summaryrefslogtreecommitdiff
path: root/src/common
diff options
context:
space:
mode:
Diffstat (limited to 'src/common')
-rw-r--r--src/common/include.am12
-rw-r--r--src/common/mempool.c628
-rw-r--r--src/common/mempool.h65
3 files changed, 1 insertions, 704 deletions
diff --git a/src/common/include.am b/src/common/include.am
index 14838ab555..5b63392541 100644
--- a/src/common/include.am
+++ b/src/common/include.am
@@ -24,14 +24,6 @@ else
libor_extra_source=
endif
-if USE_MEMPOOLS
-libor_mempool_source=src/common/mempool.c
-libor_mempool_header=src/common/mempool.h
-else
-libor_mempool_source=
-libor_mempool_header=
-endif
-
src_common_libcurve25519_donna_a_CFLAGS=
if BUILD_CURVE25519_DONNA
@@ -78,7 +70,6 @@ LIBOR_A_SOURCES = \
src/ext/csiphash.c \
src/ext/trunnel/trunnel.c \
$(libor_extra_source) \
- $(libor_mempool_source) \
$(threads_impl_source)
LIBOR_CRYPTO_A_SOURCES = \
@@ -138,8 +129,7 @@ COMMONHEADERS = \
src/common/tortls.h \
src/common/util.h \
src/common/util_process.h \
- src/common/workqueue.h \
- $(libor_mempool_header)
+ src/common/workqueue.h
noinst_HEADERS+= $(COMMONHEADERS)
diff --git a/src/common/mempool.c b/src/common/mempool.c
deleted file mode 100644
index 55a34070d7..0000000000
--- a/src/common/mempool.c
+++ /dev/null
@@ -1,628 +0,0 @@
-/* Copyright (c) 2007-2015, The Tor Project, Inc. */
-/* See LICENSE for licensing information */
-#if 1
-/* Tor dependencies */
-#include "orconfig.h"
-#endif
-
-#include <stdlib.h>
-#include <string.h>
-#include "torint.h"
-#include "crypto.h"
-#define MEMPOOL_PRIVATE
-#include "mempool.h"
-
-/* OVERVIEW:
- *
- * This is an implementation of memory pools for Tor cells. It may be
- * useful for you too.
- *
- * Generally, a memory pool is an allocation strategy optimized for large
- * numbers of identically-sized objects. Rather than the elaborate arena
- * and coalescing strategies you need to get good performance for a
- * general-purpose malloc(), pools use a series of large memory "chunks",
- * each of which is carved into a bunch of smaller "items" or
- * "allocations".
- *
- * To get decent performance, you need to:
- * - Minimize the number of times you hit the underlying allocator.
- * - Try to keep accesses as local in memory as possible.
- * - Try to keep the common case fast.
- *
- * Our implementation uses three lists of chunks per pool. Each chunk can
- * be either "full" (no more room for items); "empty" (no items); or
- * "used" (not full, not empty). There are independent doubly-linked
- * lists for each state.
- *
- * CREDIT:
- *
- * I wrote this after looking at 3 or 4 other pooling allocators, but
- * without copying. The strategy this most resembles (which is funny,
- * since that's the one I looked at longest ago) is the pool allocator
- * underlying Python's obmalloc code. Major differences from obmalloc's
- * pools are:
- * - We don't even try to be threadsafe.
- * - We only handle objects of one size.
- * - Our list of empty chunks is doubly-linked, not singly-linked.
- * (This could change pretty easily; it's only doubly-linked for
- * consistency.)
- * - We keep a list of full chunks (so we can have a "nuke everything"
- * function). Obmalloc's pools leave full chunks to float unanchored.
- *
- * LIMITATIONS:
- * - Not even slightly threadsafe.
- * - Likes to have lots of items per chunks.
- * - One pointer overhead per allocated thing. (The alternative is
- * something like glib's use of an RB-tree to keep track of what
- * chunk any given piece of memory is in.)
- * - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE
- * if you need doubles.
- * - Could probably be optimized a bit; the representation contains
- * a bit more info than it really needs to have.
- */
-
-#if 1
-/* Tor dependencies */
-#include "util.h"
-#include "compat.h"
-#include "torlog.h"
-#define ALLOC(x) tor_malloc(x)
-#define FREE(x) tor_free(x)
-#define ASSERT(x) tor_assert(x)
-#undef ALLOC_CAN_RETURN_NULL
-#define TOR
-/* End Tor dependencies */
-#else
-/* If you're not building this as part of Tor, you'll want to define the
- * following macros. For now, these should do as defaults.
