, + { 1e-16, 10, .9999546000702375, 4.539992976248509e-5 }, + { 1e-10, 1e-6, 9.999995000001667e-7, .9999990000005 }, + { 1e-8, 1e-8, 9.999999950000001e-9, .9999999900000001 }, + { 1, 1e-300, 1e-300, 1 }, + { 1, 1e-16, 1e-16, .9999999999999999 }, + { 1, .1, .09090909090909091, .9090909090909091 }, + { 1, 1, .5, .5 }, + { 1, 10, .9090909090909091, .0909090909090909 }, + { 1, 100, .9900990099009901, .0099009900990099 }, + { 1, 1000, .999000999000999, 9.990009990009992e-4 }, + { 10, 1e-300, 1e-300, 1 }, + { 10, 1e-16, 9.999999999999995e-17, .9999999999999999 }, + { 10, .1, .06696700846319258, .9330329915368074 }, + { 10, 1, .21320655780322778, .7867934421967723 }, + { 10, 10, .3696701667040189, .6303298332959811 }, + { 10, 100, .49886285755007337, .5011371424499267 }, + { 10, 1000, .6018968102992647, .3981031897007353 }, + }; + double xi_array[] = { -1.5, -1, -1e-30, 0, 1e-30, 1, 1.5 }; + size_t i, j; + double relerr_bound = 3e-15; + bool ok = true; + + for (i = 0; i < arraycount(cases); i++) { + double xi = cases[i].xi; + double x = cases[i].x; + double p = cases[i].p; + double np = cases[i].np; + + CHECK_RELERR(p, cdf_genpareto(x, 0, 1, xi)); + CHECK_RELERR(p, cdf_genpareto(x*2, 0, 2, xi)); + CHECK_RELERR(p, cdf_genpareto(x/2, 0, .5, xi)); + CHECK_RELERR(np, sf_genpareto(x, 0, 1, xi)); + CHECK_RELERR(np, sf_genpareto(x*2, 0, 2, xi)); + CHECK_RELERR(np, sf_genpareto(x/2, 0, .5, xi)); + + if (p < .5) { + CHECK_RELERR(x, icdf_genpareto(p, 0, 1, xi)); + CHECK_RELERR(x*2, icdf_genpareto(p, 0, 2, xi)); + CHECK_RELERR(x/2, icdf_genpareto(p, 0, .5, xi)); + } + if (np < .5) { + CHECK_RELERR(x, isf_genpareto(np, 0, 1, xi)); + CHECK_RELERR(x*2, isf_genpareto(np, 0, 2, xi)); + CHECK_RELERR(x/2, isf_genpareto(np, 0, .5, xi)); + } + } + + for (i = 0; i < arraycount(xi_array); i++) { + for (j = 0; j <= 100; j++) { + double p0 = (j == 0 ? 2*DBL_MIN : (double)j/100); + + /* This is actually a check against 0, but we do <= so that the compiler + does not raise a -Wfloat-equal */ + if (fabs(xi_array[i]) <= 0) { + /* + * When xi == 0, the generalized Pareto + * distribution reduces to an + * exponential distribution. + */ + CHECK_RELERR(-log(p0/2), + sample_genpareto(0, p0, 0)); + CHECK_RELERR(-log1p(-p0/2), + sample_genpareto(1, p0, 0)); + } else { + CHECK_RELERR(expm1(-xi_array[i]*log(p0/2))/xi_array[i], + sample_genpareto(0, p0, xi_array[i])); + CHECK_RELERR((j == 0 ? DBL_MIN : + expm1(-xi_array[i]*log1p(-p0/2))/xi_array[i]), + sample_genpareto(1, p0, xi_array[i])); + } + + CHECK_RELERR(isf_genpareto(p0/2, 0, 1, xi_array[i]), + sample_genpareto(0, p0, xi_array[i])); + CHECK_RELERR(icdf_genpareto(p0/2, 0, 1, xi_array[i]), + sample_genpareto(1, p0, xi_array[i])); + } + } + + tt_assert(ok); + + done: + ; +} + +/** + * Test the deterministic sampler for uniform distribution on [a, b]. + * + * This currently only tests whether the outcome lies within [a, b]. + */ +static void +test_uniform_interval(void *arg) +{ + (void) arg; + struct { + /* Sample from a uniform distribution with parameters 'a' and 'b', using + * 't' as the sampling index. */ + double t, a, b; + } cases[] = { + { 0, 0, 0 }, + { 0, 0, 1 }, + { 0, 1.0000000000000007, 3.999999999999995 }, + { 0, 4000, 4000 }, + { 0.42475836677491291, 