summaryrefslogtreecommitdiff
path: root/src/lib/math/laplace.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/math/laplace.c')
-rw-r--r--src/lib/math/laplace.c67
1 files changed, 67 insertions, 0 deletions
diff --git a/src/lib/math/laplace.c b/src/lib/math/laplace.c
new file mode 100644
index 0000000000..8e45a1fb33
--- /dev/null
+++ b/src/lib/math/laplace.c
@@ -0,0 +1,67 @@
+/* Copyright (c) 2003, Roger Dingledine
+ * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
+ * Copyright (c) 2007-2018, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+#include "orconfig.h"
+#include "lib/math/laplace.h"
+#include "lib/math/fp.h"
+
+#include "lib/log/util_bug.h"
+
+#include <math.h>
+#include <stdlib.h>
+
+/** Transform a random value <b>p</b> from the uniform distribution in
+ * [0.0, 1.0[ into a Laplace distributed value with location parameter
+ * <b>mu</b> and scale parameter <b>b</b>. Truncate the final result
+ * to be an integer in [INT64_MIN, INT64_MAX]. */
+int64_t
+sample_laplace_distribution(double mu, double b, double p)
+{
+ double result;
+ tor_assert(p >= 0.0 && p < 1.0);
+
+ /* This is the "inverse cumulative distribution function" from:
+ * http://en.wikipedia.org/wiki/Laplace_distribution */
+ if (p <= 0.0) {
+ /* Avoid taking log(0.0) == -INFINITY, as some processors or compiler
+ * options can cause the program to trap. */
+ return INT64_MIN;
+ }
+
+ result = mu - b * (p > 0.5 ? 1.0 : -1.0)
+ * tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));
+
+ return clamp_double_to_int64(result);
+}
+
+/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace
+ * distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> to
+ * <b>signal</b> based on the provided <b>random</b> value in [0.0, 1.0[.
+ * The epsilon value must be between ]0.0, 1.0]. delta_f must be greater
+ * than 0. */
+int64_t
+add_laplace_noise(int64_t signal_, double random_, double delta_f,
+ double epsilon)
+{
+ int64_t noise;
+
+ /* epsilon MUST be between ]0.0, 1.0] */
+ tor_assert(epsilon > 0.0 && epsilon <= 1.0);
+ /* delta_f MUST be greater than 0. */
+ tor_assert(delta_f > 0.0);
+
+ /* Just add noise, no further signal */
+ noise = sample_laplace_distribution(0.0,
+ delta_f / epsilon,
+ random_);
+
+ /* Clip (signal + noise) to [INT64_MIN, INT64_MAX] */
+ if (noise > 0 && INT64_MAX - noise < signal_)
+ return INT64_MAX;
+ else if (noise < 0 && INT64_MIN - noise > signal_)
+ return INT64_MIN;
+ else
+ return signal_ + noise;
+}