- */
-#include <assert.h>
-#define PREDICT_UNLIKELY(x) (x)
-#define PREDICT_LIKELY(x) (x)
-#define ALLOC(x) malloc(x)
-#define FREE(x) free(x)
-#define STRUCT_OFFSET(tp, member) \
- ((off_t) (((char*)&((tp*)0)->member)-(char*)0))
-#define ASSERT(x) assert(x)
-#define ALLOC_CAN_RETURN_NULL
-#endif
-
-/* Tuning parameters */
-/** Largest type that we need to ensure returned memory items are aligned to.
- * Change this to "double" if we need to be safe for structs with doubles. */
-#define ALIGNMENT_TYPE void *
-/** Increment that we need to align allocated. */
-#define ALIGNMENT sizeof(ALIGNMENT_TYPE)
-/** Largest memory chunk that we should allocate. */
-#define MAX_CHUNK (8*(1L<<20))
-/** Smallest memory chunk size that we should allocate. */
-#define MIN_CHUNK 4096
-
-typedef struct mp_allocated_t mp_allocated_t;
-typedef struct mp_chunk_t mp_chunk_t;
-
-/** Holds a single allocated item, allocated as part of a chunk. */
-struct mp_allocated_t {
- /** The chunk that this item is allocated in. This adds overhead to each
- * allocated item, thus making this implementation inappropriate for
- * very small items. */
- mp_chunk_t *in_chunk;
- union {
- /** If this item is free, the next item on the free list. */
- mp_allocated_t *next_free;
- /** If this item is not free, the actual memory contents of this item.
- * (Not actual size.) */
- char mem[1];
- /** An extra element to the union to insure correct alignment. */
- ALIGNMENT_TYPE dummy_;
- } u;
-};
-
-/** 'Magic' value used to detect memory corruption. */
-#define MP_CHUNK_MAGIC 0x09870123
-
-/** A chunk of memory. Chunks come from malloc; we use them */
-struct mp_chunk_t {
- unsigned long magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
- mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
- mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
- mp_pool_t *pool; /**< The pool that this chunk is part of. */
- /** First free item in the freelist for this chunk. Note that this may be
- * NULL even if this chunk is not at capacity: if so, the free memory at
- * next_mem has not yet been carved into items.
- */
- mp_allocated_t *first_free;
- int n_allocated; /**< Number of currently allocated items in this chunk. */
- int capacity; /**< Number of items that can be fit into this chunk. */
- size_t mem_size; /**< Number of usable bytes in mem. */
- char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
- char mem[FLEXIBLE_ARRAY_MEMBER]; /**< Storage for this chunk. */
-};
-
-/** Number of extra bytes needed beyond mem_size to allocate a chunk. */
-#define CHUNK_OVERHEAD STRUCT_OFFSET(mp_chunk_t, mem[0])
-
-/** Given a pointer to a mp_allocated_t, return a pointer to the memory
- * item it holds. */
-#define A2M(a) (&(a)->u.mem)
-/** Given a pointer to a memory_item_t, return a pointer to its enclosing
- * mp_allocated_t. */
-#define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, u.mem) )
-
-#ifdef ALLOC_CAN_RETURN_NULL
-/** If our ALLOC() macro can return NULL, check whether <b>x</b> is NULL,
- * and if so, return NULL. */
-#define CHECK_ALLOC(x) \
- if (PREDICT_UNLIKELY(!x)) { return NULL; }
-#else
-/** If our ALLOC() macro can't return NULL, do nothing. */
-#define CHECK_ALLOC(x)
-#endif
-
-/** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
- * link the chunk into any list. */
-static mp_chunk_t *
-mp_chunk_new(mp_pool_t *pool)
-{
- size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
- mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
-
-#ifdef MEMPOOL_STATS
- ++pool->total_chunks_allocated;
-#endif
- CHECK_ALLOC(chunk);
- memset(chunk, 0, sizeof(mp_chunk_t)); /* Doesn't clear the whole thing. */
- chunk->magic = MP_CHUNK_MAGIC;
- chunk->capacity = pool->new_chunk_capacity;
- chunk->mem_size = sz;
- chunk->next_mem = chunk->mem;
- chunk->pool = pool;
- return chunk;
-}
-
-/** Take a <b>chunk</b> that has just been allocated or removed from
- * <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
- * list. */
-static INLINE void
-add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
-{