4000, 4000 }, + { 0, -DBL_MAX, DBL_MAX }, + { 0.25, -DBL_MAX, DBL_MAX }, + { 0.5, -DBL_MAX, DBL_MAX }, + }; + size_t i = 0; + bool ok = true; + + for (i = 0; i < arraycount(cases); i++) { + double t = cases[i].t; + double a = cases[i].a; + double b = cases[i].b; + + CHECK_LE(a, sample_uniform_interval(t, a, b)); + CHECK_LE(sample_uniform_interval(t, a, b), b); + + CHECK_LE(a, sample_uniform_interval(1 - t, a, b)); + CHECK_LE(sample_uniform_interval(1 - t, a, b), b); + + CHECK_LE(sample_uniform_interval(t, -b, -a), -a); + CHECK_LE(-b, sample_uniform_interval(t, -b, -a)); + + CHECK_LE(sample_uniform_interval(1 - t, -b, -a), -a); + CHECK_LE(-b, sample_uniform_interval(1 - t, -b, -a)); + } + + tt_assert(ok); + + done: + ; +} + +/********************** Stochastic tests ****************************/ + +/* + * Psi test, sometimes also called G-test. The psi test statistic, + * suitably scaled, has chi^2 distribution, but the psi test tends to + * have better statistical power in practice to detect deviations than + * the chi^2 test does. (The chi^2 test statistic is the first term of + * the Taylor expansion of the psi test statistic.) The psi test is + * generic, for any CDF; particular distributions might have higher- + * power tests to distinguish them from predictable deviations or bugs. + * + * We choose the psi critical value so that a single psi test has + * probability below alpha = 1% of spuriously failing even if all the + * code is correct. But the false positive rate for a suite of n tests + * is higher: 1 - Binom(0; n, alpha) = 1 - (1 - alpha)^n. For n = 10, + * this is about 10%, and for n = 100 it is well over 50%. + * + * We can drive it down by running each test twice, and accepting it if + * it passes at least once; in that case, it is as if we used Binom(2; + * 2, alpha) = alpha^2 as the false positive rate for each test, and + * for n = 10 tests, it would be 0.1%, and for n = 100 tests, still + * only 1%. + * + * The critical value for a chi^2 distribution with 100 degrees of + * freedom and false positive rate alpha = 1% was taken from: + * + * NIST/SEMATECH e-Handbook of Statistical Methods, Section + * 1.3.6.7.4 `Critical Values of the Chi-Square Distribution', + * <http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm>, + * retrieved 2018-10-28. + */ + +static const size_t NSAMPLES = 100000; +/* Number of chances we give to the test to succeed. */ +static const unsigned NTRIALS = 2; +/* Number of times we want the test to pass per NTRIALS. */ +static const unsigned NPASSES_MIN = 1; + +#define PSI_DF 100 /* degrees of freedom */ +static const double PSI_CRITICAL = 135.807; /* critical value, alpha = .01 */ + +/** + * Perform a psi test on an array of sample counts, C, adding up to N + * samples, and an array of log expected probabilities, logP, + * representing the null hypothesis for the distribution of samples + * counted. Return false if the psi test rejects the null hypothesis, + * true if otherwise. + */ +static bool +psi_test(const size_t C[PSI_DF], const double logP[PSI_DF], size_t N) +{ + double psi = 0; + double c = 0; /* Kahan compensation */ + double t, u; + size_t i; + + for (i = 0; i < PSI_DF; i++) { + /* + * c*log(c/(n*p)) = (1/n) * f*log(f/p) where