summaryrefslogtreecommitdiff
path: root/src/common/util.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/util.c')
-rw-r--r--src/common/util.c104
1 files changed, 83 insertions, 21 deletions
diff --git a/src/common/util.c b/src/common/util.c
index b33c80fd45..ce3646cd64 100644
--- a/src/common/util.c
+++ b/src/common/util.c
@@ -488,42 +488,58 @@ round_to_power_of_2(uint64_t u64)
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
- * <b>divisor</b> == 0. */
+ * <b>divisor</b> == 0. If no such x can be expressed as an unsigned, return
+ * UINT_MAX */
unsigned
round_to_next_multiple_of(unsigned number, unsigned divisor)
{
+ tor_assert(divisor > 0);
+ if (UINT_MAX - divisor + 1 < number)
+ return UINT_MAX;
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
- * <b>divisor</b> == 0. */
+ * <b>divisor</b> == 0. If no such x can be expressed as a uint32_t, return
+ * UINT32_MAX */
uint32_t
round_uint32_to_next_multiple_of(uint32_t number, uint32_t divisor)
{
+ tor_assert(divisor > 0);
+ if (UINT32_MAX - divisor + 1 < number)
+ return UINT32_MAX;
+
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x such that x is at least <b>number</b>, and x modulo
- * <b>divisor</b> == 0. */
+ * <b>divisor</b> == 0. If no such x can be expressed as a uint64_t, return
+ * UINT64_MAX */
uint64_t
round_uint64_to_next_multiple_of(uint64_t number, uint64_t divisor)
{
+ tor_assert(divisor > 0);
+ if (UINT64_MAX - divisor + 1 < number)
+ return UINT64_MAX;
number += divisor - 1;
number -= number % divisor;
return number;
}
/** Return the lowest x in [INT64_MIN, INT64_MAX] such that x is at least
- * <b>number</b>, and x modulo <b>divisor</b> == 0. */
+ * <b>number</b>, and x modulo <b>divisor</b> == 0. If no such x can be
+ * expressed as an int64_t, return INT64_MAX */
int64_t
round_int64_to_next_multiple_of(int64_t number, int64_t divisor)
{
tor_assert(divisor > 0);
- if (number >= 0 && INT64_MAX - divisor + 1 >= number)
+ if (INT64_MAX - divisor + 1 < number)
+ return INT64_MAX;
+ if (number >= 0)
number += divisor - 1;
number -= number % divisor;
return number;
@@ -537,33 +553,44 @@ int64_t
sample_laplace_distribution(double mu, double b, double p)
{
double result;
-
tor_assert(p >= 0.0 && p < 1.0);
+
/* This is the "inverse cumulative distribution function" from:
* http://en.wikipedia.org/wiki/Laplace_distribution */
- result = mu - b * (p > 0.5 ? 1.0 : -1.0)
- * tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));
-
- if (result >= INT64_MAX)
- return INT64_MAX;
- else if (result <= INT64_MIN)
+ if (p <= 0.0) {
+ /* Avoid taking log(0.0) == -INFINITY, as some processors or compiler
+ * options can cause the program to trap. */
return INT64_MIN;
- else
- return (int64_t) result;
+ }
+
+ result = mu - b * (p > 0.5 ? 1.0 : -1.0)
+ * tor_mathlog(1.0 - 2.0 * fabs(p - 0.5));
+
+ return clamp_double_to_int64(result);
}
-/** Add random noise between INT64_MIN and INT64_MAX coming from a
- * Laplace distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b>
- * to <b>signal</b> based on the provided <b>random</b> value in
- * [0.0, 1.0[. */
+/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace
+ * distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> to
+ * <b>signal</b> based on the provided <b>random</b> value in [0.0, 1.0[.
+ * The epsilon value must be between ]0.0, 1.0]. delta_f must be greater
+ * than 0. */
int64_t
add_laplace_noise(int64_t signal, double random, double delta_f,
double epsilon)
{
- int64_t noise = sample_laplace_distribution(
- 0.0, /* just add noise, no further signal */
- delta_f / epsilon, random);
+ int64_t noise;
+
+ /* epsilon MUST be between ]0.0, 1.0] */
+ tor_assert(epsilon > 0.0 && epsilon <= 1.0);
+ /* delta_f MUST be greater than 0. */
+ tor_assert(delta_f > 0.0);
+ /* Just add noise, no further signal */
+ noise = sample_laplace_distribution(0.0,
+ delta_f / epsilon,
+ random);
+
+ /* Clip (signal + noise) to [INT64_MIN, INT64_MAX] */
if (noise > 0 && INT64_MAX - noise < signal)
return INT64_MAX;
else if (noise < 0 && INT64_MIN - noise > signal)
@@ -5385,3 +5412,38 @@ tor_weak_random_range(tor_weak_rng_t *rng, int32_t top)
return result;
}
+/** Cast a given double value to a int64_t. Return 0 if number is NaN.
+ * Returns either INT64_MIN or INT64_MAX if number is outside of the int64_t
+ * range. */
+int64_t
+clamp_double_to_int64(double number)
+{
+ int exp;
+
+ /* NaN is a special case that can't be used with the logic below. */
+ if (isnan(number)) {
+ return 0;
+ }
+
+ /* Time to validate if result can overflows a int64_t value. Fun with
+ * float! Find that exponent exp such that
+ * number == x * 2^exp
+ * for some x with abs(x) in [0.5, 1.0). Note that this implies that the
+ * magnitude of number is strictly less than 2^exp.
+ *
+ * If number is infinite, the call to frexp is legal but the contents of
+ * exp are unspecified. */
+ frexp(number, &exp);
+
+ /* If the magnitude of number is strictly less than 2^63, the truncated
+ * version of number is guaranteed to be representable. The only
+ * representable integer for which this is not the case is INT64_MIN, but
+ * it is covered by the logic below. */
+ if (isfinite(number) && exp <= 63) {
+ return number;
+ }
+
+ /* Handle infinities and finite numbers with magnitude >= 2^63. */
+ return signbit(number) ? INT64_MIN : INT64_MAX;
+}
+