- chunk->next = pool->used_chunks;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->used_chunks = chunk;
- ASSERT(!chunk->prev);
-}
-
-/** Return a newly allocated item from <b>pool</b>. */
-void *
-mp_pool_get(mp_pool_t *pool)
-{
- mp_chunk_t *chunk;
- mp_allocated_t *allocated;
-
- if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
- /* Common case: there is some chunk that is neither full nor empty. Use
- * that one. (We can't use the full ones, obviously, and we should fill
- * up the used ones before we start on any empty ones. */
- chunk = pool->used_chunks;
-
- } else if (pool->empty_chunks) {
- /* We have no used chunks, but we have an empty chunk that we haven't
- * freed yet: use that. (We pull from the front of the list, which should
- * get us the most recently emptied chunk.) */
- chunk = pool->empty_chunks;
-
- /* Remove the chunk from the empty list. */
- pool->empty_chunks = chunk->next;
- if (chunk->next)
- chunk->next->prev = NULL;
-
- /* Put the chunk on the 'used' list*/
- add_newly_used_chunk_to_used_list(pool, chunk);
-
- ASSERT(!chunk->prev);
- --pool->n_empty_chunks;
- if (pool->n_empty_chunks < pool->min_empty_chunks)
- pool->min_empty_chunks = pool->n_empty_chunks;
- } else {
- /* We have no used or empty chunks: allocate a new chunk. */
- chunk = mp_chunk_new(pool);
- CHECK_ALLOC(chunk);
-
- /* Add the new chunk to the used list. */
- add_newly_used_chunk_to_used_list(pool, chunk);
- }
-
- ASSERT(chunk->n_allocated < chunk->capacity);
-
- if (chunk->first_free) {
- /* If there's anything on the chunk's freelist, unlink it and use it. */
- allocated = chunk->first_free;
- chunk->first_free = allocated->u.next_free;
- allocated->u.next_free = NULL; /* For debugging; not really needed. */
- ASSERT(allocated->in_chunk == chunk);
- } else {
- /* Otherwise, the chunk had better have some free space left on it. */
- ASSERT(chunk->next_mem + pool->item_alloc_size <=
- chunk->mem + chunk->mem_size);
-
- /* Good, it did. Let's carve off a bit of that free space, and use
- * that. */
- allocated = (void*)chunk->next_mem;
- chunk->next_mem += pool->item_alloc_size;
- allocated->in_chunk = chunk;
- allocated->u.next_free = NULL; /* For debugging; not really needed. */
- }
-
- ++chunk->n_allocated;
-#ifdef MEMPOOL_STATS
- ++pool->total_items_allocated;
-#endif
-
- if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
- /* This chunk just became full. */
- ASSERT(chunk == pool->used_chunks);
- ASSERT(chunk->prev == NULL);
-
- /* Take it off the used list. */
- pool->used_chunks = chunk->next;
- if (chunk->next)
- chunk->next->prev = NULL;
-
- /* Put it on the full list. */
- chunk->next = pool->full_chunks;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->full_chunks = chunk;
- }
- /* And return the memory portion of the mp_allocated_t. */
- return A2M(allocated);
-}
-
-/** Return an allocated memory item to its memory pool. */
-void
-mp_pool_release(void *item)
-{
- mp_allocated_t *allocated = (void*) M2A(item);
- mp_chunk_t *chunk = allocated->in_chunk;
-
- ASSERT(chunk);
- ASSERT(chunk->magic == MP_CHUNK_MAGIC);
- ASSERT(chunk->n_allocated > 0);
-
- allocated->u.next_free = chunk->first_free;
- chunk->first_free = allocated;
-
- if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
- /* This chunk was full and is about to be used. */
- mp_pool_t *pool = chunk->pool;
- /* unlink from the full list */
- if (chunk->prev)
- chunk->prev->next = chunk->next;
- if (chunk->next)
- chunk->next->prev = chunk->prev;
- if (chunk == pool->full_chunks)
- pool->full_chunks = chunk->next;
-
- /* link to the used list. */
- chunk->next = pool->used_chunks;
- chunk->prev = NULL;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->used_chunks = chunk;
- } else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
- /* This was used and is about to be empty. */
- mp_pool_t *pool = chunk->pool;
-
- /* Unlink from the used list */
- if (chunk->prev)
- chunk->prev->next = chunk->next;
- if (chunk->next)
- chunk->next->prev = chunk->prev;
- if (chunk == pool->used_chunks)
- pool->used_chunks = chunk->next;
-
- /* Link to the empty list */
- chunk->next = pool->empty_chunks;
