aboutsummaryrefslogtreecommitdiff
path: root/src/or/hs_descriptor.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/or/hs_descriptor.c')
-rw-r--r--src/or/hs_descriptor.c2606
1 files changed, 2606 insertions, 0 deletions
diff --git a/src/or/hs_descriptor.c b/src/or/hs_descriptor.c
new file mode 100644
index 0000000000..582ac9cb7c
--- /dev/null
+++ b/src/or/hs_descriptor.c
@@ -0,0 +1,2606 @@
+/* Copyright (c) 2016-2017, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+/**
+ * \file hs_descriptor.c
+ * \brief Handle hidden service descriptor encoding/decoding.
+ *
+ * \details
+ * Here is a graphical depiction of an HS descriptor and its layers:
+ *
+ * +------------------------------------------------------+
+ * |DESCRIPTOR HEADER: |
+ * | hs-descriptor 3 |
+ * | descriptor-lifetime 180 |
+ * | ... |
+ * | superencrypted |
+ * |+---------------------------------------------------+ |
+ * ||SUPERENCRYPTED LAYER (aka OUTER ENCRYPTED LAYER): | |
+ * || desc-auth-type x25519 | |
+ * || desc-auth-ephemeral-key | |
+ * || auth-client | |
+ * || auth-client | |
+ * || ... | |
+ * || encrypted | |
+ * ||+-------------------------------------------------+| |
+ * |||ENCRYPTED LAYER (aka INNER ENCRYPTED LAYER): || |
+ * ||| create2-formats || |
+ * ||| intro-auth-required || |
+ * ||| introduction-point || |
+ * ||| introduction-point || |
+ * ||| ... || |
+ * ||+-------------------------------------------------+| |
+ * |+---------------------------------------------------+ |
+ * +------------------------------------------------------+
+ *
+ * The DESCRIPTOR HEADER section is completely unencrypted and contains generic
+ * descriptor metadata.
+ *
+ * The SUPERENCRYPTED LAYER section is the first layer of encryption, and it's
+ * encrypted using the blinded public key of the hidden service to protect
+ * against entities who don't know its onion address. The clients of the hidden
+ * service know its onion address and blinded public key, whereas third-parties
+ * (like HSDirs) don't know it (except if it's a public hidden service).
+ *
+ * The ENCRYPTED LAYER section is the second layer of encryption, and it's
+ * encrypted using the client authorization key material (if those exist). When
+ * client authorization is enabled, this second layer of encryption protects
+ * the descriptor content from unauthorized entities. If client authorization
+ * is disabled, this second layer of encryption does not provide any extra
+ * security but is still present. The plaintext of this layer contains all the
+ * information required to connect to the hidden service like its list of
+ * introduction points.
+ **/
+
+/* For unit tests.*/
+#define HS_DESCRIPTOR_PRIVATE
+
+#include "or.h"
+#include "ed25519_cert.h" /* Trunnel interface. */
+#include "hs_descriptor.h"
+#include "circuitbuild.h"
+#include "parsecommon.h"
+#include "rendcache.h"
+#include "hs_cache.h"
+#include "hs_config.h"
+#include "torcert.h" /* tor_cert_encode_ed22519() */
+
+/* Constant string value used for the descriptor format. */
+#define str_hs_desc "hs-descriptor"
+#define str_desc_cert "descriptor-signing-key-cert"
+#define str_rev_counter "revision-counter"
+#define str_superencrypted "superencrypted"
+#define str_encrypted "encrypted"
+#define str_signature "signature"
+#define str_lifetime "descriptor-lifetime"
+/* Constant string value for the encrypted part of the descriptor. */
+#define str_create2_formats "create2-formats"
+#define str_intro_auth_required "intro-auth-required"
+#define str_single_onion "single-onion-service"
+#define str_intro_point "introduction-point"
+#define str_ip_onion_key "onion-key"
+#define str_ip_auth_key "auth-key"
+#define str_ip_enc_key "enc-key"
+#define str_ip_enc_key_cert "enc-key-cert"
+#define str_ip_legacy_key "legacy-key"
+#define str_ip_legacy_key_cert "legacy-key-cert"
+#define str_intro_point_start "\n" str_intro_point " "
+/* Constant string value for the construction to encrypt the encrypted data
+ * section. */
+#define str_enc_const_superencryption "hsdir-superencrypted-data"
+#define str_enc_const_encryption "hsdir-encrypted-data"
+/* Prefix required to compute/verify HS desc signatures */
+#define str_desc_sig_prefix "Tor onion service descriptor sig v3"
+#define str_desc_auth_type "desc-auth-type"
+#define str_desc_auth_key "desc-auth-ephemeral-key"
+#define str_desc_auth_client "auth-client"
+#define str_encrypted "encrypted"
+
+/* Authentication supported types. */
+static const struct {
+ hs_desc_auth_type_t type;
+ const char *identifier;
+} intro_auth_types[] = {
+ { HS_DESC_AUTH_ED25519, "ed25519" },
+ /* Indicate end of array. */
+ { 0, NULL }
+};
+
+/* Descriptor ruleset. */
+static token_rule_t hs_desc_v3_token_table[] = {
+ T1_START(str_hs_desc, R_HS_DESCRIPTOR, EQ(1), NO_OBJ),
+ T1(str_lifetime, R3_DESC_LIFETIME, EQ(1), NO_OBJ),
+ T1(str_desc_cert, R3_DESC_SIGNING_CERT, NO_ARGS, NEED_OBJ),
+ T1(str_rev_counter, R3_REVISION_COUNTER, EQ(1), NO_OBJ),
+ T1(str_superencrypted, R3_SUPERENCRYPTED, NO_ARGS, NEED_OBJ),
+ T1_END(str_signature, R3_SIGNATURE, EQ(1), NO_OBJ),
+ END_OF_TABLE
+};
+
+/* Descriptor ruleset for the superencrypted section. */
+static token_rule_t hs_desc_superencrypted_v3_token_table[] = {
+ T1_START(str_desc_auth_type, R3_DESC_AUTH_TYPE, GE(1), NO_OBJ),
+ T1(str_desc_auth_key, R3_DESC_AUTH_KEY, GE(1), NO_OBJ),
+ T1N(str_desc_auth_client, R3_DESC_AUTH_CLIENT, GE(3), NO_OBJ),
+ T1(str_encrypted, R3_ENCRYPTED, NO_ARGS, NEED_OBJ),
+ END_OF_TABLE
+};
+
+/* Descriptor ruleset for the encrypted section. */
+static token_rule_t hs_desc_encrypted_v3_token_table[] = {
+ T1_START(str_create2_formats, R3_CREATE2_FORMATS, CONCAT_ARGS, NO_OBJ),
+ T01(str_intro_auth_required, R3_INTRO_AUTH_REQUIRED, ARGS, NO_OBJ),
+ T01(str_single_onion, R3_SINGLE_ONION_SERVICE, ARGS, NO_OBJ),
+ END_OF_TABLE
+};
+
+/* Descriptor ruleset for the introduction points section. */
+static token_rule_t hs_desc_intro_point_v3_token_table[] = {
+ T1_START(str_intro_point, R3_INTRODUCTION_POINT, EQ(1), NO_OBJ),
+ T1N(str_ip_onion_key, R3_INTRO_ONION_KEY, GE(2), OBJ_OK),
+ T1(str_ip_auth_key, R3_INTRO_AUTH_KEY, NO_ARGS, NEED_OBJ),
+ T1(str_ip_enc_key, R3_INTRO_ENC_KEY, GE(2), OBJ_OK),
+ T1(str_ip_enc_key_cert, R3_INTRO_ENC_KEY_CERT, ARGS, OBJ_OK),
+ T01(str_ip_legacy_key, R3_INTRO_LEGACY_KEY, ARGS, NEED_KEY_1024),
+ T01(str_ip_legacy_key_cert, R3_INTRO_LEGACY_KEY_CERT, ARGS, OBJ_OK),
+ END_OF_TABLE
+};
+
+/* Free the content of the plaintext section of a descriptor. */
+STATIC void
+desc_plaintext_data_free_contents(hs_desc_plaintext_data_t *desc)
+{
+ if (!desc) {
+ return;
+ }
+
+ if (desc->superencrypted_blob) {
+ tor_free(desc->superencrypted_blob);
+ }
+ tor_cert_free(desc->signing_key_cert);
+
+ memwipe(desc, 0, sizeof(*desc));
+}
+
+/* Free the content of the encrypted section of a descriptor. */
+static void
+desc_encrypted_data_free_contents(hs_desc_encrypted_data_t *desc)
+{
+ if (!desc) {
+ return;
+ }
+
+ if (desc->intro_auth_types) {
+ SMARTLIST_FOREACH(desc->intro_auth_types, char *, a, tor_free(a));
+ smartlist_free(desc->intro_auth_types);
+ }
+ if (desc->intro_points) {
+ SMARTLIST_FOREACH(desc->intro_points, hs_desc_intro_point_t *, ip,
+ hs_desc_intro_point_free(ip));
+ smartlist_free(desc->intro_points);
+ }
+ memwipe(desc, 0, sizeof(*desc));
+}
+
+/* Using a key, salt and encrypted payload, build a MAC and put it in mac_out.
+ * We use SHA3-256 for the MAC computation.
+ * This function can't fail. */
+static void
+build_mac(const uint8_t *mac_key, size_t mac_key_len,
+ const uint8_t *salt, size_t salt_len,
+ const uint8_t *encrypted, size_t encrypted_len,
+ uint8_t *mac_out, size_t mac_len)
+{
+ crypto_digest_t *digest;
+
+ const uint64_t mac_len_netorder = tor_htonll(mac_key_len);
+ const uint64_t salt_len_netorder = tor_htonll(salt_len);
+
+ tor_assert(mac_key);
+ tor_assert(salt);
+ tor_assert(encrypted);
+ tor_assert(mac_out);
+
+ digest = crypto_digest256_new(DIGEST_SHA3_256);
+ /* As specified in section 2.5 of proposal 224, first add the mac key
+ * then add the salt first and then the encrypted section. */
+
+ crypto_digest_add_bytes(digest, (const char *) &mac_len_netorder, 8);
+ crypto_digest_add_bytes(digest, (const char *) mac_key, mac_key_len);
+ crypto_digest_add_bytes(digest, (const char *) &salt_len_netorder, 8);
+ crypto_digest_add_bytes(digest, (const char *) salt, salt_len);
+ crypto_digest_add_bytes(digest, (const char *) encrypted, encrypted_len);
+ crypto_digest_get_digest(digest, (char *) mac_out, mac_len);
+ crypto_digest_free(digest);
+}
+
+/* Using a given decriptor object, build the secret input needed for the
+ * KDF and put it in the dst pointer which is an already allocated buffer
+ * of size dstlen. */
+static void
+build_secret_input(const hs_descriptor_t *desc, uint8_t *dst, size_t dstlen)
+{
+ size_t offset = 0;
+
+ tor_assert(desc);
+ tor_assert(dst);
+ tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN <= dstlen);
+
+ /* XXX use the destination length as the memcpy length */
+ /* Copy blinded public key. */
+ memcpy(dst, desc->plaintext_data.blinded_pubkey.pubkey,
+ sizeof(desc->plaintext_data.blinded_pubkey.pubkey));
+ offset += sizeof(desc->plaintext_data.blinded_pubkey.pubkey);
+ /* Copy subcredential. */
+ memcpy(dst + offset, desc->subcredential, sizeof(desc->subcredential));
+ offset += sizeof(desc->subcredential);
+ /* Copy revision counter value. */
+ set_uint64(dst + offset, tor_htonll(desc->plaintext_data.revision_counter));
+ offset += sizeof(uint64_t);
+ tor_assert(HS_DESC_ENCRYPTED_SECRET_INPUT_LEN == offset);
+}
+
+/* Do the KDF construction and put the resulting data in key_out which is of
+ * key_out_len length. It uses SHAKE-256 as specified in the spec. */
+static void
+build_kdf_key(const hs_descriptor_t *desc,
+ const uint8_t *salt, size_t salt_len,
+ uint8_t *key_out, size_t key_out_len,
+ int is_superencrypted_layer)
+{
+ uint8_t secret_input[HS_DESC_ENCRYPTED_SECRET_INPUT_LEN];
+ crypto_xof_t *xof;
+
+ tor_assert(desc);
+ tor_assert(salt);
+ tor_assert(key_out);
+
+ /* Build the secret input for the KDF computation. */
+ build_secret_input(desc, secret_input, sizeof(secret_input));
+
+ xof = crypto_xof_new();
+ /* Feed our KDF. [SHAKE it like a polaroid picture --Yawning]. */
+ crypto_xof_add_bytes(xof, secret_input, sizeof(secret_input));
+ crypto_xof_add_bytes(xof, salt, salt_len);
+
+ /* Feed in the right string constant based on the desc layer */
+ if (is_superencrypted_layer) {
+ crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_superencryption,
+ strlen(str_enc_const_superencryption));
+ } else {
+ crypto_xof_add_bytes(xof, (const uint8_t *) str_enc_const_encryption,
+ strlen(str_enc_const_encryption));
+ }
+
+ /* Eat from our KDF. */
+ crypto_xof_squeeze_bytes(xof, key_out, key_out_len);
+ crypto_xof_free(xof);
+ memwipe(secret_input, 0, sizeof(secret_input));
+}
+
+/* Using the given descriptor and salt, run it through our KDF function and
+ * then extract a secret key in key_out, the IV in iv_out and MAC in mac_out.