f = c/n is + * the frequency, and f*log(f/p) ---> 0 as f ---> 0, so + * this is a reasonable choice. Further, any mass that + * _fails_ to turn up in this bin will inflate another + * bin instead, so we don't really lose anything by + * ignoring empty bins even if they have high + * probability. + */ + if (C[i] == 0) + continue; + t = C[i]*(log((double)C[i]/N) - logP[i]) - c; + u = psi + t; + c = (u - psi) - t; + psi = u; + } + psi *= 2; + + return psi <= PSI_CRITICAL; +} + +static bool +test_stochastic_geometric_impl(double p) +{ + const struct geometric geometric = { + .base = GEOMETRIC(geometric), + .p = p, + }; + double logP[PSI_DF] = {0}; + unsigned ntry = NTRIALS, npass = 0; + unsigned i; + size_t j; + + /* Compute logP[i] = Geom(i + 1; p). */ + for (i = 0; i < PSI_DF - 1; i++) + logP[i] = logpmf_geometric(i + 1, p); + + /* Compute logP[n-1] = log (1 - (P[0] + P[1] + ... + P[n-2])). */ + logP[PSI_DF - 1] = log1mexp(logsumexp(logP, PSI_DF - 1)); + + while (ntry --> 0) { + size_t C[PSI_DF] = {0}; + + for (j = 0; j < NSAMPLES; j++) { + double n_tmp = dist_sample(&geometric.base); + + /* Must be an integer. (XXX -Wfloat-equal) */ + tor_assert(ceil(n_tmp) <= n_tmp && ceil(n_tmp) >= n_tmp); + + /* Must be a positive integer. */ + tor_assert(n_tmp >= 1); + + /* Probability of getting a value in the billions is negligible. */ + tor_assert(n_tmp <= (double)UINT_MAX); + + unsigned n = (unsigned) n_tmp; + + if (n > PSI_DF) + n = PSI_DF; + C[n - 1]++; + } + + if (psi_test(C, logP, NSAMPLES)) { + if (++npass >= NPASSES_MIN) + break; + } + } + + if (npass >= NPASSES_MIN) { + /* printf("pass %s sampler\n", "geometric"); */ + return true; + } else { + printf("fail %s sampler\n", "geometric"); + return false; + } +} + +/** + * Divide the support of <b>dist</b> into histogram bins in <b>logP</b>. Start + * at the 1st percentile and ending at the 99th percentile. Pick the bin + * boundaries using linear interpolation so that they are uniformly spaced. + * + * In each bin logP[i] we insert the expected log-probability that a sampled + * value will fall into that bin. We will use this as the null hypothesis of + * the psi test. + * + * Set logP[i] = log(CDF(x_i) - CDF(x_{i-1})), where x_-1 = -inf, x_n = + * +inf, and x_i = i*(hi - lo)/(n - 2). + */ +static void +bin_cdfs(const struct dist *dist, double lo, double hi, double *logP, size_t n) +{ +#define CDF(x) dist_cdf(dist, x) +#define SF(x) dist_sf(dist, x) + const double w = (hi - lo)/(n - 2); + double halfway = dist_icdf(dist, 0.5); + double x_0, x_1; + size_t i; + size_t n2 = ceil_to_size_t((halfway - lo)/w); + + tor_assert(lo <= halfway); + tor_assert(halfway <= hi); + tor_assert(n2 <= n); + + x_1 = lo; + logP[0] = log(CDF(x_1) - 0); /* 0 = CDF(-inf) */ + for (i = 1; i < n2; i++) { + x_0 = x_1; + /* do the linear interpolation */ + x_1 = (i <= n/2 ? lo + i*w : hi - (n - 2 - i)*w); + /* set the expected log-probability */ + logP[i] = log(CDF(x_1) - CDF(x_0)); + } + x_0 = hi; + logP[n - 1] = log(SF(x_0) - 0); /* 0 = SF(+inf) = 1 - CDF(+inf) */ + + /* In this loop we are filling out the high part of the array. We are using + * SF because in these cases the CDF is near 1 where precision is lower. So + * instead we are using SF near 0 where the precision is higher. We have + * SF(t) = 1 - CDF(t). */ + for (i = 1; i < n - n2; i++) { + x_1 = x_0; + /* do the linear interpolation */ + x_0 = (i <= n/2 ? hi - i*w : lo + (n - 2 - i)*w); + /* set the expected log-probability */ + logP[n - i - 1] = log(SF(x_0) - SF(x_1)); + } +#undef SF +#undef CDF +} + +/** + * Draw NSAMPLES samples from dist, counting the number of samples x in + * the ith bin C[i] if x_{i-1} <= x < x_i, where x_-1 = -inf, x_n = + * +inf, and x_i = i*(hi - lo)/(n - 2). + */ +static void +bin_samples(const struct dist *dist, double lo, double hi, size_t *C, size_t n) +{ + const double w = (hi - lo)/(n - 2); + size_t i; + + for (i = 0; i < NSAMPLES; i++) { + double x = dist_sample(dist); + size_t bin; + + if (x < lo) + bin = 0; + else if (x < hi) + bin = 1 + floor_to_size_t((x - lo)/w); + else + bin = n - 1; + tor_assert(bin < n); + C[bin]++; + } +} + +/** + * Carry out a Psi test on <b>dist</b>. + * + * Sample NSAMPLES from dist, putting them in bins from -inf to lo to + * hi to +inf, and apply up to two psi tests. True if at least one psi + * test passes; false if not. False positive rate should be bounded by + * 0.01^2 = 0.0001. + */ +static bool +test_psi_dist_sample(const struct dist *dist) +{ + double logP[PSI_DF] = {0}; + unsigned ntry = NTRIALS, npass = 0; + double lo = dist_icdf(dist, 1/(double)(PSI_DF + 2)); + double hi = dist_isf(dist, 1/(double)(PSI_DF + 2)); + + /* Create the null hypothesis in logP */ + bin_cdfs(dist, lo, hi, logP, PSI_DF); + + /* Now run the test */ + while (ntry --> 0) { + size_t C[PSI_DF] = {0}; + bin_samples(dist, lo, hi, C, PSI_DF); + if (psi_test(C, logP, NSAMPLES)) { + if (++npass >= NPASSES_MIN) + break; + } + } + + /* Did we fail or succeed? */ + if (npass >= NPASSES_MIN) { + /* printf("pass %s sampler\n", dist_name(dist));*/ + return true; + } else { + printf("fail %s sampler\n", dist_name(dist)); + return false; + } +} + +/* This is the seed of the deterministic randomness */ +static uint32_t deterministic_rand_counter; + +/** Initialize the seed of the deterministic randomness. */ +static void +init_deterministic_rand(void) +{ + deterministic_rand_counter = crypto_rand_u32(); +} + +/** Produce deterministic randomness for the stochastic tests using the global + * deterministic_rand_counter seed + * + * This function produces deterministic data over multiple calls iff it's + * called in the same call order with the same 'n' parameter (which is the + * case for the psi test). If not, outputs will deviate. */ +static void +crypto_rand_deterministic(char *out, size_t n) +{ + /* Use a XOF to squeeze bytes out of that silly counter */ + crypto_xof_t *xof = crypto_xof_new(); + tor_assert(xof); + crypto_xof_add_bytes(xof, (uint8_t*)&deterministic_rand_counter, + sizeof(deterministic_rand_counter)); + crypto_xof_squeeze_bytes(xof, (uint8_t*)out, n); + crypto_xof_free(xof); + + /* Increase counter for next run */ + deterministic_rand_counter++; +} + +static void +test_stochastic_uniform(void *arg) +{ + (void) arg; + + const struct uniform uniform01 = { + .base = UNIFORM(uniform01), + .a = 0, + .b = 1, + }; + const struct uniform uniform_pos = { + .base = UNIFORM(uniform_pos), + .a = 1.23, + .b = 4.56, + }; + const struct uniform uniform_neg = { + .base = UNIFORM(uniform_neg), + .a = -10, + .b = -1, + }; + const struct uniform uniform_cross = { + .base = UNIFORM(uniform_cross), + .a = -1.23, + .b = 4.56, + }; + const struct uniform uniform_subnormal = { + .base = UNIFORM(uniform_subnormal), + .a = 4e-324, + .b = 4e-310, + }; + const struct uniform uniform_subnormal_cross = { + .base = UNIFORM(uniform_subnormal_cross), + .a = -4e-324, + .b = 4e-310, + }; + bool ok = true; + + init_deterministic_rand(); + MOCK(crypto_rand, crypto_rand_deterministic); + + ok &= test_psi_dist_sample(&uniform01.base); + ok &= test_psi_dist_sample(&uniform_pos.base); + ok &= test_psi_dist_sample(&uniform_neg.base); + ok &= test_psi_dist_sample(&uniform_cross.base); + ok &= test_psi_dist_sample(&uniform_subnormal.base); + ok &= test_psi_dist_sample(&uniform_subnormal_cross.base); + + tt_assert(ok); + + done: + ; +} + +static bool +test_stochastic_logistic_impl(double mu, double sigma) +{ + const struct logistic dist = { + .base = LOGISTIC(dist), + .mu = mu, + .sigma = sigma, + }; + + /* XXX Consider some fancier logistic test. */ + return test_psi_dist_sample(&dist.base); +} + +static bool +test_stochastic_log_logistic_impl(double alpha, double beta) +{ + const struct log_logistic dist = { + .base = LOG_LOGISTIC(dist), + .alpha = alpha, + .beta = beta, + }; + + /* XXX Consider some fancier log logistic test. */ + return test_psi_dist_sample(&dist.base); +} + +static bool +test_stochastic_weibull_impl(double lambda, double k) +{ + const struct weibull dist = { + .base = WEIBULL(dist), + .lambda = lambda, + .k = k, + }; + +/* + * XXX Consider applying a Tiku-Singh test: + * + * M.L. Tiku and M. Singh, `Testing the two-parameter + * Weibull distribution', Communications in Statistics -- + * Theory and Methods A10(9), 1981, 907--918. + *https://www.tandfonline.com/doi/pdf/10.1080/03610928108828082?needAccess=true + */ + return test_psi_dist_sample(&dist.base); +} + +static bool +test_stochastic_genpareto_impl(double mu, double sigma, double xi) +{ + const struct genpareto dist = { + .base = GENPARETO(dist), + .mu = mu, + .sigma = sigma, + .xi = xi, + }; + + /* XXX Consider some fancier GPD test. */ + return test_psi_dist_sample(&dist.base); +} + +static void +test_stochastic_genpareto(void *arg) +{ + bool ok = 0; + bool tests_failed = true; + (void) arg; + + init_deterministic_rand(); + MOCK(crypto_rand, crypto_rand_deterministic); + + ok = test_stochastic_genpareto_impl(0, 1, -0.25); + tt_assert(ok); + ok = test_stochastic_genpareto_impl(0, 1, -1e-30); + tt_assert(ok); + ok = test_stochastic_genpareto_impl(0, 1, 0); + tt_assert(ok); + ok = test_stochastic_genpareto_impl(0, 1, 1e-30); + tt_assert(ok); + ok = test_stochastic_genpareto_impl(0, 1, 0.25); + tt_assert(ok); + ok = test_stochastic_genpareto_impl(-1, 1, -0.25); + tt_assert(ok); + ok = test_stochastic_genpareto_impl(1, 2, 0.25); + tt_assert(ok); + + tests_failed = false; + + done: + if (tests_failed) { + printf("seed: %"PRIu32, deterministic_rand_counter); + } + UNMOCK(crypto_rand); +} + +static void +test_stochastic_geometric(void *arg) +{ + bool ok = 0; + bool tests_failed = true; + + (void) arg; + + init_deterministic_rand(); + MOCK(crypto_rand, crypto_rand_deterministic); + + ok = test_stochastic_geometric_impl(0.1); + tt_assert(ok); + ok = test_stochastic_geometric_impl(0.5); + tt_assert(ok); + ok = test_stochastic_geometric_impl(0.9); + tt_assert(ok); + ok = test_stochastic_geometric_impl(1); + tt_assert(ok); + + tests_failed = false; + + done: + if (tests_failed) { + printf("seed: %"PRIu32, deterministic_rand_counter); + } + UNMOCK(crypto_rand); +} + +static void +test_stochastic_logistic(void *arg) +{ + bool ok = 0; + bool tests_failed = true; + (void) arg; + + init_deterministic_rand(); + MOCK(crypto_rand, crypto_rand_deterministic); + + ok = test_stochastic_logistic_impl(0, 1); + tt_assert(ok); + ok = test_stochastic_logistic_impl(0, 1e-16); + tt_assert(ok); + ok = test_stochastic_logistic_impl(1, 10); + tt_assert(ok); + ok = test_stochastic_logistic_impl(-10, 100); + tt_assert(ok); + + tests_failed = false; + + done: + if (tests_failed) { + printf("seed: %"PRIu32, deterministic_rand_counter); + } + UNMOCK(crypto_rand); +} + +static void +test_stochastic_log_logistic(void *arg) +{ + bool ok = 0; + bool tests_failed = true; + (void) arg; + + init_deterministic_rand(); + MOCK(crypto_rand, crypto_rand_deterministic); + + ok = test_stochastic_log_logistic_impl(1, 1); + tt_assert(ok); + ok = test_stochastic_log_logistic_impl(1, 10); + tt_assert(ok); + ok = test_stochastic_log_logistic_impl(M_E, 1e-1); + tt_assert(ok); + ok = test_stochastic_log_logistic_impl(exp(-10), 1e-2); + tt_assert(ok); + + tests_failed = false; + + done: + if (tests_failed) { + printf("seed: %"PRIu32, deterministic_rand_counter); + } + UNMOCK(crypto_rand); +} + +static void +test_stochastic_weibull(void *arg) +{ + bool ok = 0; + bool tests_failed = true; + (void) arg; + + init_deterministic_rand(); + MOCK(crypto_rand, crypto_rand_deterministic); + + ok = test_stochastic_weibull_impl(1, 0.5); + tt_assert(ok); + ok = test_stochastic_weibull_impl(1, 1); + tt_assert(ok); + ok = test_stochastic_weibull_impl(1, 1.5); + tt_assert(ok); + ok = test_stochastic_weibull_impl(1, 2); + tt_assert(ok); + ok = test_stochastic_weibull_impl(10, 1); + tt_assert(ok); + + tests_failed = false; + + done: + if (tests_failed) { + printf("seed: %"PRIu32, deterministic_rand_counter); + } + UNMOCK(crypto_rand); +} + +struct testcase_t prob_distr_tests[] = { + { "logit_logistics", test_logit_logistic, TT_FORK, NULL, NULL }, + { "log_logistic", test_log_logistic, TT_FORK, NULL, NULL }, + { "weibull", test_weibull, TT_FORK, NULL, NULL }, + { "genpareto", test_genpareto, TT_FORK, NULL, NULL }, + { "uniform_interval", test_uniform_interval, TT_FORK, NULL, NULL }, + END_OF_TESTCASES +}; + +struct testcase_t slow_stochastic_prob_distr_tests[] = { + { "stochastic_genpareto", test_stochastic_genpareto, TT_FORK, NULL, NULL }, + { "stochastic_geometric", test_stochastic_geometric, TT_FORK, NULL, NULL }, + { "stochastic_uniform", test_stochastic_uniform, TT_FORK, NULL, NULL }, + { "stochastic_logistic", test_stochastic_logistic, TT_FORK, NULL, NULL }, + { "stochastic_log_logistic", test_stochastic_log_logistic, TT_FORK, NULL, + NULL }, + { "stochastic_weibull", test_stochastic_weibull, TT_FORK, NULL, NULL }, + END_OF_TESTCASES +}; |