diff options
Diffstat (limited to 'src/common/crypto_rsa.c')
-rw-r--r-- | src/common/crypto_rsa.c | 1183 |
1 files changed, 1183 insertions, 0 deletions
diff --git a/src/common/crypto_rsa.c b/src/common/crypto_rsa.c new file mode 100644 index 0000000000..f66cdef3c5 --- /dev/null +++ b/src/common/crypto_rsa.c @@ -0,0 +1,1183 @@ +/* Copyright (c) 2001, Matej Pfajfar. + * Copyright (c) 2001-2004, Roger Dingledine. + * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. + * Copyright (c) 2007-2017, The Tor Project, Inc. */ +/* See LICENSE for licensing information */ + +/** + * \file crypto_rsa.c + * \brief Block of functions related with RSA utilities and operations. + **/ + +#include "crypto.h" +#include "crypto_curve25519.h" +#include "crypto_digest.h" +#include "crypto_format.h" +#include "compat_openssl.h" +#include "crypto_rand.h" +#include "crypto_rsa.h" +#include "crypto_util.h" + +DISABLE_GCC_WARNING(redundant-decls) + +#include <openssl/err.h> +#include <openssl/rsa.h> +#include <openssl/pem.h> +#include <openssl/evp.h> +#include <openssl/engine.h> +#include <openssl/rand.h> +#include <openssl/bn.h> +#include <openssl/dh.h> +#include <openssl/conf.h> +#include <openssl/hmac.h> + +ENABLE_GCC_WARNING(redundant-decls) + +#include "torlog.h" +#include "util.h" +#include "util_format.h" + +/** Declaration for crypto_pk_t structure. */ +struct crypto_pk_t +{ + int refs; /**< reference count, so we don't have to copy keys */ + RSA *key; /**< The key itself */ +}; + +/** Log all pending crypto errors at level <b>severity</b>. Use + * <b>doing</b> to describe our current activities. + */ +static void +crypto_log_errors(int severity, const char *doing) +{ + unsigned long err; + const char *msg, *lib, *func; + while ((err = ERR_get_error()) != 0) { + msg = (const char*)ERR_reason_error_string(err); + lib = (const char*)ERR_lib_error_string(err); + func = (const char*)ERR_func_error_string(err); + if (!msg) msg = "(null)"; + if (!lib) lib = "(null)"; + if (!func) func = "(null)"; + if (BUG(!doing)) doing = "(null)"; + tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)", + doing, msg, lib, func); + } +} + +/** Return the number of bytes added by padding method <b>padding</b>. + */ +int +crypto_get_rsa_padding_overhead(int padding) +{ + switch (padding) + { + case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD; + default: tor_assert(0); return -1; // LCOV_EXCL_LINE + } +} + +/** Given a padding method <b>padding</b>, return the correct OpenSSL constant. + */ +int +crypto_get_rsa_padding(int padding) +{ + switch (padding) + { + case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING; + default: tor_assert(0); return -1; // LCOV_EXCL_LINE + } +} + +/** used internally: quicly validate a crypto_pk_t object as a private key. + * Return 1 iff the public key is valid, 0 if obviously invalid. + */ +static int +crypto_pk_private_ok(const crypto_pk_t *k) +{ +#ifdef OPENSSL_1_1_API + if (!k || !k->key) + return 0; + + const BIGNUM *p, *q; + RSA_get0_factors(k->key, &p, &q); + return p != NULL; /* XXX/yawning: Should we check q? */ +#else /* !