+ * This function can't fail. */
+static void
+build_secret_key_iv_mac(const hs_descriptor_t *desc,
+ const uint8_t *salt, size_t salt_len,
+ uint8_t *key_out, size_t key_len,
+ uint8_t *iv_out, size_t iv_len,
+ uint8_t *mac_out, size_t mac_len,
+ int is_superencrypted_layer)
+{
+ size_t offset = 0;
+ uint8_t kdf_key[HS_DESC_ENCRYPTED_KDF_OUTPUT_LEN];
+
+ tor_assert(desc);
+ tor_assert(salt);
+ tor_assert(key_out);
+ tor_assert(iv_out);
+ tor_assert(mac_out);
+
+ build_kdf_key(desc, salt, salt_len, kdf_key, sizeof(kdf_key),
+ is_superencrypted_layer);
+ /* Copy the bytes we need for both the secret key and IV. */
+ memcpy(key_out, kdf_key, key_len);
+ offset += key_len;
+ memcpy(iv_out, kdf_key + offset, iv_len);
+ offset += iv_len;
+ memcpy(mac_out, kdf_key + offset, mac_len);
+ /* Extra precaution to make sure we are not out of bound. */
+ tor_assert((offset + mac_len) == sizeof(kdf_key));
+ memwipe(kdf_key, 0, sizeof(kdf_key));
+}
+
+/* === ENCODING === */
+
+/* Encode the given link specifier objects into a newly allocated string.
+ * This can't fail so caller can always assume a valid string being
+ * returned. */
+STATIC char *
+encode_link_specifiers(const smartlist_t *specs)
+{
+ char *encoded_b64 = NULL;
+ link_specifier_list_t *lslist = link_specifier_list_new();
+
+ tor_assert(specs);
+ /* No link specifiers is a code flow error, can't happen. */
+ tor_assert(smartlist_len(specs) > 0);
+ tor_assert(smartlist_len(specs) <= UINT8_MAX);
+
+ link_specifier_list_set_n_spec(lslist, smartlist_len(specs));
+
+ SMARTLIST_FOREACH_BEGIN(specs, const hs_desc_link_specifier_t *,
+ spec) {
+ link_specifier_t *ls = hs_desc_lspec_to_trunnel(spec);
+ if (ls) {
+ link_specifier_list_add_spec(lslist, ls);
+ }
+ } SMARTLIST_FOREACH_END(spec);
+
+ {
+ uint8_t *encoded;
+ ssize_t encoded_len, encoded_b64_len, ret;
+
+ encoded_len = link_specifier_list_encoded_len(lslist);
+ tor_assert(encoded_len > 0);
+ encoded = tor_malloc_zero(encoded_len);
+ ret = link_specifier_list_encode(encoded, encoded_len, lslist);
+ tor_assert(ret == encoded_len);
+
+ /* Base64 encode our binary format. Add extra NUL byte for the base64
+ * encoded value. */
+ encoded_b64_len = base64_encode_size(encoded_len, 0) + 1;
+ encoded_b64 = tor_malloc_zero(encoded_b64_len);
+ ret = base64_encode(encoded_b64, encoded_b64_len, (const char *) encoded,
+ encoded_len, 0);
+ tor_assert(ret == (encoded_b64_len - 1));
+ tor_free(encoded);
+ }
+
+ link_specifier_list_free(lslist);
+ return encoded_b64;
+}
+
+/* Encode an introduction point legacy key and certificate. Return a newly
+ * allocated string with it. On failure, return NULL. */
+static char *
+encode_legacy_key(const hs_desc_intro_point_t *ip)
+{
+ char *key_str, b64_cert[256], *encoded = NULL;
+ size_t key_str_len;
+
+ tor_assert(ip);
+
+ /* Encode cross cert. */
+ if (base64_encode(b64_cert, sizeof(b64_cert),
+ (const char *) ip->legacy.cert.encoded,
+ ip->legacy.cert.len, BASE64_ENCODE_MULTILINE) < 0) {
+ log_warn(LD_REND, "Unable to encode legacy crosscert.");
+ goto done;
+ }
+ /* Convert the encryption key to PEM format NUL terminated. */
+ if (crypto_pk_write_public_key_to_string(ip->legacy.key, &key_str,
+ &key_str_len) < 0) {
+ log_warn(LD_REND, "Unable to encode legacy encryption key.");
+ goto done;
+ }
+ tor_asprintf(&encoded,
+ "%s \n%s" /* Newline is added by the call above. */
+ "%s\n"
+ "-----BEGIN CROSSCERT-----\n"
+ "%s"
+ "-----END CROSSCERT-----",
+ str_ip_legacy_key, key_str,
+ str_ip_legacy_key_cert, b64_cert);
+ tor_free(key_str);
+
+ done:
+ return encoded;
+}
+
+/* Encode an introduction point encryption key and certificate. Return a newly
+ * allocated string with it. On failure, return NULL. */
+static char *
+encode_enc_key(const hs_desc_intro_point_t *ip)
+{
+ char *encoded = NULL, *encoded_cert;
+ char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
+
+ tor_assert(ip);
+
+ /* Base64 encode the encryption key for the "enc-key" field. */
+ if (curve25519_public_to_base64(key_b64, &ip->enc_key) < 0) {
+ goto done;
+ }
+ if (tor_cert_encode_ed22519(ip->enc_key_cert, &encoded_cert) < 0) {
+ goto done;
+ }
+ tor_asprintf(&encoded,
+ "%s ntor %s\n"
+ "%s\n%s",
+ str_ip_enc_key, key_b64,
+ str_ip_enc_key_cert, encoded_cert);
+ tor_free(encoded_cert);
+
+ done:
+ return encoded;
+}
+
+/* Encode an introduction point onion key. Return a newly allocated string
+ * with it. On failure, return NULL. */
+static char *
+encode_onion_key(const hs_desc_intro_point_t *ip)
+{
+ char *encoded = NULL;
+ char key_b64[CURVE25519_BASE64_PADDED_LEN + 1];
+
+ tor_assert(ip);
+
+ /* Base64 encode the encryption key for the "onion-key" field. */
+ if (curve25519_public_to_base64(key_b64, &ip->onion_key) < 0) {
+ goto done;
+ }
+ tor_asprintf(&encoded, "%s ntor %s", str_ip_onion_key, key_b64);
+
+ done:
+ return encoded;
+}
+
+/* Encode an introduction point object and return a newly allocated string
+ * with it. On failure, return NULL. */
+static char *
+encode_intro_point(const ed25519_public_key_t *sig_key,
+ const hs_desc_intro_point_t *ip)
+{
+ char *encoded_ip = NULL;
+ smartlist_t *lines = smartlist_new();
+
+ tor_assert(ip);
+ tor_assert(sig_key);
+
+ /* Encode link specifier. */
+ {
+ char *ls_str = encode_link_specifiers(ip->link_specifiers);
+ smartlist_add_asprintf(lines, "%s %s", str_intro_point, ls_str);
+ tor_free(ls_str);
+ }
+
+ /* Onion key encoding. */
+ {
+ char *encoded_onion_key = encode_onion_key(ip);
+ if (encoded_onion_key == NULL) {
+ goto err;
+ }
+ smartlist_add_asprintf(lines, "%s", encoded_onion_key);
+ tor_free(encoded_onion_key);
+ }
+
+ /* Authentication key encoding. */
+ {
+ char *encoded_cert;
+ if (tor_cert_encode_ed22519(ip->auth_key_cert, &encoded_cert) < 0) {
+ goto err;
+ }
+ smartlist_add_asprintf(lines, "%s\n%s", str_ip_auth_key, encoded_cert);
+ tor_free(encoded_cert);
+ }
+
+ /* Encryption key encoding. */
+ {
+ char *encoded_enc_key = encode_enc_key(ip);
+ if (encoded_enc_key == NULL) {
+ goto err;
+ }
+ smartlist_add_asprintf(lines, "%s", encoded_enc_key);
+ tor_free(encoded_enc_key);
+ }
+
+ /* Legacy key if any. */
+ if (ip->legacy.key != NULL) {
+ /* Strong requirement else the IP creation was badly done. */
+ tor_assert(ip->legacy.cert.encoded);
+ char *encoded_legacy_key = encode_legacy_key(ip);
+ if (encoded_legacy_key == NULL) {
+ goto err;
+ }
+ smartlist_add_asprintf(lines, "%s", encoded_legacy_key);
+ tor_free(encoded_legacy_key);
+ }
+
+ /* Join them all in one blob of text. */
+ encoded_ip = smartlist_join_strings(lines, "\n", 1, NULL);
+
+ err:
+ SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
+ smartlist_free(lines);
+ return encoded_ip;
+}
+
+/* Given a source length, return the new size including padding for the
+ * plaintext encryption. */
+static size_t
+compute_padded_plaintext_length(size_t plaintext_len)
+{
+ size_t plaintext_padded_len;
+ const int padding_block_length = HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE;
+
+ /* Make sure we won't overflow. */
+ tor_assert(plaintext_len <= (SIZE_T_CEILING - padding_block_length));
+
+ /* Get the extra length we need to add. For example, if srclen is 10200
+ * bytes, this will expand to (2 * 10k) == 20k thus an extra 9800 bytes. */
+ plaintext_padded_len = CEIL_DIV(plaintext_len, padding_block_length) *
+ padding_block_length;
+ /* Can never be extra careful. Make sure we are _really_ padded. */
+ tor_assert(!(plaintext_padded_len % padding_block_length));
+ return plaintext_padded_len;
+}
+
+/* Given a buffer, pad it up to the encrypted section padding requirement. Set
+ * the newly allocated string in padded_out and return the length of the
+ * padded buffer. */
+STATIC size_t
+build_plaintext_padding(const char *plaintext, size_t plaintext_len,
+ uint8_t **padded_out)
+{
+ size_t padded_len;
+ uint8_t *padded;
+
+ tor_assert(plaintext);
+ tor_assert(padded_out);
+
+ /* Allocate the final length including padding. */
+ padded_len = compute_padded_plaintext_length(plaintext_len);
+ tor_assert(padded_len >= plaintext_len);
+ padded = tor_malloc_zero(padded_len);
+
+ memcpy(padded, plaintext, plaintext_len);
+ *padded_out = padded;
+ return padded_len;
+}
+
+/* Using a key, IV and plaintext data of length plaintext_len, create the
+ * encrypted section by encrypting it and setting encrypted_out with the
+ * data. Return size of the encrypted data buffer. */
+static size_t
+build_encrypted(const uint8_t *key, const uint8_t *iv, const char *plaintext,
+ size_t plaintext_len, uint8_t **encrypted_out,
+ int is_superencrypted_layer)
+{
+ size_t encrypted_len;
+ uint8_t *padded_plaintext, *encrypted;
+ crypto_cipher_t *cipher;
+
+ tor_assert(key);
+ tor_assert(iv);
+ tor_assert(plaintext);
+ tor_assert(encrypted_out);
+
+ /* If we are encrypting the middle layer of the descriptor, we need to first
+ pad the plaintext */
+ if (is_superencrypted_layer) {
+ encrypted_len = build_plaintext_padding(plaintext, plaintext_len,
+ &padded_plaintext);
+ /* Extra precautions that we have a valid padding length. */
+ tor_assert(!(encrypted_len % HS_DESC_SUPERENC_PLAINTEXT_PAD_MULTIPLE));
+ } else { /* No padding required for inner layers */
+ padded_plaintext = tor_memdup(plaintext, plaintext_len);
+ encrypted_len = plaintext_len;
+ }
+
+ /* This creates a cipher for AES. It can't fail. */
+ cipher = crypto_cipher_new_with_iv_and_bits(key, iv,
+ HS_DESC_ENCRYPTED_BIT_SIZE);
+ /* We use a stream cipher so the encrypted length will be the same as the
+ * plaintext padded length. */
+ encrypted = tor_malloc_zero(encrypted_len);
+ /* This can't fail. */
+ crypto_cipher_encrypt(cipher, (char *) encrypted,
+ (const char *) padded_plaintext, encrypted_len);
+ *encrypted_out = encrypted;
+ /* Cleanup. */
+ crypto_cipher_free(cipher);
+ tor_free(padded_plaintext);
+ return encrypted_len;
+}
+
+/* Encrypt the given <b>plaintext</b> buffer using <b>desc</b> to get the
+ * keys. Set encrypted_out with the encrypted data and return the length of
+ * it. <b>is_superencrypted_layer</b> is set if this is the outer encrypted
+ * layer of the descriptor. */
+static size_t
+encrypt_descriptor_data(const hs_descriptor_t *desc, const char *plaintext,
+ char **encrypted_out, int is_superencrypted_layer)
+{
+ char *final_blob;
