diff options
Diffstat (limited to 'src/common/util.c')
-rw-r--r-- | src/common/util.c | 104 |
1 files changed, 83 insertions, 21 deletions
diff --git a/src/common/util.c b/src/common/util.c index b33c80fd45..ce3646cd64 100644 --- a/src/common/util.c +++ b/src/common/util.c @@ -488,42 +488,58 @@ round_to_power_of_2(uint64_t u64) } /** Return the lowest x such that x is at least <b>number</b>, and x modulo - * <b>divisor</b> == 0. */ + * <b>divisor</b> == 0. If no such x can be expressed as an unsigned, return + * UINT_MAX */ unsigned round_to_next_multiple_of(unsigned number, unsigned divisor) { + tor_assert(divisor > 0); + if (UINT_MAX - divisor + 1 < number) + return UINT_MAX; number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x such that x is at least <b>number</b>, and x modulo - * <b>divisor</b> == 0. */ + * <b>divisor</b> == 0. If no such x can be expressed as a uint32_t, return + * UINT32_MAX */ uint32_t round_uint32_to_next_multiple_of(uint32_t number, uint32_t divisor) { + tor_assert(divisor > 0); + if (UINT32_MAX - divisor + 1 < number) + return UINT32_MAX; + number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x such that x is at least <b>number</b>, and x modulo - * <b>divisor</b> == 0. */ + * <b>divisor</b> == 0. If no such x can be expressed as a uint64_t, return + * UINT64_MAX */ uint64_t round_uint64_to_next_multiple_of(uint64_t number, uint64_t divisor) { + tor_assert(divisor > 0); + if (UINT64_MAX - divisor + 1 < number) + return UINT64_MAX; number += divisor - 1; number -= number % divisor; return number; } /** Return the lowest x in [INT64_MIN, INT64_MAX] such that x is at least - * <b>number</b>, and x modulo <b>divisor</b> == 0. */ + * <b>number</b>, and x modulo <b>divisor</b> == 0. If no such x can be + * expressed as an int64_t, return INT64_MAX */ int64_t round_int64_to_next_multiple_of(int64_t number, int64_t divisor) { tor_assert(divisor > 0); - if (number >= 0 && INT64_MAX - divisor + 1 >= number) + if (INT64_MAX - divisor + 1 < number) + return INT64_MAX; + if (number >= 0) number += divisor - 1; number -= number % divisor; return number; @@ -537,33 +553,44 @@ int64_t sample_laplace_distribution(double mu, double b, double p) { double result; - tor_assert(p >= 0.0 && p < 1.0); + /* This is the "inverse cumulative distribution function" from: * http://en.wikipedia.org/wiki/Laplace_distribution */ - result = mu - b * (p > 0.5 ? 1.0 : -1.0) - * tor_mathlog(1.0 - 2.0 * fabs(p - 0.5)); - - if (result >= INT64_MAX) - return INT64_MAX; - else if (result <= INT64_MIN) + if (p <= 0.0) { + /* Avoid taking log(0.0) == -INFINITY, as some processors or compiler + * options can cause the program to trap. */ return INT64_MIN; - else - return (int64_t) result; + } + + result = mu - b * (p > 0.5 ? 1.0 : -1.0) + * tor_mathlog(1.0 - 2.0 * fabs(p - 0.5)); + + return clamp_double_to_int64(result); } -/** Add random noise between INT64_MIN and INT64_MAX coming from a - * Laplace distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> - * to <b>signal</b> based on the provided <b>random</b> value in - * [0.0, 1.0[. */ +/** Add random noise between INT64_MIN and INT64_MAX coming from a Laplace + * distribution with mu = 0 and b = <b>delta_f</b>/<b>epsilon</b> to + * <b>signal</b> based on the provided <b>random</b> value in [0.0, 1.0[. + * The epsilon value must be between ]0.0, 1.0]. delta_f must be greater + * than 0. */ int64_t add_laplace_noise(int64_t signal, double random, double delta_f, double epsilon) { - int64_t noise = sample_laplace_distribution( - 0.0, /* just add noise, no further signal */ - delta_f / epsilon, random); + int64_t noise; + + /* epsilon MUST be between ]0.0, 1.0] */ + tor_assert(epsilon > 0.0 && epsilon <= 1.0); + /* delta_f MUST be greater than 0. */ + tor_assert(delta_f > 0.0); + /* Just add noise, no further signal */ + noise = sample_laplace_distribution(0.0, + delta_f / epsilon, + random); + + /* Clip (signal + noise) to [INT64_MIN, INT64_MAX] */ if (noise > 0 && INT64_MAX - noise < signal) return INT64_MAX; else if (noise < 0 && INT64_MIN - noise > signal) @@ -5385,3 +5412,38 @@ tor_weak_random_range(tor_weak_rng_t *rng, int32_t top) return result; } +/** Cast a given double value to a int64_t. Return 0 if number is NaN. + * Returns either INT64_MIN or INT64_MAX if number is outside of the int64_t + * range. */ +int64_t +clamp_double_to_int64(double number) +{ + int exp; + + /* NaN is a special case that can't be used with the logic below. */ + if (isnan(number)) { + return 0; + } + + /* Time to validate if result can overflows a int64_t value. Fun with + * float! Find that exponent exp such that + * number == x * 2^exp + * for some x with abs(x) in [0.5, 1.0). Note that this implies that the + * magnitude of number is strictly less than 2^exp. + * + * If number is infinite, the call to frexp is legal but the contents of + * exp are unspecified. */ + frexp(number, &exp); + + /* If the magnitude of number is strictly less than 2^63, the truncated + * version of number is guaranteed to be representable. The only + * representable integer for which this is not the case is INT64_MIN, but + * it is covered by the logic below. */ + if (isfinite(number) && exp <= 63) { + return number; + } + + /* Handle infinities and finite numbers with magnitude >= 2^63. */ + return signbit(number) ? INT64_MIN : INT64_MAX; +} + |