(defined(OPENSSL_1_1_API)) */ + return k && k->key && k->key->p; +#endif /* defined(OPENSSL_1_1_API) */ +} + +/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */ +crypto_pk_t * +crypto_new_pk_from_rsa_(RSA *rsa) +{ + crypto_pk_t *env; + tor_assert(rsa); + env = tor_malloc(sizeof(crypto_pk_t)); + env->refs = 1; + env->key = rsa; + return env; +} + +/** Helper, used by tor-gencert.c. Return the RSA from a + * crypto_pk_t. */ +RSA * +crypto_pk_get_rsa_(crypto_pk_t *env) +{ + return env->key; +} + +/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff + * private is set, include the private-key portion of the key. Return a valid + * pointer on success, and NULL on failure. */ +MOCK_IMPL(EVP_PKEY *, +crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private)) +{ + RSA *key = NULL; + EVP_PKEY *pkey = NULL; + tor_assert(env->key); + if (private) { + if (!(key = RSAPrivateKey_dup(env->key))) + goto error; + } else { + if (!(key = RSAPublicKey_dup(env->key))) + goto error; + } + if (!(pkey = EVP_PKEY_new())) + goto error; + if (!(EVP_PKEY_assign_RSA(pkey, key))) + goto error; + return pkey; + error: + if (pkey) + EVP_PKEY_free(pkey); + if (key) + RSA_free(key); + return NULL; +} + +/** Allocate and return storage for a public key. The key itself will not yet + * be set. + */ +MOCK_IMPL(crypto_pk_t *, +crypto_pk_new,(void)) +{ + RSA *rsa; + + rsa = RSA_new(); + tor_assert(rsa); + return crypto_new_pk_from_rsa_(rsa); +} + +/** Release a reference to an asymmetric key; when all the references + * are released, free the key. + */ +void +crypto_pk_free_(crypto_pk_t *env) +{ + if (!env) + return; + + if (--env->refs > 0) + return; + tor_assert(env->refs == 0); + + if (env->key) + RSA_free(env->key); + + tor_free(env); +} + +/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>. + * Return 0 on success, -1 on failure. + */ +MOCK_IMPL(int, +crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) +{ + tor_assert(env); + + if (env->key) { + RSA_free(env->key); + env->key = NULL; + } + + { + BIGNUM *e = BN_new(); + RSA *r = NULL; + if (!e) + goto done; + if (! BN_set_word(e, 65537)) + goto done; + r = RSA_new(); + if (!r) + goto done; + if (RSA_generate_key_ex(r, bits, e, NULL) == -1) + goto done; + + env->key = r; + r = NULL; + done: + if (e) + BN_clear_free(e); + if (r) + RSA_free(r); + } + + if (!env->key) { + crypto_log_errors(LOG_WARN, "generating RSA key"); + return -1; + } + + return 0; +} + +/** A PEM callback that always reports a failure to get a password */ +static int +pem_no_password_cb(char *buf, int size, int rwflag, void *u) +{ + (void)buf; + (void)size; + (void)rwflag; + (void)u; + return -1; +} + +/** Read a PEM-encoded private key from the <b>len</b>-byte string <b>s</b> + * into <b>env</b>. Return 0 on success, -1 on failure. If len is -1, + * the string is nul-terminated. + */ +int +crypto_pk_read_private_key_from_string(crypto_pk_t *env, + const char *s, ssize_t len) +{ + BIO *b; + + tor_assert(env); + tor_assert(s); + tor_assert(len < INT_MAX && len < SSIZE_T_CEILING); + + /* Create a read-only memory BIO, backed by the string 's' */ + b = BIO_new_mem_buf((char*)s, (int)len); + if (!b) + return -1; + + if (env->key) + RSA_free(env->key); + + env->key = PEM_read_bio_RSAPrivateKey(b,NULL,pem_no_password_cb,NULL); + + BIO_free(b); + + if (!env->key) { + crypto_log_errors(LOG_WARN, "Error parsing private key"); + return -1; + } + return 0; +} + +/** Read a PEM-encoded private key from the file named by + * <b>keyfile</b> into <b>env</b>. Return 0 on success, -1 on failure. + */ +int +crypto_pk_read_private_key_from_filename(crypto_pk_t *env, + const char *keyfile) +{ + char *contents; + int r; + + /* Read the file into a string. */ + contents = read_file_to_str(keyfile, 0, NULL); + if (!contents) { + log_warn(LD_CRYPTO, "Error reading private key from \"%s\"", keyfile); + return -1; + } + + /* Try to parse it. */ + r = crypto_pk_read_private_key_from_string(env, contents, -1); + memwipe(contents, 0, strlen(contents)); + tor_free(contents); + if (r) + return -1; /* read_private_key_from_string already warned, so we don't.