+ size_t encrypted_len, final_blob_len, offset = 0;
+ uint8_t *encrypted;
+ uint8_t salt[HS_DESC_ENCRYPTED_SALT_LEN];
+ uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
+ uint8_t mac_key[DIGEST256_LEN], mac[DIGEST256_LEN];
+
+ tor_assert(desc);
+ tor_assert(plaintext);
+ tor_assert(encrypted_out);
+
+ /* Get our salt. The returned bytes are already hashed. */
+ crypto_strongest_rand(salt, sizeof(salt));
+
+ /* KDF construction resulting in a key from which the secret key, IV and MAC
+ * key are extracted which is what we need for the encryption. */
+ build_secret_key_iv_mac(desc, salt, sizeof(salt),
+ secret_key, sizeof(secret_key),
+ secret_iv, sizeof(secret_iv),
+ mac_key, sizeof(mac_key),
+ is_superencrypted_layer);
+
+ /* Build the encrypted part that is do the actual encryption. */
+ encrypted_len = build_encrypted(secret_key, secret_iv, plaintext,
+ strlen(plaintext), &encrypted,
+ is_superencrypted_layer);
+ memwipe(secret_key, 0, sizeof(secret_key));
+ memwipe(secret_iv, 0, sizeof(secret_iv));
+ /* This construction is specified in section 2.5 of proposal 224. */
+ final_blob_len = sizeof(salt) + encrypted_len + DIGEST256_LEN;
+ final_blob = tor_malloc_zero(final_blob_len);
+
+ /* Build the MAC. */
+ build_mac(mac_key, sizeof(mac_key), salt, sizeof(salt),
+ encrypted, encrypted_len, mac, sizeof(mac));
+ memwipe(mac_key, 0, sizeof(mac_key));
+
+ /* The salt is the first value. */
+ memcpy(final_blob, salt, sizeof(salt));
+ offset = sizeof(salt);
+ /* Second value is the encrypted data. */
+ memcpy(final_blob + offset, encrypted, encrypted_len);
+ offset += encrypted_len;
+ /* Third value is the MAC. */
+ memcpy(final_blob + offset, mac, sizeof(mac));
+ offset += sizeof(mac);
+ /* Cleanup the buffers. */
+ memwipe(salt, 0, sizeof(salt));
+ memwipe(encrypted, 0, encrypted_len);
+ tor_free(encrypted);
+ /* Extra precaution. */
+ tor_assert(offset == final_blob_len);
+
+ *encrypted_out = final_blob;
+ return final_blob_len;
+}
+
+/* Create and return a string containing a fake client-auth entry. It's the
+ * responsibility of the caller to free the returned string. This function will
+ * never fail. */
+static char *
+get_fake_auth_client_str(void)
+{
+ char *auth_client_str = NULL;
+ /* We are gonna fill these arrays with fake base64 data. They are all double
+ * the size of their binary representation to fit the base64 overhead. */
+ char client_id_b64[8*2];
+ char iv_b64[16*2];
+ char encrypted_cookie_b64[16*2];
+ int retval;
+
+ /* This is a macro to fill a field with random data and then base64 it. */
+#define FILL_WITH_FAKE_DATA_AND_BASE64(field) STMT_BEGIN \
+ crypto_rand((char *)field, sizeof(field)); \
+ retval = base64_encode_nopad(field##_b64, sizeof(field##_b64), \
+ field, sizeof(field)); \
+ tor_assert(retval > 0); \
+ STMT_END
+
+ { /* Get those fakes! */
+ uint8_t client_id[8]; /* fake client-id */
+ uint8_t iv[16]; /* fake IV (initialization vector) */
+ uint8_t encrypted_cookie[16]; /* fake encrypted cookie */
+
+ FILL_WITH_FAKE_DATA_AND_BASE64(client_id);
+ FILL_WITH_FAKE_DATA_AND_BASE64(iv);
+ FILL_WITH_FAKE_DATA_AND_BASE64(encrypted_cookie);
+ }
+
+ /* Build the final string */
+ tor_asprintf(&auth_client_str, "%s %s %s %s", str_desc_auth_client,
+ client_id_b64, iv_b64, encrypted_cookie_b64);
+
+#undef FILL_WITH_FAKE_DATA_AND_BASE64
+
+ return auth_client_str;
+}
+
+/** How many lines of "client-auth" we want in our descriptors; fake or not. */
+#define CLIENT_AUTH_ENTRIES_BLOCK_SIZE 16
+
+/** Create the "client-auth" part of the descriptor and return a
+ * newly-allocated string with it. It's the responsibility of the caller to
+ * free the returned string. */
+static char *
+get_fake_auth_client_lines(void)
+{
+ /* XXX: Client authorization is still not implemented, so all this function
+ does is make fake clients */
+ int i = 0;
+ smartlist_t *auth_client_lines = smartlist_new();
+ char *auth_client_lines_str = NULL;
+
+ /* Make a line for each fake client */
+ const int num_fake_clients = CLIENT_AUTH_ENTRIES_BLOCK_SIZE;
+ for (i = 0; i < num_fake_clients; i++) {
+ char *auth_client_str = get_fake_auth_client_str();
+ tor_assert(auth_client_str);
+ smartlist_add(auth_client_lines, auth_client_str);
+ }
+
+ /* Join all lines together to form final string */
+ auth_client_lines_str = smartlist_join_strings(auth_client_lines,
+ "\n", 1, NULL);
+ /* Cleanup the mess */
+ SMARTLIST_FOREACH(auth_client_lines, char *, a, tor_free(a));
+ smartlist_free(auth_client_lines);
+
+ return auth_client_lines_str;
+}
+
+/* Create the inner layer of the descriptor (which includes the intro points,
+ * etc.). Return a newly-allocated string with the layer plaintext, or NULL if
+ * an error occured. It's the responsibility of the caller to free the returned
+ * string. */
+static char *
+get_inner_encrypted_layer_plaintext(const hs_descriptor_t *desc)
+{
+ char *encoded_str = NULL;
+ smartlist_t *lines = smartlist_new();
+
+ /* Build the start of the section prior to the introduction points. */
+ {
+ if (!desc->encrypted_data.create2_ntor) {
+ log_err(LD_BUG, "HS desc doesn't have recognized handshake type.");
+ goto err;
+ }
+ smartlist_add_asprintf(lines, "%s %d\n", str_create2_formats,
+ ONION_HANDSHAKE_TYPE_NTOR);
+
+ if (desc->encrypted_data.intro_auth_types &&
+ smartlist_len(desc->encrypted_data.intro_auth_types)) {
+ /* Put the authentication-required line. */
+ char *buf = smartlist_join_strings(desc->encrypted_data.intro_auth_types,
+ " ", 0, NULL);
+ smartlist_add_asprintf(lines, "%s %s\n", str_intro_auth_required, buf);
+ tor_free(buf);
+ }
+
+ if (desc->encrypted_data.single_onion_service) {
+ smartlist_add_asprintf(lines, "%s\n", str_single_onion);
+ }
+ }
+
+ /* Build the introduction point(s) section. */
+ SMARTLIST_FOREACH_BEGIN(desc->encrypted_data.intro_points,
+ const hs_desc_intro_point_t *, ip) {
+ char *encoded_ip = encode_intro_point(&desc->plaintext_data.signing_pubkey,
+ ip);
+ if (encoded_ip == NULL) {
+ log_err(LD_BUG, "HS desc intro point is malformed.");
+ goto err;
+ }
+ smartlist_add(lines, encoded_ip);
+ } SMARTLIST_FOREACH_END(ip);
+
+ /* Build the entire encrypted data section into one encoded plaintext and
+ * then encrypt it. */
+ encoded_str = smartlist_join_strings(lines, "", 0, NULL);
+
+ err:
+ SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
+ smartlist_free(lines);
+
+ return encoded_str;
+}
+
+/* Create the middle layer of the descriptor, which includes the client auth
+ * data and the encrypted inner layer (provided as a base64 string at
+ * <b>layer2_b64_ciphertext</b>). Return a newly-allocated string with the
+ * layer plaintext, or NULL if an error occured. It's the responsibility of the
+ * caller to free the returned string. */
+static char *
+get_outer_encrypted_layer_plaintext(const hs_descriptor_t *desc,
+ const char *layer2_b64_ciphertext)
+{
+ char *layer1_str = NULL;
+ smartlist_t *lines = smartlist_new();
+
+ /* XXX: Disclaimer: This function generates only _fake_ client auth
+ * data. Real client auth is not yet implemented, but client auth data MUST
+ * always be present in descriptors. In the future this function will be
+ * refactored to use real client auth data if they exist (#20700). */
+ (void) *desc;
+
+ /* Specify auth type */
+ smartlist_add_asprintf(lines, "%s %s\n", str_desc_auth_type, "x25519");
+
+ { /* Create fake ephemeral x25519 key */
+ char fake_key_base64[CURVE25519_BASE64_PADDED_LEN + 1];
+ curve25519_keypair_t fake_x25519_keypair;
+ if (curve25519_keypair_generate(&fake_x25519_keypair, 0) < 0) {
+ goto done;
+ }
+ if (curve25519_public_to_base64(fake_key_base64,
+ &fake_x25519_keypair.pubkey) < 0) {
+ goto done;
+ }
+ smartlist_add_asprintf(lines, "%s %s\n",
+ str_desc_auth_key, fake_key_base64);
+ /* No need to memwipe any of these fake keys. They will go unused. */
+ }
+
+ { /* Create fake auth-client lines. */
+ char *auth_client_lines = get_fake_auth_client_lines();
+ tor_assert(auth_client_lines);
+ smartlist_add(lines, auth_client_lines);
+ }
+
+ /* create encrypted section */
+ {
+ smartlist_add_asprintf(lines,
+ "%s\n"
+ "-----BEGIN MESSAGE-----\n"
+ "%s"
+ "-----END MESSAGE-----",
+ str_encrypted, layer2_b64_ciphertext);
+ }
+
+ layer1_str = smartlist_join_strings(lines, "", 0, NULL);
+
+ done:
+ SMARTLIST_FOREACH(lines, char *, a, tor_free(a));
+ smartlist_free(lines);
+
+ return layer1_str;
+}
+
+/* Encrypt <b>encoded_str</b> into an encrypted blob and then base64 it before
+ * returning it. <b>desc</b> is provided to derive the encryption
+ * keys. <b>is_superencrypted_layer</b> is set if <b>encoded_str</b> is the
+ * middle (superencrypted) layer of the descriptor. It's the responsibility of
+ * the caller to free the returned string. */
+static char *
+encrypt_desc_data_and_base64(const hs_descriptor_t *desc,
+ const char *encoded_str,
+ int is_superencrypted_layer)
+{
+ char *enc_b64;
+ ssize_t enc_b64_len, ret_len, enc_len;
+ char *encrypted_blob = NULL;
+
+ enc_len = encrypt_descriptor_data(desc, encoded_str, &encrypted_blob,
+ is_superencrypted_layer);
+ /* Get the encoded size plus a NUL terminating byte. */
+ enc_b64_len = base64_encode_size(enc_len, BASE64_ENCODE_MULTILINE) + 1;
+ enc_b64 = tor_malloc_zero(enc_b64_len);
+ /* Base64 the encrypted blob before returning it. */
+ ret_len = base64_encode(enc_b64, enc_b64_len, encrypted_blob, enc_len,
+ BASE64_ENCODE_MULTILINE);
+ /* Return length doesn't count the NUL byte. */
+ tor_assert(ret_len == (enc_b64_len - 1));
+ tor_free(encrypted_blob);
+
+ return enc_b64;
+}
+
+/* Generate and encode the superencrypted portion of <b>desc</b>. This also
+ * involves generating the encrypted portion of the descriptor, and performing
+ * the superencryption. A newly allocated NUL-terminated string pointer
+ * containing the encrypted encoded blob is put in encrypted_blob_out. Return 0
+ * on success else a negative value. */
+static int
+encode_superencrypted_data(const hs_descriptor_t *desc,
+ char **encrypted_blob_out)
+{
+ int ret = -1;
+ char *layer2_str = NULL;
+ char *layer2_b64_ciphertext = NULL;
+ char *layer1_str = NULL;
+ char *layer1_b64_ciphertext = NULL;
+
+ tor_assert(desc);
+ tor_assert(encrypted_blob_out);
+
+ /* Func logic: We first create the inner layer of the descriptor (layer2).