- chunk->prev = NULL;
- if (chunk->next)
- chunk->next->prev = chunk;
- pool->empty_chunks = chunk;
-
- /* Reset the guts of this chunk to defragment it, in case it gets
- * used again. */
- chunk->first_free = NULL;
- chunk->next_mem = chunk->mem;
-
- ++pool->n_empty_chunks;
- }
- --chunk->n_allocated;
-}
-
-/** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll
- * try to fit about <b>chunk_capacity</b> bytes in each chunk. */
-mp_pool_t *
-mp_pool_new(size_t item_size, size_t chunk_capacity)
-{
- mp_pool_t *pool;
- size_t alloc_size, new_chunk_cap;
-
- tor_assert(item_size < SIZE_T_CEILING);
- tor_assert(chunk_capacity < SIZE_T_CEILING);
- tor_assert(SIZE_T_CEILING / item_size > chunk_capacity);
-
- pool = ALLOC(sizeof(mp_pool_t));
- CHECK_ALLOC(pool);
- memset(pool, 0, sizeof(mp_pool_t));
-
- /* First, we figure out how much space to allow per item. We'll want to
- * use make sure we have enough for the overhead plus the item size. */
- alloc_size = (size_t)(STRUCT_OFFSET(mp_allocated_t, u.mem) + item_size);
- /* If the item_size is less than sizeof(next_free), we need to make
- * the allocation bigger. */
- if (alloc_size < sizeof(mp_allocated_t))
- alloc_size = sizeof(mp_allocated_t);
-
- /* If we're not an even multiple of ALIGNMENT, round up. */
- if (alloc_size % ALIGNMENT) {
- alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT);
- }
- if (alloc_size < ALIGNMENT)
- alloc_size = ALIGNMENT;
- ASSERT((alloc_size % ALIGNMENT) == 0);
-
- /* Now we figure out how many items fit in each chunk. We need to fit at
- * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long,
- * or less than MIN_CHUNK. */
- if (chunk_capacity > MAX_CHUNK)
- chunk_capacity = MAX_CHUNK;
- /* Try to be around a power of 2 in size, since that's what allocators like
- * handing out. 512K-1 byte is a lot better than 512K+1 byte. */
- chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity);
- while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD)
- chunk_capacity *= 2;
- if (chunk_capacity < MIN_CHUNK)
- chunk_capacity = MIN_CHUNK;
-
- new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size;
- tor_assert(new_chunk_cap < INT_MAX);
- pool->new_chunk_capacity = (int)new_chunk_cap;
-
- pool->item_alloc_size = alloc_size;
-
- log_debug(LD_MM, "Capacity is %lu, item size is %lu, alloc size is %lu",
- (unsigned long)pool->new_chunk_capacity,
- (unsigned long)pool->item_alloc_size,
- (unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size));
-
- return pool;
-}
-
-/** Helper function for qsort: used to sort pointers to mp_chunk_t into
- * descending order of fullness. */
-static int
-mp_pool_sort_used_chunks_helper(const void *_a, const void *_b)
-{
- mp_chunk_t *a = *(mp_chunk_t**)_a;
- mp_chunk_t *b = *(mp_chunk_t**)_b;
- return b->n_allocated - a->n_allocated;
-}
-
-/** Sort the used chunks in <b>pool</b> into descending order of fullness,
- * so that we preferentially fill up mostly full chunks before we make
- * nearly empty chunks less nearly empty. */
-static void
-mp_pool_sort_used_chunks(mp_pool_t *pool)
-{
- int i, n=0, inverted=0;
- mp_chunk_t **chunks, *chunk;
- for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
- ++n;
- if (chunk->next && chunk->next->n_allocated > chunk->n_allocated)
- ++inverted;
- }
- if (!inverted)
- return;
- //printf("Sort %d/%d\n",inverted,n);
- chunks = ALLOC(sizeof(mp_chunk_t *)*n);
-#ifdef ALLOC_CAN_RETURN_NULL
- if (PREDICT_UNLIKELY(!chunks)) return;
-#endif
- for (i=0,chunk = pool->used_chunks; chunk; chunk = chunk->next)
- chunks[i++] = chunk;
- qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper);
- pool->used_chunks = chunks[0];
- chunks[0]->prev = NULL;
- for (i=1;i<n;++i) {
- chunks[i-1]->next = chunks[i];
- chunks[i]->prev = chunks[i-1];
- }
- chunks[n-1]->next = NULL;
- FREE(chunks);
- mp_pool_assert_ok(pool);
-}
-
-/** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the
- * excess ones that have been empty for the longest. If
- * <b>keep_recently_used</b> is true, do not free chunks unless they have been
- * empty since the last call to this function.