*/ + + /* Make sure it's valid. */ + if (crypto_pk_check_key(env) <= 0) + return -1; + + return 0; +} + +/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on + * success, -1 on failure. */ +static int +crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, + size_t *len, int is_public) +{ + BUF_MEM *buf; + BIO *b; + int r; + + tor_assert(env); + tor_assert(env->key); + tor_assert(dest); + + b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ + if (!b) + return -1; + + /* Now you can treat b as if it were a file. Just use the + * PEM_*_bio_* functions instead of the non-bio variants. + */ + if (is_public) + r = PEM_write_bio_RSAPublicKey(b, env->key); + else + r = PEM_write_bio_RSAPrivateKey(b, env->key, NULL,NULL,0,NULL,NULL); + + if (!r) { + crypto_log_errors(LOG_WARN, "writing RSA key to string"); + BIO_free(b); + return -1; + } + + BIO_get_mem_ptr(b, &buf); + + *dest = tor_malloc(buf->length+1); + memcpy(*dest, buf->data, buf->length); + (*dest)[buf->length] = 0; /* nul terminate it */ + *len = buf->length; + + BIO_free(b); + + return 0; +} + +/** PEM-encode the public key portion of <b>env</b> and write it to a + * newly allocated string. On success, set *<b>dest</b> to the new + * string, *<b>len</b> to the string's length, and return 0. On + * failure, return -1. + */ +int +crypto_pk_write_public_key_to_string(crypto_pk_t *env, char **dest, + size_t *len) +{ + return crypto_pk_write_key_to_string_impl(env, dest, len, 1); +} + +/** PEM-encode the private key portion of <b>env</b> and write it to a + * newly allocated string. On success, set *<b>dest</b> to the new + * string, *<b>len</b> to the string's length, and return 0. On + * failure, return -1. + */ +int +crypto_pk_write_private_key_to_string(crypto_pk_t *env, char **dest, + size_t *len) +{ + return crypto_pk_write_key_to_string_impl(env, dest, len, 0); +} + +/** Read a PEM-encoded public key from the first <b>len</b> characters of + * <b>src</b>, and store the result in <b>env</b>. Return 0 on success, -1 on + * failure. + */ +int +crypto_pk_read_public_key_from_string(crypto_pk_t *env, const char *src, + size_t len) +{ + BIO *b; + + tor_assert(env); + tor_assert(src); + tor_assert(len<INT_MAX); + + b = BIO_new(BIO_s_mem()); /* Create a memory BIO */ + if (!b) + return -1; + + BIO_write(b, src, (int)len); + + if (env->key) + RSA_free(env->key); + env->key = PEM_read_bio_RSAPublicKey(b, NULL, pem_no_password_cb, NULL); + BIO_free(b); + if (!env->key) { + crypto_log_errors(LOG_WARN, "reading public key from string"); + return -1; + } + + return 0; +} + +/** Write the private key from <b>env</b> into the file named by <b>fname</b>, + * PEM-encoded. Return 0 on success, -1 on failure. + */ +int +crypto_pk_write_private_key_to_filename(crypto_pk_t *env, + const char *fname) +{ + BIO *bio; + char *cp; + long len; + char *s; + int r; + + tor_assert(crypto_pk_private_ok(env)); + + if (!