+ * We then encrypt it and use it to create the middle layer of the descriptor
+ * (layer1). Finally we superencrypt the middle layer and return it to our
+ * caller. */
+
+ /* Create inner descriptor layer */
+ layer2_str = get_inner_encrypted_layer_plaintext(desc);
+ if (!layer2_str) {
+ goto err;
+ }
+
+ /* Encrypt and b64 the inner layer */
+ layer2_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer2_str, 0);
+ if (!layer2_b64_ciphertext) {
+ goto err;
+ }
+
+ /* Now create middle descriptor layer given the inner layer */
+ layer1_str = get_outer_encrypted_layer_plaintext(desc,layer2_b64_ciphertext);
+ if (!layer1_str) {
+ goto err;
+ }
+
+ /* Encrypt and base64 the middle layer */
+ layer1_b64_ciphertext = encrypt_desc_data_and_base64(desc, layer1_str, 1);
+ if (!layer1_b64_ciphertext) {
+ goto err;
+ }
+
+ /* Success! */
+ ret = 0;
+
+ err:
+ tor_free(layer1_str);
+ tor_free(layer2_str);
+ tor_free(layer2_b64_ciphertext);
+
+ *encrypted_blob_out = layer1_b64_ciphertext;
+ return ret;
+}
+
+/* Encode a v3 HS descriptor. Return 0 on success and set encoded_out to the
+ * newly allocated string of the encoded descriptor. On error, -1 is returned
+ * and encoded_out is untouched. */
+static int
+desc_encode_v3(const hs_descriptor_t *desc,
+ const ed25519_keypair_t *signing_kp, char **encoded_out)
+{
+ int ret = -1;
+ char *encoded_str = NULL;
+ size_t encoded_len;
+ smartlist_t *lines = smartlist_new();
+
+ tor_assert(desc);
+ tor_assert(signing_kp);
+ tor_assert(encoded_out);
+ tor_assert(desc->plaintext_data.version == 3);
+
+ if (BUG(desc->subcredential == NULL)) {
+ goto err;
+ }
+
+ /* Build the non-encrypted values. */
+ {
+ char *encoded_cert;
+ /* Encode certificate then create the first line of the descriptor. */
+ if (desc->plaintext_data.signing_key_cert->cert_type
+ != CERT_TYPE_SIGNING_HS_DESC) {
+ log_err(LD_BUG, "HS descriptor signing key has an unexpected cert type "
+ "(%d)", (int) desc->plaintext_data.signing_key_cert->cert_type);
+ goto err;
+ }
+ if (tor_cert_encode_ed22519(desc->plaintext_data.signing_key_cert,
+ &encoded_cert) < 0) {
+ /* The function will print error logs. */
+ goto err;
+ }
+ /* Create the hs descriptor line. */
+ smartlist_add_asprintf(lines, "%s %" PRIu32, str_hs_desc,
+ desc->plaintext_data.version);
+ /* Add the descriptor lifetime line (in minutes). */
+ smartlist_add_asprintf(lines, "%s %" PRIu32, str_lifetime,
+ desc->plaintext_data.lifetime_sec / 60);
+ /* Create the descriptor certificate line. */
+ smartlist_add_asprintf(lines, "%s\n%s", str_desc_cert, encoded_cert);
+ tor_free(encoded_cert);
+ /* Create the revision counter line. */
+ smartlist_add_asprintf(lines, "%s %" PRIu64, str_rev_counter,
+ desc->plaintext_data.revision_counter);
+ }
+
+ /* Build the superencrypted data section. */
+ {
+ char *enc_b64_blob=NULL;
+ if (encode_superencrypted_data(desc, &enc_b64_blob) < 0) {
+ goto err;
+ }
+ smartlist_add_asprintf(lines,
+ "%s\n"
+ "-----BEGIN MESSAGE-----\n"
+ "%s"
+ "-----END MESSAGE-----",
+ str_superencrypted, enc_b64_blob);
+ tor_free(enc_b64_blob);
+ }
+
+ /* Join all lines in one string so we can generate a signature and append
+ * it to the descriptor. */
+ encoded_str = smartlist_join_strings(lines, "\n", 1, &encoded_len);
+
+ /* Sign all fields of the descriptor with our short term signing key. */
+ {
+ ed25519_signature_t sig;
+ char ed_sig_b64[ED25519_SIG_BASE64_LEN + 1];
+ if (ed25519_sign_prefixed(&sig,
+ (const uint8_t *) encoded_str, encoded_len,
+ str_desc_sig_prefix, signing_kp) < 0) {
+ log_warn(LD_BUG, "Can't sign encoded HS descriptor!");
+ tor_free(encoded_str);
+ goto err;
+ }
+ if (ed25519_signature_to_base64(ed_sig_b64, &sig) < 0) {
+ log_warn(LD_BUG, "Can't base64 encode descriptor signature!");
+ tor_free(encoded_str);
+ goto err;
+ }
+ /* Create the signature line. */
+ smartlist_add_asprintf(lines, "%s %s", str_signature, ed_sig_b64);
+ }
+ /* Free previous string that we used so compute the signature. */
+ tor_free(encoded_str);
+ encoded_str = smartlist_join_strings(lines, "\n", 1, NULL);
+ *encoded_out = encoded_str;
+
+ if (strlen(encoded_str) >= hs_cache_get_max_descriptor_size()) {
+ log_warn(LD_GENERAL, "We just made an HS descriptor that's too big (%d)."
+ "Failing.", (int)strlen(encoded_str));
+ tor_free(encoded_str);
+ goto err;
+ }
+
+ /* XXX: Trigger a control port event. */
+
+ /* Success! */
+ ret = 0;
+
+ err:
+ SMARTLIST_FOREACH(lines, char *, l, tor_free(l));
+ smartlist_free(lines);
+ return ret;
+}
+
+/* === DECODING === */
+
+/* Given an encoded string of the link specifiers, return a newly allocated
+ * list of decoded link specifiers. Return NULL on error. */
+STATIC smartlist_t *
+decode_link_specifiers(const char *encoded)
+{
+ int decoded_len;
+ size_t encoded_len, i;
+ uint8_t *decoded;
+ smartlist_t *results = NULL;
+ link_specifier_list_t *specs = NULL;
+
+ tor_assert(encoded);
+
+ encoded_len = strlen(encoded);
+ decoded = tor_malloc(encoded_len);
+ decoded_len = base64_decode((char *) decoded, encoded_len, encoded,
+ encoded_len);
+ if (decoded_len < 0) {
+ goto err;
+ }
+
+ if (link_specifier_list_parse(&specs, decoded,
+ (size_t) decoded_len) < decoded_len) {
+ goto err;
+ }
+ tor_assert(specs);
+ results = smartlist_new();
+
+ for (i = 0; i < link_specifier_list_getlen_spec(specs); i++) {
+ hs_desc_link_specifier_t *hs_spec;
+ link_specifier_t *ls = link_specifier_list_get_spec(specs, i);
+ tor_assert(ls);
+
+ hs_spec = tor_malloc_zero(sizeof(*hs_spec));
+ hs_spec->type = link_specifier_get_ls_type(ls);
+ switch (hs_spec->type) {
+ case LS_IPV4:
+ tor_addr_from_ipv4h(&hs_spec->u.ap.addr,
+ link_specifier_get_un_ipv4_addr(ls));
+ hs_spec->u.ap.port = link_specifier_get_un_ipv4_port(ls);
+ break;
+ case LS_IPV6:
+ tor_addr_from_ipv6_bytes(&hs_spec->u.ap.addr, (const char *)
+ link_specifier_getarray_un_ipv6_addr(ls));
+ hs_spec->u.ap.port = link_specifier_get_un_ipv6_port(ls);
+ break;
+ case LS_LEGACY_ID:
+ /* Both are known at compile time so let's make sure they are the same
+ * else we can copy memory out of bound. */
+ tor_assert(link_specifier_getlen_un_legacy_id(ls) ==
+ sizeof(hs_spec->u.legacy_id));
+ memcpy(hs_spec->u.legacy_id, link_specifier_getarray_un_legacy_id(ls),
+ sizeof(hs_spec->u.legacy_id));
+ break;
+ case LS_ED25519_ID:
+ /* Both are known at compile time so let's make sure they are the same
+ * else we can copy memory out of bound. */
+ tor_assert(link_specifier_getlen_un_ed25519_id(ls) ==
+ sizeof(hs_spec->u.ed25519_id));
+ memcpy(hs_spec->u.ed25519_id,
+ link_specifier_getconstarray_un_ed25519_id(ls),
+ sizeof(hs_spec->u.ed25519_id));
+ break;
+ default:
+ tor_free(hs_spec);
+ goto err;
+ }
+
+ smartlist_add(results, hs_spec);
+ }
+
+ goto done;
+ err:
+ if (results) {
+ SMARTLIST_FOREACH(results, hs_desc_link_specifier_t *, s, tor_free(s));
+ smartlist_free(results);
+ results = NULL;
+ }
+ done:
+ link_specifier_list_free(specs);
+ tor_free(decoded);
+ return results;
+}
+
+/* Given a list of authentication types, decode it and put it in the encrypted
+ * data section. Return 1 if we at least know one of the type or 0 if we know
+ * none of them. */
+static int
+decode_auth_type(hs_desc_encrypted_data_t *desc, const char *list)
+{
+ int match = 0;
+
+ tor_assert(desc);
+ tor_assert(list);
+
+ desc->intro_auth_types = smartlist_new();
+ smartlist_split_string(desc->intro_auth_types, list, " ", 0, 0);
+
+ /* Validate the types that we at least know about one. */
+ SMARTLIST_FOREACH_BEGIN(desc->intro_auth_types, const char *, auth) {
+ for (int idx = 0; intro_auth_types[idx].identifier; idx++) {
+ if (!strncmp(auth, intro_auth_types[idx].identifier,
+ strlen(intro_auth_types[idx].identifier))) {
+ match = 1;
+ break;
+ }
+ }
+ } SMARTLIST_FOREACH_END(auth);
+
+ return match;
+}
+
+/* Parse a space-delimited list of integers representing CREATE2 formats into
+ * the bitfield in hs_desc_encrypted_data_t. Ignore unrecognized values. */
+static void
+decode_create2_list(hs_desc_encrypted_data_t *desc, const char *list)
+{
+ smartlist_t *tokens;
+
+ tor_assert(desc);
+ tor_assert(list);
+
+ tokens = smartlist_new();
+ smartlist_split_string(tokens, list, " ", 0, 0);
+
+ SMARTLIST_FOREACH_BEGIN(tokens, char *, s) {
+ int ok;
+ unsigned long type = tor_parse_ulong(s, 10, 1, UINT16_MAX, &ok, NULL);
+ if (!ok) {
+ log_warn(LD_REND, "Unparseable value %s in create2 list", escaped(s));
+ continue;
+ }
+ switch (type) {
+ case ONION_HANDSHAKE_TYPE_NTOR:
+ desc->create2_ntor = 1;
+ break;
+ default:
+ /* We deliberately ignore unsupported handshake types */
+ continue;
+ }
+ } SMARTLIST_FOREACH_END(s);
+
+ SMARTLIST_FOREACH(tokens, char *, s, tor_free(s));
+ smartlist_free(tokens);
+}
+
+/* Given a certificate, validate the certificate for certain conditions which
+ * are if the given type matches the cert's one, if the signing key is
+ * included and if the that key was actually used to sign the certificate.
