aboutsummaryrefslogtreecommitdiff
path: root/src/lib/crypt_ops/crypto_curve25519.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/lib/crypt_ops/crypto_curve25519.c')
-rw-r--r--src/lib/crypt_ops/crypto_curve25519.c359
1 files changed, 359 insertions, 0 deletions
diff --git a/src/lib/crypt_ops/crypto_curve25519.c b/src/lib/crypt_ops/crypto_curve25519.c
new file mode 100644
index 0000000000..f28cebb887
--- /dev/null
+++ b/src/lib/crypt_ops/crypto_curve25519.c
@@ -0,0 +1,359 @@
+/* Copyright (c) 2012-2018, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+/**
+ * \file crypto_curve25519.c
+ *
+ * \brief Wrapper code for a curve25519 implementation.
+ *
+ * Curve25519 is an Elliptic-Curve Diffie Hellman handshake, designed by
+ * Dan Bernstein. For more information, see https://cr.yp.to/ecdh.html
+ *
+ * Tor uses Curve25519 as the basis of its "ntor" circuit extension
+ * handshake, and in related code. The functions in this module are
+ * used to find the most suitable available Curve25519 implementation,
+ * to provide wrappers around it, and so on.
+ */
+
+#define CRYPTO_CURVE25519_PRIVATE
+#include "orconfig.h"
+#ifdef HAVE_SYS_STAT_H
+#include <sys/stat.h>
+#endif
+#include "common/container.h"
+#include "common/crypto_curve25519.h"
+#include "common/crypto_digest.h"
+#include "common/crypto_format.h"
+#include "common/crypto_rand.h"
+#include "common/crypto_util.h"
+#include "common/util.h"
+#include "common/torlog.h"
+
+#include "ed25519/donna/ed25519_donna_tor.h"
+
+/* ==============================
+ Part 1: wrap a suitable curve25519 implementation as curve25519_impl
+ ============================== */
+
+#ifdef USE_CURVE25519_DONNA
+int curve25519_donna(uint8_t *mypublic,
+ const uint8_t *secret, const uint8_t *basepoint);
+#endif
+#ifdef USE_CURVE25519_NACL
+#ifdef HAVE_CRYPTO_SCALARMULT_CURVE25519_H
+#include <crypto_scalarmult_curve25519.h>
+#elif defined(HAVE_NACL_CRYPTO_SCALARMULT_CURVE25519_H)
+#include <nacl/crypto_scalarmult_curve25519.h>
+#endif
+#endif /* defined(USE_CURVE25519_NACL) */
+
+static void pick_curve25519_basepoint_impl(void);
+
+/** This is set to 1 if we have an optimized Ed25519-based
+ * implementation for multiplying a value by the basepoint; to 0 if we
+ * don't, and to -1 if we haven't checked. */
+static int curve25519_use_ed = -1;
+
+/**
+ * Helper function: call the most appropriate backend to compute the
+ * scalar "secret" times the point "point". Store the result in
+ * "output". Return 0 on success, negative on failure.
+ **/
+STATIC int
+curve25519_impl(uint8_t *output, const uint8_t *secret,
+ const uint8_t *point)
+{
+ uint8_t bp[CURVE25519_PUBKEY_LEN];
+ int r;
+ memcpy(bp, point, CURVE25519_PUBKEY_LEN);
+ /* Clear the high bit, in case our backend foolishly looks at it. */
+ bp[31] &= 0x7f;
+#ifdef USE_CURVE25519_DONNA
+ r = curve25519_donna(output, secret, bp);
+#elif defined(USE_CURVE25519_NACL)
+ r = crypto_scalarmult_curve25519(output, secret, bp);
+#else
+#error "No implementation of curve25519 is available."
+#endif /* defined(USE_CURVE25519_DONNA) || ... */
+ memwipe(bp, 0, sizeof(bp));
+ return r;
+}
+
+/**
+ * Helper function: Multiply the scalar "secret" by the Curve25519
+ * basepoint (X=9), and store the result in "output". Return 0 on
+ * success, -1 on failure.
+ */
+STATIC int
+curve25519_basepoint_impl(uint8_t *output, const uint8_t *secret)
+{
+ int r = 0;
+ if (BUG(curve25519_use_ed == -1)) {
+ /* LCOV_EXCL_START - Only reached if we forgot to call curve25519_init() */
+ pick_curve25519_basepoint_impl();
+ /* LCOV_EXCL_STOP */
+ }
+
+ /* TODO: Someone should benchmark curved25519_scalarmult_basepoint versus
+ * an optimized NaCl build to see which should be used when compiled with
+ * NaCl available. I suspected that the ed25519 optimization always wins.
+ */
+ if (PREDICT_LIKELY(curve25519_use_ed == 1)) {
+ curved25519_scalarmult_basepoint_donna(output, secret);
+ r = 0;
+ } else {
+ static const uint8_t basepoint[32] = {9};
+ r = curve25519_impl(output, secret, basepoint);
+ }
+ return r;
+}
+
+/**
+ * Override the decision of whether to use the Ed25519-based basepoint
+ * multiply function. Used for testing.