- **/
-void
-mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used)
-{
- mp_chunk_t *chunk, **first_to_free;
-
- mp_pool_sort_used_chunks(pool);
- ASSERT(n_to_keep >= 0);
-
- if (keep_recently_used) {
- int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks;
- if (n_to_keep < n_recently_used)
- n_to_keep = n_recently_used;
- }
-
- ASSERT(n_to_keep >= 0);
-
- first_to_free = &pool->empty_chunks;
- while (*first_to_free && n_to_keep > 0) {
- first_to_free = &(*first_to_free)->next;
- --n_to_keep;
- }
- if (!*first_to_free) {
- pool->min_empty_chunks = pool->n_empty_chunks;
- return;
- }
-
- chunk = *first_to_free;
- while (chunk) {
- mp_chunk_t *next = chunk->next;
- chunk->magic = 0xdeadbeef;
- FREE(chunk);
-#ifdef MEMPOOL_STATS
- ++pool->total_chunks_freed;
-#endif
- --pool->n_empty_chunks;
- chunk = next;
- }
-
- pool->min_empty_chunks = pool->n_empty_chunks;
- *first_to_free = NULL;
-}
-
-/** Helper: Given a list of chunks, free all the chunks in the list. */
-static void
-destroy_chunks(mp_chunk_t *chunk)
-{
- mp_chunk_t *next;
- while (chunk) {
- chunk->magic = 0xd3adb33f;
- next = chunk->next;
- FREE(chunk);
- chunk = next;
- }
-}
-
-/** Free all space held in <b>pool</b> This makes all pointers returned from
- * mp_pool_get(<b>pool</b>) invalid. */
-void
-mp_pool_destroy(mp_pool_t *pool)
-{
- destroy_chunks(pool->empty_chunks);
- destroy_chunks(pool->used_chunks);
- destroy_chunks(pool->full_chunks);
- memwipe(pool, 0xe0, sizeof(mp_pool_t));
- FREE(pool);
-}
-
-/** Helper: make sure that a given chunk list is not corrupt. */
-static int
-assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full)
-{
- mp_allocated_t *allocated;
- int n = 0;
- if (chunk)
- ASSERT(chunk->prev == NULL);
-
- while (chunk) {
- n++;
- ASSERT(chunk->magic == MP_CHUNK_MAGIC);
- ASSERT(chunk->pool == pool);
- for (allocated = chunk->first_free; allocated;
- allocated = allocated->u.next_free) {
- ASSERT(allocated->in_chunk == chunk);
- }
- if (empty)
- ASSERT(chunk->n_allocated == 0);
- else if (full)
- ASSERT(chunk->n_allocated == chunk->capacity);
- else
- ASSERT(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity);
-
- ASSERT(chunk->capacity == pool->new_chunk_capacity);
-
- ASSERT(chunk->mem_size ==
- pool->new_chunk_capacity * pool->item_alloc_size);
-
- ASSERT(chunk->next_mem >= chunk->mem &&
- chunk->next_mem <= chunk->mem + chunk->mem_size);
-
- if (chunk->next)
- ASSERT(chunk->next->prev == chunk);
-
- chunk = chunk->next;
- }
- return n;
-}
-
-/** Fail with an assertion if <b>pool</b> is not internally consistent. */
-void
-mp_pool_assert_ok(mp_pool_t *pool)
-{
- int n_empty;
-
- n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0);
- assert_chunks_ok(pool, pool->full_chunks, 0, 1);
- assert_chunks_ok(pool, pool->used_chunks, 0, 0);
-
- ASSERT(pool->n_empty_chunks == n_empty);
-}
-
-#ifdef TOR
-/** Dump information about <b>pool</b>'s memory usage to the Tor log at level
- * <b>severity</b>. */
-/*FFFF uses Tor logging functions. */
-void
-mp_pool_log_status(mp_pool_t *pool, int severity)
-{
- uint64_t bytes_used = 0;
- uint64_t bytes_allocated = 0;
- uint64_t bu = 0, ba = 0;
- mp_chunk_t *chunk;
- int n_full = 0, n_used = 0;
-
- ASSERT(pool);
-
- for (chunk = pool->empty_chunks; chunk; chunk = chunk->next) {
- bytes_allocated += chunk->mem_size;
- }
- log_fn(severity, LD_MM, U64_FORMAT" bytes in %d empty chunks",
- U64_PRINTF_ARG(bytes_allocated), pool->n_empty_chunks);
- for (chunk = pool->used_chunks; chunk; chunk = chunk->next) {
- ++n_used;