+ *
+ * Return 1 iff if all conditions pass or 0 if one of them fails. */
+STATIC int
+cert_is_valid(tor_cert_t *cert, uint8_t type, const char *log_obj_type)
+{
+ tor_assert(log_obj_type);
+
+ if (cert == NULL) {
+ log_warn(LD_REND, "Certificate for %s couldn't be parsed.", log_obj_type);
+ goto err;
+ }
+ if (cert->cert_type != type) {
+ log_warn(LD_REND, "Invalid cert type %02x for %s.", cert->cert_type,
+ log_obj_type);
+ goto err;
+ }
+ /* All certificate must have its signing key included. */
+ if (!cert->signing_key_included) {
+ log_warn(LD_REND, "Signing key is NOT included for %s.", log_obj_type);
+ goto err;
+ }
+ /* The following will not only check if the signature matches but also the
+ * expiration date and overall validity. */
+ if (tor_cert_checksig(cert, &cert->signing_key, approx_time()) < 0) {
+ log_warn(LD_REND, "Invalid signature for %s: %s", log_obj_type,
+ tor_cert_describe_signature_status(cert));
+ goto err;
+ }
+
+ return 1;
+ err:
+ return 0;
+}
+
+/* Given some binary data, try to parse it to get a certificate object. If we
+ * have a valid cert, validate it using the given wanted type. On error, print
+ * a log using the err_msg has the certificate identifier adding semantic to
+ * the log and cert_out is set to NULL. On success, 0 is returned and cert_out
+ * points to a newly allocated certificate object. */
+static int
+cert_parse_and_validate(tor_cert_t **cert_out, const char *data,
+ size_t data_len, unsigned int cert_type_wanted,
+ const char *err_msg)
+{
+ tor_cert_t *cert;
+
+ tor_assert(cert_out);
+ tor_assert(data);
+ tor_assert(err_msg);
+
+ /* Parse certificate. */
+ cert = tor_cert_parse((const uint8_t *) data, data_len);
+ if (!cert) {
+ log_warn(LD_REND, "Certificate for %s couldn't be parsed.", err_msg);
+ goto err;
+ }
+
+ /* Validate certificate. */
+ if (!cert_is_valid(cert, cert_type_wanted, err_msg)) {
+ goto err;
+ }
+
+ *cert_out = cert;
+ return 0;
+
+ err:
+ tor_cert_free(cert);
+ *cert_out = NULL;
+ return -1;
+}
+
+/* Return true iff the given length of the encrypted data of a descriptor
+ * passes validation. */
+STATIC int
+encrypted_data_length_is_valid(size_t len)
+{
+ /* Make sure there is enough data for the salt and the mac. The equality is
+ there to ensure that there is at least one byte of encrypted data. */
+ if (len <= HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN) {
+ log_warn(LD_REND, "Length of descriptor's encrypted data is too small. "
+ "Got %lu but minimum value is %d",
+ (unsigned long)len, HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
+ goto err;
+ }
+
+ return 1;
+ err:
+ return 0;
+}
+
+/** Decrypt an encrypted descriptor layer at <b>encrypted_blob</b> of size
+ * <b>encrypted_blob_size</b>. Use the descriptor object <b>desc</b> to
+ * generate the right decryption keys; set <b>decrypted_out</b> to the
+ * plaintext. If <b>is_superencrypted_layer</b> is set, this is the outter
+ * encrypted layer of the descriptor.
+ *
+ * On any error case, including an empty output, return 0 and set
+ * *<b>decrypted_out</b> to NULL.
+ */
+MOCK_IMPL(STATIC size_t,
+decrypt_desc_layer,(const hs_descriptor_t *desc,
+ const uint8_t *encrypted_blob,
+ size_t encrypted_blob_size,
+ int is_superencrypted_layer,
+ char **decrypted_out))
+{
+ uint8_t *decrypted = NULL;
+ uint8_t secret_key[HS_DESC_ENCRYPTED_KEY_LEN], secret_iv[CIPHER_IV_LEN];
+ uint8_t mac_key[DIGEST256_LEN], our_mac[DIGEST256_LEN];
+ const uint8_t *salt, *encrypted, *desc_mac;
+ size_t encrypted_len, result_len = 0;
+
+ tor_assert(decrypted_out);
+ tor_assert(desc);
+ tor_assert(encrypted_blob);
+
+ /* Construction is as follow: SALT | ENCRYPTED_DATA | MAC .
+ * Make sure we have enough space for all these things. */
+ if (!encrypted_data_length_is_valid(encrypted_blob_size)) {
+ goto err;
+ }
+
+ /* Start of the blob thus the salt. */
+ salt = encrypted_blob;
+
+ /* Next is the encrypted data. */
+ encrypted = encrypted_blob + HS_DESC_ENCRYPTED_SALT_LEN;
+ encrypted_len = encrypted_blob_size -
+ (HS_DESC_ENCRYPTED_SALT_LEN + DIGEST256_LEN);
+ tor_assert(encrypted_len > 0); /* guaranteed by the check above */
+
+ /* And last comes the MAC. */
+ desc_mac = encrypted_blob + encrypted_blob_size - DIGEST256_LEN;
+
+ /* KDF construction resulting in a key from which the secret key, IV and MAC
+ * key are extracted which is what we need for the decryption. */
+ build_secret_key_iv_mac(desc, salt, HS_DESC_ENCRYPTED_SALT_LEN,
+ secret_key, sizeof(secret_key),
+ secret_iv, sizeof(secret_iv),
+ mac_key, sizeof(mac_key),
+ is_superencrypted_layer);
+
+ /* Build MAC. */
+ build_mac(mac_key, sizeof(mac_key), salt, HS_DESC_ENCRYPTED_SALT_LEN,
+ encrypted, encrypted_len, our_mac, sizeof(our_mac));
+ memwipe(mac_key, 0, sizeof(mac_key));
+ /* Verify MAC; MAC is H(mac_key || salt || encrypted)
+ *
+ * This is a critical check that is making sure the computed MAC matches the
+ * one in the descriptor. */
+ if (!tor_memeq(our_mac, desc_mac, sizeof(our_mac))) {
+ log_warn(LD_REND, "Encrypted service descriptor MAC check failed");
+ goto err;
+ }
+
+ {
+ /* Decrypt. Here we are assured that the encrypted length is valid for
+ * decryption. */
+ crypto_cipher_t *cipher;
+
+ cipher = crypto_cipher_new_with_iv_and_bits(secret_key, secret_iv,
+ HS_DESC_ENCRYPTED_BIT_SIZE);
+ /* Extra byte for the NUL terminated byte. */
+ decrypted = tor_malloc_zero(encrypted_len + 1);
+ crypto_cipher_decrypt(cipher, (char *) decrypted,
+ (const char *) encrypted, encrypted_len);
+ crypto_cipher_free(cipher);
+ }
+
+ {
+ /* Adjust length to remove NUL padding bytes */
+ uint8_t *end = memchr(decrypted, 0, encrypted_len);
+ result_len = encrypted_len;
+ if (end) {
+ result_len = end - decrypted;
+ }
+ }
+
+ if (result_len == 0) {
+ /* Treat this as an error, so that somebody will free the output. */
+ goto err;
+ }
+
+ /* Make sure to NUL terminate the string. */
+ decrypted[encrypted_len] = '\0';
+ *decrypted_out = (char *) decrypted;
+ goto done;
+
+ err:
+ if (decrypted) {
+ tor_free(decrypted);
+ }
+ *decrypted_out = NULL;
+ result_len = 0;
+
+ done:
+ memwipe(secret_key, 0, sizeof(secret_key));
+ memwipe(secret_iv, 0, sizeof(secret_iv));
+ return result_len;
+}
+
+/* Basic validation that the superencrypted client auth portion of the
+ * descriptor is well-formed and recognized. Return True if so, otherwise
+ * return False. */
+static int
+superencrypted_auth_data_is_valid(smartlist_t *tokens)
+{
+ /* XXX: This is just basic validation for now. When we implement client auth,
+ we can refactor this function so that it actually parses and saves the
+ data. */
+
+ { /* verify desc auth type */
+ const directory_token_t *tok;
+ tok = find_by_keyword(tokens, R3_DESC_AUTH_TYPE);
+ tor_assert(tok->n_args >= 1);
+ if (strcmp(tok->args[0], "x25519")) {
+ log_warn(LD_DIR, "Unrecognized desc auth type");
+ return 0;
+ }
+ }
+
+ { /* verify desc auth key */
+ const directory_token_t *tok;
+ curve25519_public_key_t k;
+ tok = find_by_keyword(tokens, R3_DESC_AUTH_KEY);
+ tor_assert(tok->n_args >= 1);
+ if (curve25519_public_from_base64(&k, tok->args[0]) < 0) {
+ log_warn(LD_DIR, "Bogus desc auth key in HS desc");
+ return 0;
+ }
+ }
+
+ /* verify desc auth client items */
+ SMARTLIST_FOREACH_BEGIN(tokens, const directory_token_t *, tok) {
+ if (tok->tp == R3_DESC_AUTH_CLIENT) {
+ tor_assert(tok->n_args >= 3);
+ }
+ } SMARTLIST_FOREACH_END(tok);
+
+ return 1;
+}
+
+/* Parse <b>message</b>, the plaintext of the superencrypted portion of an HS
+ * descriptor. Set <b>encrypted_out</b> to the encrypted blob, and return its
+ * size */
+STATIC size_t
+decode_superencrypted(const char *message, size_t message_len,
+ uint8_t **encrypted_out)
+{
+ int retval = 0;
+ memarea_t *area = NULL;
+ smartlist_t *tokens = NULL;
+
+ area = memarea_new();
+ tokens = smartlist_new();
+ if (tokenize_string(area, message, message + message_len, tokens,
+ hs_desc_superencrypted_v3_token_table, 0) < 0) {
+ log_warn(LD_REND, "Superencrypted portion is not parseable");
+ goto err;
+ }
+
+ /* Do some rudimentary validation of the authentication data */
+ if (!superencrypted_auth_data_is_valid(tokens)) {
+ log_warn(LD_REND, "Invalid auth data");
+ goto err;
+ }
+
+ /* Extract the encrypted data section. */
+ {
+ const directory_token_t *tok;
+ tok = find_by_keyword(tokens, R3_ENCRYPTED);
+ tor_assert(tok->object_body);
+ if (strcmp(tok->object_type, "MESSAGE") != 0) {
+ log_warn(LD_REND, "Desc superencrypted data section is invalid");
+ goto err;
+ }
+ /* Make sure the length of the encrypted blob is valid. */
+ if (!encrypted_data_length_is_valid(tok->object_size)) {
+ goto err;
+ }
+
+ /* Copy the encrypted blob to the descriptor object so we can handle it
+ * latter if needed. */
+ tor_assert(tok->object_size <= INT_MAX);
+ *encrypted_out = tor_memdup(tok->object_body, tok->object_size);
+ retval = (int) tok->object_size;
+ }
+
+ err:
+ SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
+ smartlist_free(tokens);
+ if (area) {
+ memarea_drop_all(area);
+ }
+
+ return retval;
+}
+
+/* Decrypt both the superencrypted and the encrypted section of the descriptor
+ * using the given descriptor object <b>desc</b>. A newly allocated NUL
+ * terminated string is put in decrypted_out which contains the inner encrypted
+ * layer of the descriptor. Return the length of decrypted_out on success else
+ * 0 is returned and decrypted_out is set to NULL. */
+static size_t
+desc_decrypt_all(const hs_descriptor_t *desc, char **decrypted_out)
+{
+ size_t decrypted_len = 0;
+ size_t encrypted_len = 0;
+ size_t superencrypted_len = 0;
+ char *superencrypted_plaintext = NULL;
+ uint8_t *encrypted_blob = NULL;
+
+ /** Function logic: This function takes us from the descriptor header to the
+ * inner encrypted layer, by decrypting and decoding the middle descriptor
+ * layer. In the end we return the contents of the inner encrypted layer to
+ * our caller. */
+
+ /* 1. Decrypt middle layer of descriptor */
+ superencrypted_len = decrypt_desc_layer(desc,
+ desc->plaintext_data.superencrypted_blob,
+ desc->plaintext_data.superencrypted_blob_size,
+ 1,
+ &superencrypted_plaintext);
+ if (!superencrypted_len) {
+ log_warn(LD_REND, "Decrypting superencrypted desc failed.");
+ goto err;
+ }
+ tor_assert(superencrypted_plaintext);
+
+ /* 2. Parse "superencrypted" */
+ encrypted_len = decode_superencrypted(superencrypted_plaintext,
+ superencrypted_len,
+ &encrypted_blob);
+ if (!encrypted_len) {
+ log_warn(LD_REND, "Decrypting encrypted desc failed.");
+ goto err;
+ }
+ tor_assert(encrypted_blob);
+
+ /* 3. Decrypt "encrypted" and set decrypted_out */
+ char *decrypted_desc;
+ decrypted_len = decrypt_desc_layer(desc,
+ encrypted_blob, encrypted_len,
+ 0, &decrypted_desc);
+ if (!decrypted_len) {
+ log_warn(LD_REND, "Decrypting encrypted desc failed.");