+ */
+void
+curve25519_set_impl_params(int use_ed)
+{
+ curve25519_use_ed = use_ed;
+}
+
+/* ==============================
+ Part 2: Wrap curve25519_impl with some convenience types and functions.
+ ============================== */
+
+/**
+ * Return true iff a curve25519_public_key_t seems valid. (It's not necessary
+ * to see if the point is on the curve, since the twist is also secure, but we
+ * do need to make sure that it isn't the point at infinity.) */
+int
+curve25519_public_key_is_ok(const curve25519_public_key_t *key)
+{
+ return !safe_mem_is_zero(key->public_key, CURVE25519_PUBKEY_LEN);
+}
+
+/**
+ * Generate CURVE25519_SECKEY_LEN random bytes in <b>out</b>. If
+ * <b>extra_strong</b> is true, this key is possibly going to get used more
+ * than once, so use a better-than-usual RNG. Return 0 on success, -1 on
+ * failure.
+ *
+ * This function does not adjust the output of the RNG at all; the will caller
+ * will need to clear or set the appropriate bits to make curve25519 work.
+ */
+int
+curve25519_rand_seckey_bytes(uint8_t *out, int extra_strong)
+{
+ if (extra_strong)
+ crypto_strongest_rand(out, CURVE25519_SECKEY_LEN);
+ else
+ crypto_rand((char*)out, CURVE25519_SECKEY_LEN);
+
+ return 0;
+}
+
+/** Generate a new keypair and return the secret key. If <b>extra_strong</b>
+ * is true, this key is possibly going to get used more than once, so
+ * use a better-than-usual RNG. Return 0 on success, -1 on failure. */
+int
+curve25519_secret_key_generate(curve25519_secret_key_t *key_out,
+ int extra_strong)
+{
+ if (curve25519_rand_seckey_bytes(key_out->secret_key, extra_strong) < 0)
+ return -1;
+
+ key_out->secret_key[0] &= 248;
+ key_out->secret_key[31] &= 127;
+ key_out->secret_key[31] |= 64;
+
+ return 0;
+}
+
+/**
+ * Given a secret key in <b>seckey</b>, create the corresponding public
+ * key in <b>key_out</b>.
+ */
+void
+curve25519_public_key_generate(curve25519_public_key_t *key_out,
+ const curve25519_secret_key_t *seckey)
+{
+ curve25519_basepoint_impl(key_out->public_key, seckey->secret_key);
+}
+
+/**
+ * Construct a new keypair in *<b>keypair_out</b>. If <b>extra_strong</b>
+ * is true, this key is possibly going to get used more than once, so
+ * use a better-than-usual RNG. Return 0 on success, -1 on failure. */
+int
+curve25519_keypair_generate(curve25519_keypair_t *keypair_out,
+ int extra_strong)
+{
+ if (curve25519_secret_key_generate(&keypair_out->seckey, extra_strong) < 0)
+ return -1;
+ curve25519_public_key_generate(&keypair_out->pubkey, &keypair_out->seckey);
+ return 0;
+}
+
+/** Store the keypair <b>keypair</b>, including its secret and public
+ * parts, to the file <b>fname</b>. Use the string tag <b>tag</b> to
+ * distinguish this from other Curve25519 keypairs. Return 0 on success,
+ * -1 on failure.
+ *
+ * See crypto_write_tagged_contents_to_file() for more information on
+ * the metaformat used for these keys.*/
+int
+curve25519_keypair_write_to_file(const curve25519_keypair_t *keypair,
+ const char *fname,
+ const char *tag)
+{
+ uint8_t contents[CURVE25519_SECKEY_LEN + CURVE25519_PUBKEY_LEN];
+ int r;
+
+ memcpy(contents, keypair->seckey.secret_key, CURVE25519_SECKEY_LEN);
+ memcpy(contents+CURVE25519_SECKEY_LEN,
+ keypair->pubkey.public_key, CURVE25519_PUBKEY_LEN);
+
+ r = crypto_write_tagged_contents_to_file(fname,
+ "c25519v1",
+ tag,
+ contents,
+ sizeof(contents));
+
+ memwipe(contents, 0, sizeof(contents));
+ return r;
+}
+
+/** Read a curve25519 keypair from a file named <b>fname</b> created by
+ * curve25519_keypair_write_to_file(). Store the keypair in
+ * <b>keypair_out</b>, and the associated tag string in <b>tag_out</b>.