- bu += chunk->n_allocated * pool->item_alloc_size;
- ba += chunk->mem_size;
- log_fn(severity, LD_MM, " used chunk: %d items allocated",
- chunk->n_allocated);
- }
- log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
- " bytes in %d partially full chunks",
- U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_used);
- bytes_used += bu;
- bytes_allocated += ba;
- bu = ba = 0;
- for (chunk = pool->full_chunks; chunk; chunk = chunk->next) {
- ++n_full;
- bu += chunk->n_allocated * pool->item_alloc_size;
- ba += chunk->mem_size;
- }
- log_fn(severity, LD_MM, U64_FORMAT"/"U64_FORMAT
- " bytes in %d full chunks",
- U64_PRINTF_ARG(bu), U64_PRINTF_ARG(ba), n_full);
- bytes_used += bu;
- bytes_allocated += ba;
-
- log_fn(severity, LD_MM, "Total: "U64_FORMAT"/"U64_FORMAT" bytes allocated "
- "for cell pools are full.",
- U64_PRINTF_ARG(bytes_used), U64_PRINTF_ARG(bytes_allocated));
-
-#ifdef MEMPOOL_STATS
- log_fn(severity, LD_MM, U64_FORMAT" cell allocations ever; "
- U64_FORMAT" chunk allocations ever; "
- U64_FORMAT" chunk frees ever.",
- U64_PRINTF_ARG(pool->total_items_allocated),
- U64_PRINTF_ARG(pool->total_chunks_allocated),
- U64_PRINTF_ARG(pool->total_chunks_freed));
-#endif
-}
-#endif
-
diff --git a/src/common/mempool.h b/src/common/mempool.h
deleted file mode 100644
index 5cbeb8f482..0000000000
--- a/src/common/mempool.h
+++ /dev/null
@@ -1,65 +0,0 @@
-/* Copyright (c) 2007-2015, The Tor Project, Inc. */
-/* See LICENSE for licensing information */
-
-/**
- * \file mempool.h
- * \brief Headers for mempool.c
- **/
-
-#ifndef TOR_MEMPOOL_H
-#define TOR_MEMPOOL_H
-
-/** A memory pool is a context in which a large number of fixed-sized
-* objects can be allocated efficiently. See mempool.c for implementation
-* details. */
-typedef struct mp_pool_t mp_pool_t;
-
-void *mp_pool_get(mp_pool_t *pool);
-void mp_pool_release(void *item);
-mp_pool_t *mp_pool_new(size_t item_size, size_t chunk_capacity);
-void mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used);
-void mp_pool_destroy(mp_pool_t *pool);
-void mp_pool_assert_ok(mp_pool_t *pool);
-void mp_pool_log_status(mp_pool_t *pool, int severity);
-
-#define MP_POOL_ITEM_OVERHEAD (sizeof(void*))
-
-#define MEMPOOL_STATS
-
-#ifdef MEMPOOL_PRIVATE
-/* These declarations are only used by mempool.c and test.c */
-
-struct mp_pool_t {
- /** Doubly-linked list of chunks in which no items have been allocated.
- * The front of the list is the most recently emptied chunk. */
- struct mp_chunk_t *empty_chunks;
- /** Doubly-linked list of chunks in which some items have been allocated,
- * but which are not yet full. The front of the list is the chunk that has
- * most recently been modified. */
- struct mp_chunk_t *used_chunks;
- /** Doubly-linked list of chunks in which no more items can be allocated.
- * The front of the list is the chunk that has most recently become full. */
- struct mp_chunk_t *full_chunks;
- /** Length of <b>empty_chunks</b>. */
- int n_empty_chunks;
- /** Lowest value of <b>empty_chunks</b> since last call to
- * mp_pool_clean(-1). */
- int min_empty_chunks;
- /** Size of each chunk (in items). */
- int new_chunk_capacity;
- /** Size to allocate for each item, including overhead and alignment
- * padding. */
- size_t item_alloc_size;
-#ifdef MEMPOOL_STATS
- /** Total number of items allocated ever. */
- uint64_t total_items_allocated;
- /** Total number of chunks allocated ever. */
- uint64_t total_chunks_allocated;
- /** Total number of chunks freed ever. */
- uint64_t total_chunks_freed;
-#endif
-};
-#endif
-
-#endif
-