+ goto err;
+ }
+ tor_assert(decrypted_desc);
+
+ *decrypted_out = decrypted_desc;
+
+ err:
+ tor_free(superencrypted_plaintext);
+ tor_free(encrypted_blob);
+
+ return decrypted_len;
+}
+
+/* Given the token tok for an intro point legacy key, the list of tokens, the
+ * introduction point ip being decoded and the descriptor desc from which it
+ * comes from, decode the legacy key and set the intro point object. Return 0
+ * on success else -1 on failure. */
+static int
+decode_intro_legacy_key(const directory_token_t *tok,
+ smartlist_t *tokens,
+ hs_desc_intro_point_t *ip,
+ const hs_descriptor_t *desc)
+{
+ tor_assert(tok);
+ tor_assert(tokens);
+ tor_assert(ip);
+ tor_assert(desc);
+
+ if (!crypto_pk_public_exponent_ok(tok->key)) {
+ log_warn(LD_REND, "Introduction point legacy key is invalid");
+ goto err;
+ }
+ ip->legacy.key = crypto_pk_dup_key(tok->key);
+ /* Extract the legacy cross certification cert which MUST be present if we
+ * have a legacy key. */
+ tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY_CERT);
+ if (!tok) {
+ log_warn(LD_REND, "Introduction point legacy key cert is missing");
+ goto err;
+ }
+ tor_assert(tok->object_body);
+ if (strcmp(tok->object_type, "CROSSCERT")) {
+ /* Info level because this might be an unknown field that we should
+ * ignore. */
+ log_info(LD_REND, "Introduction point legacy encryption key "
+ "cross-certification has an unknown format.");
+ goto err;
+ }
+ /* Keep a copy of the certificate. */
+ ip->legacy.cert.encoded = tor_memdup(tok->object_body, tok->object_size);
+ ip->legacy.cert.len = tok->object_size;
+ /* The check on the expiration date is for the entire lifetime of a
+ * certificate which is 24 hours. However, a descriptor has a maximum
+ * lifetime of 12 hours meaning we have a 12h difference between the two
+ * which ultimately accomodate the clock skewed client. */
+ if (rsa_ed25519_crosscert_check(ip->legacy.cert.encoded,
+ ip->legacy.cert.len, ip->legacy.key,
+ &desc->plaintext_data.signing_pubkey,
+ approx_time() - HS_DESC_CERT_LIFETIME)) {
+ log_warn(LD_REND, "Unable to check cross-certification on the "
+ "introduction point legacy encryption key.");
+ ip->cross_certified = 0;
+ goto err;
+ }
+
+ /* Success. */
+ return 0;
+ err:
+ return -1;
+}
+
+/* Dig into the descriptor <b>tokens</b> to find the onion key we should use
+ * for this intro point, and set it into <b>onion_key_out</b>. Return 0 if it
+ * was found and well-formed, otherwise return -1 in case of errors. */
+static int
+set_intro_point_onion_key(curve25519_public_key_t *onion_key_out,
+ const smartlist_t *tokens)
+{
+ int retval = -1;
+ smartlist_t *onion_keys = NULL;
+
+ tor_assert(onion_key_out);
+
+ onion_keys = find_all_by_keyword(tokens, R3_INTRO_ONION_KEY);
+ if (!onion_keys) {
+ log_warn(LD_REND, "Descriptor did not contain intro onion keys");
+ goto err;
+ }
+
+ SMARTLIST_FOREACH_BEGIN(onion_keys, directory_token_t *, tok) {
+ /* This field is using GE(2) so for possible forward compatibility, we
+ * accept more fields but must be at least 2. */
+ tor_assert(tok->n_args >= 2);
+
+ /* Try to find an ntor key, it's the only recognized type right now */
+ if (!strcmp(tok->args[0], "ntor")) {
+ if (curve25519_public_from_base64(onion_key_out, tok->args[1]) < 0) {
+ log_warn(LD_REND, "Introduction point ntor onion-key is invalid");
+ goto err;
+ }
+ /* Got the onion key! Set the appropriate retval */
+ retval = 0;
+ }
+ } SMARTLIST_FOREACH_END(tok);
+
+ /* Log an error if we didn't find it :( */
+ if (retval < 0) {
+ log_warn(LD_REND, "Descriptor did not contain ntor onion keys");
+ }
+
+ err:
+ smartlist_free(onion_keys);
+ return retval;
+}
+
+/* Given the start of a section and the end of it, decode a single
+ * introduction point from that section. Return a newly allocated introduction
+ * point object containing the decoded data. Return NULL if the section can't
+ * be decoded. */
+STATIC hs_desc_intro_point_t *
+decode_introduction_point(const hs_descriptor_t *desc, const char *start)
+{
+ hs_desc_intro_point_t *ip = NULL;
+ memarea_t *area = NULL;
+ smartlist_t *tokens = NULL;
+ const directory_token_t *tok;
+
+ tor_assert(desc);
+ tor_assert(start);
+
+ area = memarea_new();
+ tokens = smartlist_new();
+ if (tokenize_string(area, start, start + strlen(start),
+ tokens, hs_desc_intro_point_v3_token_table, 0) < 0) {
+ log_warn(LD_REND, "Introduction point is not parseable");
+ goto err;
+ }
+
+ /* Ok we seem to have a well formed section containing enough tokens to
+ * parse. Allocate our IP object and try to populate it. */
+ ip = hs_desc_intro_point_new();
+
+ /* "introduction-point" SP link-specifiers NL */
+ tok = find_by_keyword(tokens, R3_INTRODUCTION_POINT);
+ tor_assert(tok->n_args == 1);
+ /* Our constructor creates this list by default so free it. */
+ smartlist_free(ip->link_specifiers);
+ ip->link_specifiers = decode_link_specifiers(tok->args[0]);
+ if (!ip->link_specifiers) {
+ log_warn(LD_REND, "Introduction point has invalid link specifiers");
+ goto err;
+ }
+
+ /* "onion-key" SP ntor SP key NL */
+ if (set_intro_point_onion_key(&ip->onion_key, tokens) < 0) {
+ goto err;
+ }
+
+ /* "auth-key" NL certificate NL */
+ tok = find_by_keyword(tokens, R3_INTRO_AUTH_KEY);
+ tor_assert(tok->object_body);
+ if (strcmp(tok->object_type, "ED25519 CERT")) {
+ log_warn(LD_REND, "Unexpected object type for introduction auth key");
+ goto err;
+ }
+ /* Parse cert and do some validation. */
+ if (cert_parse_and_validate(&ip->auth_key_cert, tok->object_body,
+ tok->object_size, CERT_TYPE_AUTH_HS_IP_KEY,
+ "introduction point auth-key") < 0) {
+ goto err;
+ }
+ /* Validate authentication certificate with descriptor signing key. */
+ if (tor_cert_checksig(ip->auth_key_cert,
+ &desc->plaintext_data.signing_pubkey, 0) < 0) {
+ log_warn(LD_REND, "Invalid authentication key signature: %s",
+ tor_cert_describe_signature_status(ip->auth_key_cert));
+ goto err;
+ }
+
+ /* Exactly one "enc-key" SP "ntor" SP key NL */
+ tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY);
+ if (!strcmp(tok->args[0], "ntor")) {
+ /* This field is using GE(2) so for possible forward compatibility, we
+ * accept more fields but must be at least 2. */
+ tor_assert(tok->n_args >= 2);
+
+ if (curve25519_public_from_base64(&ip->enc_key, tok->args[1]) < 0) {
+ log_warn(LD_REND, "Introduction point ntor enc-key is invalid");
+ goto err;
+ }
+ } else {
+ /* Unknown key type so we can't use that introduction point. */
+ log_warn(LD_REND, "Introduction point encryption key is unrecognized.");
+ goto err;
+ }
+
+ /* Exactly once "enc-key-cert" NL certificate NL */
+ tok = find_by_keyword(tokens, R3_INTRO_ENC_KEY_CERT);
+ tor_assert(tok->object_body);
+ /* Do the cross certification. */
+ if (strcmp(tok->object_type, "ED25519 CERT")) {
+ log_warn(LD_REND, "Introduction point ntor encryption key "
+ "cross-certification has an unknown format.");
+ goto err;
+ }
+ if (cert_parse_and_validate(&ip->enc_key_cert, tok->object_body,
+ tok->object_size, CERT_TYPE_CROSS_HS_IP_KEYS,
+ "introduction point enc-key-cert") < 0) {
+ goto err;
+ }
+ if (tor_cert_checksig(ip->enc_key_cert,
+ &desc->plaintext_data.signing_pubkey, 0) < 0) {
+ log_warn(LD_REND, "Invalid encryption key signature: %s",
+ tor_cert_describe_signature_status(ip->enc_key_cert));
+ goto err;
+ }
+ /* It is successfully cross certified. Flag the object. */
+ ip->cross_certified = 1;
+
+ /* Do we have a "legacy-key" SP key NL ?*/
+ tok = find_opt_by_keyword(tokens, R3_INTRO_LEGACY_KEY);
+ if (tok) {
+ if (decode_intro_legacy_key(tok, tokens, ip, desc) < 0) {
+ goto err;
+ }
+ }
+
+ /* Introduction point has been parsed successfully. */
+ goto done;
+
+ err:
+ hs_desc_intro_point_free(ip);
+ ip = NULL;
+
+ done:
+ SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
+ smartlist_free(tokens);
+ if (area) {
+ memarea_drop_all(area);
+ }
+
+ return ip;
+}
+
+/* Given a descriptor string at <b>data</b>, decode all possible introduction
+ * points that we can find. Add the introduction point object to desc_enc as we
+ * find them. This function can't fail and it is possible that zero
+ * introduction points can be decoded. */
+static void
+decode_intro_points(const hs_descriptor_t *desc,
+ hs_desc_encrypted_data_t *desc_enc,
+ const char *data)
+{
+ smartlist_t *chunked_desc = smartlist_new();
+ smartlist_t *intro_points = smartlist_new();
+
+ tor_assert(desc);
+ tor_assert(desc_enc);
+ tor_assert(data);
+ tor_assert(desc_enc->intro_points);
+
+ /* Take the desc string, and extract the intro point substrings out of it */
+ {
+ /* Split the descriptor string using the intro point header as delimiter */
+ smartlist_split_string(chunked_desc, data, str_intro_point_start, 0, 0);
+
+ /* Check if there are actually any intro points included. The first chunk
+ * should be other descriptor fields (e.g. create2-formats), so it's not an
+ * intro point. */
+ if (smartlist_len(chunked_desc) < 2) {
+ goto done;
+ }
+ }
+
+ /* Take the intro point substrings, and prepare them for parsing */
+ {
+ int i = 0;
+ /* Prepend the introduction-point header to all the chunks, since
+ smartlist_split_string() devoured it. */
+ SMARTLIST_FOREACH_BEGIN(chunked_desc, char *, chunk) {
+ /* Ignore first chunk. It's other descriptor fields. */
+ if (i++ == 0) {
+ continue;
+ }
+
+ smartlist_add_asprintf(intro_points, "%s %s", str_intro_point, chunk);
+ } SMARTLIST_FOREACH_END(chunk);
+ }
+
+ /* Parse the intro points! */
+ SMARTLIST_FOREACH_BEGIN(intro_points, const char *, intro_point) {
+ hs_desc_intro_point_t *ip = decode_introduction_point(desc, intro_point);
+ if (!ip) {
+ /* Malformed introduction point section. We'll ignore this introduction
+ * point and continue parsing. New or unknown fields are possible for
+ * forward compatibility. */
+ continue;
+ }
+ smartlist_add(desc_enc->intro_points, ip);
+ } SMARTLIST_FOREACH_END(intro_point);
+
+ done:
+ SMARTLIST_FOREACH(chunked_desc, char *, a, tor_free(a));
+ smartlist_free(chunked_desc);
+ SMARTLIST_FOREACH(intro_points, char *, a, tor_free(a));
+ smartlist_free(intro_points);
+}
+/* Return 1 iff the given base64 encoded signature in b64_sig from the encoded
+ * descriptor in encoded_desc validates the descriptor content. */
+STATIC int
+desc_sig_is_valid(const char *b64_sig,
+ const ed25519_public_key_t *signing_pubkey,
+ const char *encoded_desc, size_t encoded_len)
+{
+ int ret = 0;
+ ed25519_signature_t sig;
+ const char *sig_start;
+
+ tor_assert(b64_sig);
+ tor_assert(signing_pubkey);
+ tor_assert(encoded_desc);
+ /* Verifying nothing won't end well :). */
+ tor_assert(encoded_len > 0);
+
+ /* Signature length check. */
+ if (strlen(b64_sig) != ED25519_SIG_BASE64_LEN) {
+ log_warn(LD_REND, "Service descriptor has an invalid signature length."