+ * Return 0 on success, and -1 on failure. */
+int
+curve25519_keypair_read_from_file(curve25519_keypair_t *keypair_out,
+ char **tag_out,
+ const char *fname)
+{
+ uint8_t content[CURVE25519_SECKEY_LEN + CURVE25519_PUBKEY_LEN];
+ ssize_t len;
+ int r = -1;
+
+ len = crypto_read_tagged_contents_from_file(fname, "c25519v1", tag_out,
+ content, sizeof(content));
+ if (len != sizeof(content))
+ goto end;
+
+ /* Make sure that the public key matches the secret key */
+ memcpy(keypair_out->seckey.secret_key, content, CURVE25519_SECKEY_LEN);
+ curve25519_public_key_generate(&keypair_out->pubkey, &keypair_out->seckey);
+ if (tor_memneq(keypair_out->pubkey.public_key,
+ content + CURVE25519_SECKEY_LEN,
+ CURVE25519_PUBKEY_LEN))
+ goto end;
+
+ r = 0;
+
+ end:
+ memwipe(content, 0, sizeof(content));
+ if (r != 0) {
+ memset(keypair_out, 0, sizeof(*keypair_out));
+ tor_free(*tag_out);
+ }
+ return r;
+}
+
+/** Perform the curve25519 ECDH handshake with <b>skey</b> and <b>pkey</b>,
+ * writing CURVE25519_OUTPUT_LEN bytes of output into <b>output</b>. */
+void
+curve25519_handshake(uint8_t *output,
+ const curve25519_secret_key_t *skey,
+ const curve25519_public_key_t *pkey)
+{
+ curve25519_impl(output, skey->secret_key, pkey->public_key);
+}
+
+/** Check whether the ed25519-based curve25519 basepoint optimization seems to
+ * be working. If so, return 0; otherwise return -1. */
+static int
+curve25519_basepoint_spot_check(void)
+{
+ static const uint8_t alicesk[32] = {
+ 0x77,0x07,0x6d,0x0a,0x73,0x18,0xa5,0x7d,
+ 0x3c,0x16,0xc1,0x72,0x51,0xb2,0x66,0x45,
+ 0xdf,0x4c,0x2f,0x87,0xeb,0xc0,0x99,0x2a,
+ 0xb1,0x77,0xfb,0xa5,0x1d,0xb9,0x2c,0x2a
+ };
+ static const uint8_t alicepk[32] = {
+ 0x85,0x20,0xf0,0x09,0x89,0x30,0xa7,0x54,
+ 0x74,0x8b,0x7d,0xdc,0xb4,0x3e,0xf7,0x5a,
+ 0x0d,0xbf,0x3a,0x0d,0x26,0x38,0x1a,0xf4,
+ 0xeb,0xa4,0xa9,0x8e,0xaa,0x9b,0x4e,0x6a
+ };
+ const int loop_max=200;
+ int save_use_ed = curve25519_use_ed;
+ unsigned char e1[32] = { 5 };
+ unsigned char e2[32] = { 5 };
+ unsigned char x[32],y[32];
+ int i;
+ int r=0;
+
+ /* Check the most basic possible sanity via the test secret/public key pair
+ * used in "Cryptography in NaCl - 2. Secret keys and public keys". This
+ * may catch catastrophic failures on systems where Curve25519 is expensive,
+ * without requiring a ton of key generation.
+ */
+ curve25519_use_ed = 1;
+ r |= curve25519_basepoint_impl(x, alicesk);
+ if (fast_memneq(x, alicepk, 32))
+ goto fail;
+
+ /* Ok, the optimization appears to produce passable results, try a few more
+ * values, maybe there's something subtle wrong.
+ */
+ for (i = 0; i < loop_max; ++i) {
+ curve25519_use_ed = 0;
+ r |= curve25519_basepoint_impl(x, e1);
+ curve25519_use_ed = 1;
+ r |= curve25519_basepoint_impl(y, e2);
+ if (fast_memneq(x,y,32))
+ goto fail;
+ memcpy(e1, x, 32);
+ memcpy(e2, x, 32);
+ }
+
+ goto end;
+ // LCOV_EXCL_START -- we can only hit this code if there is a bug in our
+ // curve25519-basepoint implementation.
+ fail:
+ r = -1;
+ // LCOV_EXCL_STOP
+ end:
+ curve25519_use_ed = save_use_ed;
+ return r;
+}
+
+/** Choose whether to use the ed25519-based curve25519-basepoint
+ * implementation. */
+static void
+pick_curve25519_basepoint_impl(void)
+{
+ curve25519_use_ed = 1;
+
+ if (curve25519_basepoint_spot_check() == 0)
+ return;
+
+ /* LCOV_EXCL_START
+ * only reachable if our basepoint implementation broken */
+ log_warn(LD_BUG|LD_CRYPTO, "The ed25519-based curve25519 basepoint "
+ "multiplication seems broken; using the curve25519 "
+ "implementation.");
+ curve25519_use_ed = 0;
+ /* LCOV_EXCL_STOP */
+}
+
+/** Initialize the curve25519 implementations. This is necessary if you're
+ * going to use them in a multithreaded setting, and not otherwise. */
+void
+curve25519_init(void)
+{
+ pick_curve25519_basepoint_impl();
+}
+