diff options
Diffstat (limited to 'src/lib/math/prob_distr.c')
-rw-r--r-- | src/lib/math/prob_distr.c | 76 |
1 files changed, 38 insertions, 38 deletions
diff --git a/src/lib/math/prob_distr.c b/src/lib/math/prob_distr.c index d44dc28265..f9d65073ff 100644 --- a/src/lib/math/prob_distr.c +++ b/src/lib/math/prob_distr.c @@ -178,8 +178,8 @@ clz32(uint32_t x) /** * Compute the logistic function: f(x) = 1/(1 + e^{-x}) = e^x/(1 + e^x). - * Maps a log-odds-space probability in [-\infty, +\infty] into a direct-space - * probability in [0,1]. Inverse of logit. + * Maps a log-odds-space probability in [-infinity, +infinity] into a + * direct-space probability in [0,1]. Inverse of logit. * * Ill-conditioned for large x; the identity logistic(-x) = 1 - * logistic(x) and the function logistichalf(x) = logistic(x) - 1/2 may @@ -266,7 +266,7 @@ logistic(double x) /** * Compute the logit function: log p/(1 - p). Defined on [0,1]. Maps * a direct-space probability in [0,1] to a log-odds-space probability - * in [-\infty, +\infty]. Inverse of logistic. + * in [-infinity, +infinity]. Inverse of logistic. * * Ill-conditioned near 1/2 and 1; the identity logit(1 - p) = * -logit(p) and the function logithalf(p0) = logit(1/2 + p0) may help @@ -488,7 +488,7 @@ random_uniform_01(void) /* Functions for specific probability distributions start here: */ /* - * Logistic(mu, sigma) distribution, supported on (-\infty,+\infty) + * Logistic(mu, sigma) distribution, supported on (-infinity,+infinity) * * This is the uniform distribution on [0,1] mapped into log-odds * space, scaled by sigma and translated by mu. @@ -546,7 +546,7 @@ isf_logistic(double p, double mu, double sigma) } /* - * LogLogistic(alpha, beta) distribution, supported on (0, +\infty). + * LogLogistic(alpha, beta) distribution, supported on (0, +infinity). * * This is the uniform distribution on [0,1] mapped into odds space, * scaled by positive alpha and shaped by positive beta. @@ -687,7 +687,7 @@ isf_log_logistic(double p, double alpha, double beta) } /* - * Weibull(lambda, k) distribution, supported on (0, +\infty). + * Weibull(lambda, k) distribution, supported on (0, +infinity). * * pdf(x) = (k/lambda) (x/lambda)^{k - 1} e^{-(x/lambda)^k} * cdf(x) = 1 - e^{-(x/lambda)^k} @@ -753,7 +753,7 @@ isf_weibull(double p, double lambda, double k) } /* - * GeneralizedPareto(mu, sigma, xi), supported on (mu, +\infty) for + * GeneralizedPareto(mu, sigma, xi), supported on (mu, +infinity) for * nonnegative xi, or (mu, mu - sigma/xi) for negative xi. * * Samples: @@ -793,19 +793,19 @@ cdf_genpareto(double x, double mu, double sigma, double xi) /* * log(1 + xi x_0)/xi - * = (-1/xi) \sum_{n=1}^\infty (-xi x_0)^n/n - * = (-1/xi) (-xi x_0 + \sum_{n=2}^\infty (-xi x_0)^n/n) - * = x_0 - (1/xi) \sum_{n=2}^\infty (-xi x_0)^n/n - * = x_0 - x_0 \sum_{n=2}^\infty (-xi x_0)^{n-1}/n + * = (-1/xi) \sum_{n=1}^infinity (-xi x_0)^n/n + * = (-1/xi) (-xi x_0 + \sum_{n=2}^infinity (-xi x_0)^n/n) + * = x_0 - (1/xi) \sum_{n=2}^infinity (-xi x_0)^n/n + * = x_0 - x_0 \sum_{n=2}^infinity (-xi x_0)^{n-1}/n * = x_0 (1 - d), * - * where d = \sum_{n=2}^\infty (-xi x_0)^{n-1}/n. If |xi| < + * where d = \sum_{n=2}^infinity (-xi x_0)^{n-1}/n. If |xi| < * eps/4|x_0|, then * - * |d| <= \sum_{n=2}^\infty (eps/4)^{n-1}/n - * <= \sum_{n=2}^\infty (eps/4)^{n-1} - * = \sum_{n=1}^\infty (eps/4)^n - * = (eps/4) \sum_{n=0}^\infty (eps/4)^n + * |d| <= \sum_{n=2}^infinity (eps/4)^{n-1}/n + * <= \sum_{n=2}^infinity (eps/4)^{n-1} + * = \sum_{n=1}^infinity (eps/4)^n + * = (eps/4) \sum_{n=0}^infinity (eps/4)^n * = (eps/4)/(1 - eps/4) * < eps/2 * @@ -855,20 +855,20 @@ icdf_genpareto(double p, double mu, double sigma, double xi) * for xi near zero (note f(xi) --> -log U as xi --> 0), write * the absolutely convergent Taylor expansion * - * f(xi) = (1/xi)*(-xi log U + \sum_{n=2}^\infty (-xi log U)^n/n! - * = -log U + (1/xi)*\sum_{n=2}^\infty (-xi log U)^n/n! - * = -log U + \sum_{n=2}^\infty xi^{n-1} (-log U)^n/n! - * = -log U - log U \sum_{n=2}^\infty (-xi log U)^{n-1}/n! - * = -log U (1 + \sum_{n=2}^\infty (-xi log U)^{n-1}/n!). + * f(xi) = (1/xi)*(-xi log U + \sum_{n=2}^infinity (-xi log U)^n/n! + * = -log U + (1/xi)*\sum_{n=2}^infinity (-xi log U)^n/n! + * = -log U + \sum_{n=2}^infinity xi^{n-1} (-log U)^n/n! + * = -log U - log U \sum_{n=2}^infinity (-xi log U)^{n-1}/n! + * = -log U (1 + \sum_{n=2}^infinity (-xi log U)^{n-1}/n!). * - * Let d = \sum_{n=2}^\infty (-xi log U)^{n-1}/n!. What do we + * Let d = \sum_{n=2}^infinity (-xi log U)^{n-1}/n!. What do we * lose if we discard it and use -log U as an approximation to * f(xi)? If |xi| < eps/-4log U, then * - * |d| <= \sum_{n=2}^\infty |xi log U|^{n-1}/n! - * <= \sum_{n=2}^\infty (eps/4)^{n-1}/n! - * <= \sum_{n=1}^\infty (eps/4)^n - * = (eps/4) \sum_{n=0}^\infty (eps/4)^n + * |d| <= \sum_{n=2}^infinity |xi log U|^{n-1}/n! + * <= \sum_{n=2}^infinity (eps/4)^{n-1}/n! + * <= \sum_{n=1}^infinity (eps/4)^n + * = (eps/4) \sum_{n=0}^infinity (eps/4)^n * = (eps/4)/(1 - eps/4) * < eps/2, * @@ -1098,10 +1098,10 @@ sample_logistic(uint32_t s, double t, double p0) * We carve up the interval (0, 1) into subregions to compute * the inverse CDF precisely: * - * A = (0, 1/(1 + e)] ---> (-\infty, -1] + * A = (0, 1/(1 + e)] ---> (-infinity, -1] * B = [1/(1 + e), 1/2] ---> [-1, 0] * C = [1/2, 1 - 1/(1 + e)] ---> [0, 1] - * D = [1 - 1/(1 + e), 1) ---> [1, +\infty) + * D = [1 - 1/(1 + e), 1) ---> [1, +infinity) * * Cases D and C are mirror images of cases A and B, * respectively, so we choose between them by the sign chosen @@ -1234,19 +1234,19 @@ sample_genpareto(uint32_t s, double p0, double xi) * Write f(xi) = (e^{xi x} - 1)/xi for xi near zero as the * absolutely convergent Taylor series * - * f(x) = (1/xi) (xi x + \sum_{n=2}^\infty (xi x)^n/n!) - * = x + (1/xi) \sum_{n=2}^\inty (xi x)^n/n! - * = x + \sum_{n=2}^\infty xi^{n-1} x^n/n! - * = x + x \sum_{n=2}^\infty (xi x)^{n-1}/n! - * = x (1 + \sum_{n=2}^\infty (xi x)^{n-1}/n!). + * f(x) = (1/xi) (xi x + \sum_{n=2}^infinity (xi x)^n/n!) + * = x + (1/xi) \sum_{n=2}^infinity (xi x)^n/n! + * = x + \sum_{n=2}^infinity xi^{n-1} x^n/n! + * = x + x \sum_{n=2}^infinity (xi x)^{n-1}/n! + * = x (1 + \sum_{n=2}^infinity (xi x)^{n-1}/n!). * - * d = \sum_{n=2}^\infty (xi x)^{n-1}/n! is the relative error + * d = \sum_{n=2}^infinity (xi x)^{n-1}/n! is the relative error * of f(x) from x. If |xi| < eps/4x, then * - * |d| <= \sum_{n=2}^\infty |xi x|^{n-1}/n! - * <= \sum_{n=2}^\infty (eps/4)^{n-1}/n! - * <= \sum_{n=1}^\infty (eps/4) - * = (eps/4) \sum_{n=0}^\infty (eps/4)^n + * |d| <= \sum_{n=2}^infinity |xi x|^{n-1}/n! + * <= \sum_{n=2}^infinity (eps/4)^{n-1}/n! + * <= \sum_{n=1}^infinity (eps/4) + * = (eps/4) \sum_{n=0}^infinity (eps/4)^n * = (eps/4)/(1 - eps/4) * < eps/2, * |