+ "Exptected %d but got %lu",
+ ED25519_SIG_BASE64_LEN, (unsigned long) strlen(b64_sig));
+ goto err;
+ }
+
+ /* First, convert base64 blob to an ed25519 signature. */
+ if (ed25519_signature_from_base64(&sig, b64_sig) != 0) {
+ log_warn(LD_REND, "Service descriptor does not contain a valid "
+ "signature");
+ goto err;
+ }
+
+ /* Find the start of signature. */
+ sig_start = tor_memstr(encoded_desc, encoded_len, "\n" str_signature " ");
+ /* Getting here means the token parsing worked for the signature so if we
+ * can't find the start of the signature, we have a code flow issue. */
+ if (!sig_start) {
+ log_warn(LD_GENERAL, "Malformed signature line. Rejecting.");
+ goto err;
+ }
+ /* Skip newline, it has to go in the signature check. */
+ sig_start++;
+
+ /* Validate signature with the full body of the descriptor. */
+ if (ed25519_checksig_prefixed(&sig,
+ (const uint8_t *) encoded_desc,
+ sig_start - encoded_desc,
+ str_desc_sig_prefix,
+ signing_pubkey) != 0) {
+ log_warn(LD_REND, "Invalid signature on service descriptor");
+ goto err;
+ }
+ /* Valid signature! All is good. */
+ ret = 1;
+
+ err:
+ return ret;
+}
+
+/* Decode descriptor plaintext data for version 3. Given a list of tokens, an
+ * allocated plaintext object that will be populated and the encoded
+ * descriptor with its length. The last one is needed for signature
+ * verification. Unknown tokens are simply ignored so this won't error on
+ * unknowns but requires that all v3 token be present and valid.
+ *
+ * Return 0 on success else a negative value. */
+static int
+desc_decode_plaintext_v3(smartlist_t *tokens,
+ hs_desc_plaintext_data_t *desc,
+ const char *encoded_desc, size_t encoded_len)
+{
+ int ok;
+ directory_token_t *tok;
+
+ tor_assert(tokens);
+ tor_assert(desc);
+ /* Version higher could still use this function to decode most of the
+ * descriptor and then they decode the extra part. */
+ tor_assert(desc->version >= 3);
+
+ /* Descriptor lifetime parsing. */
+ tok = find_by_keyword(tokens, R3_DESC_LIFETIME);
+ tor_assert(tok->n_args == 1);
+ desc->lifetime_sec = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
+ UINT32_MAX, &ok, NULL);
+ if (!ok) {
+ log_warn(LD_REND, "Service descriptor lifetime value is invalid");
+ goto err;
+ }
+ /* Put it from minute to second. */
+ desc->lifetime_sec *= 60;
+ if (desc->lifetime_sec > HS_DESC_MAX_LIFETIME) {
+ log_warn(LD_REND, "Service descriptor lifetime is too big. "
+ "Got %" PRIu32 " but max is %d",
+ desc->lifetime_sec, HS_DESC_MAX_LIFETIME);
+ goto err;
+ }
+
+ /* Descriptor signing certificate. */
+ tok = find_by_keyword(tokens, R3_DESC_SIGNING_CERT);
+ tor_assert(tok->object_body);
+ /* Expecting a prop220 cert with the signing key extension, which contains
+ * the blinded public key. */
+ if (strcmp(tok->object_type, "ED25519 CERT") != 0) {
+ log_warn(LD_REND, "Service descriptor signing cert wrong type (%s)",
+ escaped(tok->object_type));
+ goto err;
+ }
+ if (cert_parse_and_validate(&desc->signing_key_cert, tok->object_body,
+ tok->object_size, CERT_TYPE_SIGNING_HS_DESC,
+ "service descriptor signing key") < 0) {
+ goto err;
+ }
+
+ /* Copy the public keys into signing_pubkey and blinded_pubkey */
+ memcpy(&desc->signing_pubkey, &desc->signing_key_cert->signed_key,
+ sizeof(ed25519_public_key_t));
+ memcpy(&desc->blinded_pubkey, &desc->signing_key_cert->signing_key,
+ sizeof(ed25519_public_key_t));
+
+ /* Extract revision counter value. */
+ tok = find_by_keyword(tokens, R3_REVISION_COUNTER);
+ tor_assert(tok->n_args == 1);
+ desc->revision_counter = tor_parse_uint64(tok->args[0], 10, 0,
+ UINT64_MAX, &ok, NULL);
+ if (!ok) {
+ log_warn(LD_REND, "Service descriptor revision-counter is invalid");
+ goto err;
+ }
+
+ /* Extract the encrypted data section. */
+ tok = find_by_keyword(tokens, R3_SUPERENCRYPTED);
+ tor_assert(tok->object_body);
+ if (strcmp(tok->object_type, "MESSAGE") != 0) {
+ log_warn(LD_REND, "Service descriptor encrypted data section is invalid");
+ goto err;
+ }
+ /* Make sure the length of the encrypted blob is valid. */
+ if (!encrypted_data_length_is_valid(tok->object_size)) {
+ goto err;
+ }
+
+ /* Copy the encrypted blob to the descriptor object so we can handle it
+ * latter if needed. */
+ desc->superencrypted_blob = tor_memdup(tok->object_body, tok->object_size);
+ desc->superencrypted_blob_size = tok->object_size;
+
+ /* Extract signature and verify it. */
+ tok = find_by_keyword(tokens, R3_SIGNATURE);
+ tor_assert(tok->n_args == 1);
+ /* First arg here is the actual encoded signature. */
+ if (!desc_sig_is_valid(tok->args[0], &desc->signing_pubkey,
+ encoded_desc, encoded_len)) {
+ goto err;
+ }
+
+ return 0;
+
+ err:
+ return -1;
+}
+
+/* Decode the version 3 encrypted section of the given descriptor desc. The
+ * desc_encrypted_out will be populated with the decoded data. Return 0 on
+ * success else -1. */
+static int
+desc_decode_encrypted_v3(const hs_descriptor_t *desc,
+ hs_desc_encrypted_data_t *desc_encrypted_out)
+{
+ int result = -1;
+ char *message = NULL;
+ size_t message_len;
+ memarea_t *area = NULL;
+ directory_token_t *tok;
+ smartlist_t *tokens = NULL;
+
+ tor_assert(desc);
+ tor_assert(desc_encrypted_out);
+
+ /* Decrypt the superencrypted data that is located in the plaintext section
+ * in the descriptor as a blob of bytes. */
+ message_len = desc_decrypt_all(desc, &message);
+ if (!message_len) {
+ log_warn(LD_REND, "Service descriptor decryption failed.");
+ goto err;
+ }
+ tor_assert(message);
+
+ area = memarea_new();
+ tokens = smartlist_new();
+ if (tokenize_string(area, message, message + message_len,
+ tokens, hs_desc_encrypted_v3_token_table, 0) < 0) {
+ log_warn(LD_REND, "Encrypted service descriptor is not parseable.");
+ goto err;
+ }
+
+ /* CREATE2 supported cell format. It's mandatory. */
+ tok = find_by_keyword(tokens, R3_CREATE2_FORMATS);
+ tor_assert(tok);
+ decode_create2_list(desc_encrypted_out, tok->args[0]);
+ /* Must support ntor according to the specification */
+ if (!desc_encrypted_out->create2_ntor) {
+ log_warn(LD_REND, "Service create2-formats does not include ntor.");
+ goto err;
+ }
+
+ /* Authentication type. It's optional but only once. */
+ tok = find_opt_by_keyword(tokens, R3_INTRO_AUTH_REQUIRED);
+ if (tok) {
+ if (!decode_auth_type(desc_encrypted_out, tok->args[0])) {
+ log_warn(LD_REND, "Service descriptor authentication type has "
+ "invalid entry(ies).");
+ goto err;
+ }
+ }
+
+ /* Is this service a single onion service? */
+ tok = find_opt_by_keyword(tokens, R3_SINGLE_ONION_SERVICE);
+ if (tok) {
+ desc_encrypted_out->single_onion_service = 1;
+ }
+
+ /* Initialize the descriptor's introduction point list before we start
+ * decoding. Having 0 intro point is valid. Then decode them all. */
+ desc_encrypted_out->intro_points = smartlist_new();
+ decode_intro_points(desc, desc_encrypted_out, message);
+
+ /* Validation of maximum introduction points allowed. */
+ if (smartlist_len(desc_encrypted_out->intro_points) >
+ HS_CONFIG_V3_MAX_INTRO_POINTS) {
+ log_warn(LD_REND, "Service descriptor contains too many introduction "
+ "points. Maximum allowed is %d but we have %d",
+ HS_CONFIG_V3_MAX_INTRO_POINTS,
+ smartlist_len(desc_encrypted_out->intro_points));
+ goto err;
+ }
+
+ /* NOTE: Unknown fields are allowed because this function could be used to
+ * decode other descriptor version. */
+
+ result = 0;
+ goto done;
+
+ err:
+ tor_assert(result < 0);
+ desc_encrypted_data_free_contents(desc_encrypted_out);
+
+ done:
+ if (tokens) {
+ SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
+ smartlist_free(tokens);
+ }
+ if (area) {
+ memarea_drop_all(area);
+ }
+ if (message) {
+ tor_free(message);
+ }
+ return result;
+}
+
+/* Table of encrypted decode function version specific. The function are
+ * indexed by the version number so v3 callback is at index 3 in the array. */
+static int
+ (*decode_encrypted_handlers[])(
+ const hs_descriptor_t *desc,
+ hs_desc_encrypted_data_t *desc_encrypted) =
+{
+ /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
+ desc_decode_encrypted_v3,
+};
+
+/* Decode the encrypted data section of the given descriptor and store the
+ * data in the given encrypted data object. Return 0 on success else a
+ * negative value on error. */
+int
+hs_desc_decode_encrypted(const hs_descriptor_t *desc,
+ hs_desc_encrypted_data_t *desc_encrypted)
+{
+ int ret;
+ uint32_t version;
+
+ tor_assert(desc);
+ /* Ease our life a bit. */
+ version = desc->plaintext_data.version;
+ tor_assert(desc_encrypted);
+ /* Calling this function without an encrypted blob to parse is a code flow
+ * error. The plaintext parsing should never succeed in the first place
+ * without an encrypted section. */
+ tor_assert(desc->plaintext_data.superencrypted_blob);
+ /* Let's make sure we have a supported version as well. By correctly parsing
+ * the plaintext, this should not fail. */
+ if (BUG(!hs_desc_is_supported_version(version))) {
+ ret = -1;
+ goto err;
+ }
+ /* Extra precaution. Having no handler for the supported version should
+ * never happened else we forgot to add it but we bumped the version. */
+ tor_assert(ARRAY_LENGTH(decode_encrypted_handlers) >= version);
+ tor_assert(decode_encrypted_handlers[version]);
+
+ /* Run the version specific plaintext decoder. */
+ ret = decode_encrypted_handlers[version](desc, desc_encrypted);
+ if (ret < 0) {
+ goto err;
+ }
+
+ err:
+ return ret;
+}
+
+/* Table of plaintext decode function version specific. The function are
+ * indexed by the version number so v3 callback is at index 3 in the array. */
+static int
+ (*decode_plaintext_handlers[])(
+ smartlist_t *tokens,
+ hs_desc_plaintext_data_t *desc,
+ const char *encoded_desc,
+ size_t encoded_len) =
+{
+ /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
+ desc_decode_plaintext_v3,
+};
+
+/* Fully decode the given descriptor plaintext and store the data in the
+ * plaintext data object. Returns 0 on success else a negative value. */
+int
+hs_desc_decode_plaintext(const char *encoded,
+ hs_desc_plaintext_data_t *plaintext)
+{
+ int ok = 0, ret = -1;
+ memarea_t *area = NULL;
+ smartlist_t *tokens = NULL;
+ size_t encoded_len;
+ directory_token_t *tok;
+
+ tor_assert(encoded);
+ tor_assert(plaintext);
+
+ /* Check that descriptor is within size limits. */
+ encoded_len = strlen(encoded);
+ if (encoded_len >= hs_cache_get_max_descriptor_size()) {
+ log_warn(LD_REND, "Service descriptor is too big (%lu bytes)",
+ (unsigned long) encoded_len);
+ goto err;
+ }
+
+ area = memarea_new();
+ tokens = smartlist_new();
+ /* Tokenize the descriptor so we can start to parse it. */
+ if (tokenize_string(area, encoded, encoded + encoded_len, tokens,
+ hs_desc_v3_token_table, 0) < 0) {
+ log_warn(LD_REND, "Service descriptor is not parseable");
+ goto err;
+ }
+
+ /* Get the version of the descriptor which is the first mandatory field of
+ * the descriptor. From there, we'll decode the right descriptor version. */
+ tok = find_by_keyword(tokens, R_HS_DESCRIPTOR);
+ tor_assert(tok->n_args == 1);
+ plaintext->version = (uint32_t) tor_parse_ulong(tok->args[0], 10, 0,
+ UINT32_MAX, &ok, NULL);
+ if (!ok) {
+ log_warn(LD_REND, "Service descriptor has unparseable version %s",
+ escaped(tok->args[0]));
+ goto err;
+ }
+ if (!hs_desc_is_supported_version(plaintext->version)) {
+ log_warn(LD_REND, "Service descriptor has unsupported version %" PRIu32,
+ plaintext->version);
+ goto err;
+ }
+ /* Extra precaution. Having no handler for the supported version should
+ * never happened else we forgot to add it but we bumped the version. */
+ tor_assert(ARRAY_LENGTH(decode_plaintext_handlers) >= plaintext->version);
+ tor_assert(decode_plaintext_handlers[plaintext->version]);
+
+ /* Run the version specific plaintext decoder. */
+ ret = decode_plaintext_handlers[plaintext->version](tokens, plaintext,
+ encoded, encoded_len);
+ if (ret < 0) {
+ goto err;
+ }
+ /* Success. Descriptor has been populated with the data. */
+ ret = 0;
+
+ err:
+ if (tokens) {
+ SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
+ smartlist_free(tokens);
+ }
+ if (area) {
+ memarea_drop_all(area);
+ }
+ return ret;
+}
+
+/* Fully decode an encoded descriptor and set a newly allocated descriptor
+ * object in desc_out. Subcredentials are used if not NULL else it's ignored.
+ *
+ * Return 0 on success. A negative value is returned on error and desc_out is
+ * set to NULL. */
+int
+hs_desc_decode_descriptor(const char *encoded,
+ const uint8_t *subcredential,
+ hs_descriptor_t **desc_out)
+{
+ int ret = -1;
+ hs_descriptor_t *desc;
+
+ tor_assert(encoded);
+
+ desc = tor_malloc_zero(sizeof(hs_descriptor_t));
+
+ /* Subcredentials are optional. */
+ if (BUG(!subcredential)) {
+ log_warn(LD_GENERAL, "Tried to decrypt without subcred. Impossible!");
+ goto err;
+ }
+
+ memcpy(desc->subcredential, subcredential, sizeof(desc->subcredential));
+
+ ret = hs_desc_decode_plaintext(encoded, &desc->plaintext_data);
+ if (ret < 0) {
+ goto err;
+ }
+
+ ret = hs_desc_decode_encrypted(desc, &desc->encrypted_data);
+ if (ret < 0) {
+ goto err;
+ }
+
+ if (desc_out) {
+ *desc_out = desc;
+ } else {
+ hs_descriptor_free(desc);
+ }
+ return ret;
+
+ err:
+ hs_descriptor_free(desc);
+ if (desc_out) {
+ *desc_out = NULL;
+ }
+
+ tor_assert(ret < 0);
+ return ret;
+}
+
+/* Table of encode function version specific. The functions are indexed by the
+ * version number so v3 callback is at index 3 in the array. */
+static int
+ (*encode_handlers[])(
+ const hs_descriptor_t *desc,
+ const ed25519_keypair_t *signing_kp,
+ char **encoded_out) =
+{
+ /* v0 */ NULL, /* v1 */ NULL, /* v2 */ NULL,
+ desc_encode_v3,
+};
+
+/* Encode the given descriptor desc including signing with the given key pair
+ * signing_kp. On success, encoded_out points to a newly allocated NUL
+ * terminated string that contains the encoded descriptor as a string.
+ *
+ * Return 0 on success and encoded_out is a valid pointer. On error, -1 is
+ * returned and encoded_out is set to NULL. */
+MOCK_IMPL(int,
+hs_desc_encode_descriptor,(const hs_descriptor_t *desc,
+ const ed25519_keypair_t *signing_kp,
+ char **encoded_out))
+{
+ int ret = -1;
+ uint32_t version;
+
+ tor_assert(desc);
+ tor_assert(encoded_out);
+
+ /* Make sure we support the version of the descriptor format. */
+ version = desc->plaintext_data.version;
+ if (!hs_desc_is_supported_version(version)) {
+ goto err;
+ }
+ /* Extra precaution. Having no handler for the supported version should
+ * never happened else we forgot to add it but we bumped the version. */
+ tor_assert(ARRAY_LENGTH(encode_handlers) >= version);
+ tor_assert(encode_handlers[version]);
+
+ ret = encode_handlers[version](desc, signing_kp, encoded_out);
+ if (ret < 0) {
+ goto err;
+ }
+
+ /* Try to decode what we just encoded. Symmetry is nice! */
+ ret = hs_desc_decode_descriptor(*encoded_out, desc->subcredential, NULL);
+ if (BUG(ret < 0)) {
+ goto err;
+ }
+
+ return 0;
+
+ err:
+ *encoded_out = NULL;
+ return ret;
+}
+
+/* Free the descriptor plaintext data object. */
+void
+hs_desc_plaintext_data_free(hs_desc_plaintext_data_t *desc)
+{
+ desc_plaintext_data_free_contents(desc);
+ tor_free(desc);
+}
+
+/* Free the descriptor encrypted data object. */
+void
+hs_desc_encrypted_data_free(hs_desc_encrypted_data_t *desc)
+{
+ desc_encrypted_data_free_contents(desc);
+ tor_free(desc);
+}
+
+/* Free the given descriptor object. */
+void
+hs_descriptor_free(hs_descriptor_t *desc)
+{
+ if (!desc) {
+ return;
+ }
+
+ desc_plaintext_data_free_contents(&desc->plaintext_data);
+ desc_encrypted_data_free_contents(&desc->encrypted_data);
+ tor_free(desc);
+}
+
+/* Return the size in bytes of the given plaintext data object. A sizeof() is
+ * not enough because the object contains pointers and the encrypted blob.
+ * This is particularly useful for our OOM subsystem that tracks the HSDir
+ * cache size for instance. */
+size_t
+hs_desc_plaintext_obj_size(const hs_desc_plaintext_data_t *data)
+{
+ tor_assert(data);
+ return (sizeof(*data) + sizeof(*data->signing_key_cert) +
+ data->superencrypted_blob_size);
+}
+
+/* Return the size in bytes of the given encrypted data object. Used by OOM
+ * subsystem. */
+static size_t
+hs_desc_encrypted_obj_size(const hs_desc_encrypted_data_t *data)
+{
+ tor_assert(data);
+ size_t intro_size = 0;
+ if (data->intro_auth_types) {
+ intro_size +=
+ smartlist_len(data->intro_auth_types) * sizeof(intro_auth_types);
+ }
+ if (data->intro_points) {
+ /* XXX could follow pointers here and get more accurate size */
+ intro_size +=
+ smartlist_len(data->intro_points) * sizeof(hs_desc_intro_point_t);
+ }
+
+ return sizeof(*data) + intro_size;
+}
+
+/* Return the size in bytes of the given descriptor object. Used by OOM
+ * subsystem. */
+ size_t
+hs_desc_obj_size(const hs_descriptor_t *data)
+{
+ tor_assert(data);
+ return (hs_desc_plaintext_obj_size(&data->plaintext_data) +
+ hs_desc_encrypted_obj_size(&data->encrypted_data) +
+ sizeof(data->subcredential));
+}
+
+/* Return a newly allocated descriptor intro point. */
+hs_desc_intro_point_t *
+hs_desc_intro_point_new(void)
+{
+ hs_desc_intro_point_t *ip = tor_malloc_zero(sizeof(*ip));
+ ip->link_specifiers = smartlist_new();
+ return ip;
+}
+
+/* Free a descriptor intro point object. */
+void
+hs_desc_intro_point_free(hs_desc_intro_point_t *ip)
+{
+ if (ip == NULL) {
+ return;
+ }
+ if (ip->link_specifiers) {
+ SMARTLIST_FOREACH(ip->link_specifiers, hs_desc_link_specifier_t *,
+ ls, hs_desc_link_specifier_free(ls));
+ smartlist_free(ip->link_specifiers);
+ }
+ tor_cert_free(ip->auth_key_cert);
+ tor_cert_free(ip->enc_key_cert);
+ crypto_pk_free(ip->legacy.key);
+ tor_free(ip->legacy.cert.encoded);
+ tor_free(ip);
+}
+
+/* Free the given descriptor link specifier. */
+void
+hs_desc_link_specifier_free(hs_desc_link_specifier_t *ls)
+{
+ if (ls == NULL) {
+ return;
+ }
+ tor_free(ls);
+}
+
+/* Return a newly allocated descriptor link specifier using the given extend
+ * info and requested type. Return NULL on error. */
+hs_desc_link_specifier_t *
+hs_desc_link_specifier_new(const extend_info_t *info, uint8_t type)
+{
+ hs_desc_link_specifier_t *ls = NULL;
+
+ tor_assert(info);
+
+ ls = tor_malloc_zero(sizeof(*ls));
+ ls->type = type;
+ switch (ls->type) {
+ case LS_IPV4:
+ if (info->addr.family != AF_INET) {
+ goto err;
+ }
+ tor_addr_copy(&ls->u.ap.addr, &info->addr);
+ ls->u.ap.port = info->port;
+ break;
+ case LS_IPV6:
+ if (info->addr.family != AF_INET6) {
+ goto err;
+ }
+ tor_addr_copy(&ls->u.ap.addr, &info->addr);
+ ls->u.ap.port = info->port;
+ break;
+ case LS_LEGACY_ID:
+ /* Bug out if the identity digest is not set */
+ if (BUG(tor_mem_is_zero(info->identity_digest,
+ sizeof(info->identity_digest)))) {
+ goto err;
+ }
+ memcpy(ls->u.legacy_id, info->identity_digest, sizeof(ls->u.legacy_id));
+ break;
+ case LS_ED25519_ID:
+ /* ed25519 keys are optional for intro points */
+ if (ed25519_public_key_is_zero(&info->ed_identity)) {
+ goto err;
+ }
+ memcpy(ls->u.ed25519_id, info->ed_identity.pubkey,
+ sizeof(ls->u.ed25519_id));
+ break;
+ default:
+ /* Unknown type is code flow error. */
+ tor_assert(0);
+ }
+
+ return ls;
+ err:
+ tor_free(ls);
+ return NULL;
+}
+
+/* From the given descriptor, remove and free every introduction point. */
+void
+hs_descriptor_clear_intro_points(hs_descriptor_t *desc)
+{
+ smartlist_t *ips;
+
+ tor_assert(desc);
+
+ ips = desc->encrypted_data.intro_points;
+ if (ips) {
+ SMARTLIST_FOREACH(ips, hs_desc_intro_point_t *,
+ ip, hs_desc_intro_point_free(ip));
+ smartlist_clear(ips);
+ }
+}
+
+/* From a descriptor link specifier object spec, returned a newly allocated
+ * link specifier object that is the encoded representation of spec. Return
+ * NULL on error. */
+link_specifier_t *
+hs_desc_lspec_to_trunnel(const hs_desc_link_specifier_t *spec)
+{
+ tor_assert(spec);
+
+ link_specifier_t *ls = link_specifier_new();
+ link_specifier_set_ls_type(ls, spec->type);
+
+ switch (spec->type) {
+ case LS_IPV4:
+ link_specifier_set_un_ipv4_addr(ls,
+ tor_addr_to_ipv4h(&spec->u.ap.addr));
+ link_specifier_set_un_ipv4_port(ls, spec->u.ap.port);
+ /* Four bytes IPv4 and two bytes port. */
+ link_specifier_set_ls_len(ls, sizeof(spec->u.ap.addr.addr.in_addr) +
+ sizeof(spec->u.ap.port));
+ break;
+ case LS_IPV6:
+ {
+ size_t addr_len = link_specifier_getlen_un_ipv6_addr(ls);
+ const uint8_t *in6_addr = tor_addr_to_in6_addr8(&spec->u.ap.addr);
+ uint8_t *ipv6_array = link_specifier_getarray_un_ipv6_addr(ls);
+ memcpy(ipv6_array, in6_addr, addr_len);
+ link_specifier_set_un_ipv6_port(ls, spec->u.ap.port);
+ /* Sixteen bytes IPv6 and two bytes port. */
+ link_specifier_set_ls_len(ls, addr_len + sizeof(spec->u.ap.port));
+ break;
+ }
+ case LS_LEGACY_ID:
+ {
+ size_t legacy_id_len = link_specifier_getlen_un_legacy_id(ls);
+ uint8_t *legacy_id_array = link_specifier_getarray_un_legacy_id(ls);
+ memcpy(legacy_id_array, spec->u.legacy_id, legacy_id_len);
+ link_specifier_set_ls_len(ls, legacy_id_len);
+ break;
+ }
+ case LS_ED25519_ID:
+ {
+ size_t ed25519_id_len = link_specifier_getlen_un_ed25519_id(ls);
+ uint8_t *ed25519_id_array = link_specifier_getarray_un_ed25519_id(ls);
+ memcpy(ed25519_id_array, spec->u.ed25519_id, ed25519_id_len);
+ link_specifier_set_ls_len(ls, ed25519_id_len);
+ break;
+ }
+ default:
+ tor_assert_nonfatal_unreached();
+ link_specifier_free(ls);
+ ls = NULL;
+ }
+
+ return ls;
+}
+