(bio = BIO_new(BIO_s_mem()))) + return -1; + if (PEM_write_bio_RSAPrivateKey(bio, env->key, NULL,NULL,0,NULL,NULL) + == 0) { + crypto_log_errors(LOG_WARN, "writing private key"); + BIO_free(bio); + return -1; + } + len = BIO_get_mem_data(bio, &cp); + tor_assert(len >= 0); + s = tor_malloc(len+1); + memcpy(s, cp, len); + s[len]='\0'; + r = write_str_to_file(fname, s, 0); + BIO_free(bio); + memwipe(s, 0, strlen(s)); + tor_free(s); + return r; +} + +/** Return true iff <b>env</b> has a valid key. + */ +int +crypto_pk_check_key(crypto_pk_t *env) +{ + int r; + tor_assert(env); + + r = RSA_check_key(env->key); + if (r <= 0) + crypto_log_errors(LOG_WARN,"checking RSA key"); + return r; +} + +/** Return true iff <b>key</b> contains the private-key portion of the RSA + * key. */ +int +crypto_pk_key_is_private(const crypto_pk_t *key) +{ + tor_assert(key); + return crypto_pk_private_ok(key); +} + +/** Return true iff <b>env</b> contains a public key whose public exponent + * equals 65537. + */ +int +crypto_pk_public_exponent_ok(crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + + const BIGNUM *e; + +#ifdef OPENSSL_1_1_API + const BIGNUM *n, *d; + RSA_get0_key(env->key, &n, &e, &d); +#else + e = env->key->e; +#endif /* defined(OPENSSL_1_1_API) */ + return BN_is_word(e, 65537); +} + +/** Compare the public-key components of a and b. Return less than 0 + * if a\<b, 0 if a==b, and greater than 0 if a\>b. A NULL key is + * considered to be less than all non-NULL keys, and equal to itself. + * + * Note that this may leak information about the keys through timing. + */ +int +crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) +{ + int result; + char a_is_non_null = (a != NULL) && (a->key != NULL); + char b_is_non_null = (b != NULL) && (b->key != NULL); + char an_argument_is_null = !a_is_non_null | !b_is_non_null; + + result = tor_memcmp(&a_is_non_null, &b_is_non_null, sizeof(a_is_non_null)); + if (an_argument_is_null) + return result; + + const BIGNUM *a_n, *a_e; + const BIGNUM *b_n, *b_e; + +#ifdef OPENSSL_1_1_API + const BIGNUM *a_d, *b_d; + RSA_get0_key(a->key, &a_n, &a_e, &a_d); + RSA_get0_key(b->key, &b_n, &b_e, &b_d); +#else + a_n = a->key->n; + a_e = a->key->e; + b_n = b->key->n; + b_e = b->key->e; +#endif /* defined(OPENSSL_1_1_API) */ + + tor_assert(a_n != NULL && a_e != NULL); + tor_assert(b_n != NULL && b_e != NULL); + + result = BN_cmp(a_n, b_n); + if (result) + return result; + return BN_cmp(a_e, b_e); +} + +/** Compare the public-key components of a and b. Return non-zero iff + * a==b. A NULL key is considered to be distinct from all non-NULL + * keys, and equal to itself. + * + * Note that this may leak information about the keys through timing. + */ +int +crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b) +{ + return (crypto_pk_cmp_keys(a, b) == 0); +} + +/** Return the size of the public key modulus in <b>env</b>, in bytes. */ +size_t +crypto_pk_keysize(const crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + + return (size_t) RSA_size((RSA*)env->key); +} + +/** Return the size of the public key modulus of <b>env</b>, in bits. */ +int +crypto_pk_num_bits(crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + +#ifdef OPENSSL_1_1_API + /* It's so stupid that there's no other way to check that n is valid + * before calling RSA_bits(). + */ + const BIGNUM *n, *e, *d; + RSA_get0_key(env->key, &n, &e, &d); + tor_assert(n != NULL); + + return RSA_bits(env->key); +#else /* !(defined(OPENSSL_1_1_API)) */ + tor_assert(env->key->n); + return BN_num_bits(env->key->n); +#endif /* defined(OPENSSL_1_1_API) */ +} + +/** Increase the reference count of <b>env</b>, and return it. + */ +crypto_pk_t * +crypto_pk_dup_key(crypto_pk_t *env) +{ + tor_assert(env); + tor_assert(env->key); + + env->refs++; + return env; +} + +#ifdef TOR_UNIT_TESTS +/** For testing: replace dest with src. (Dest must have a refcount + * of 1) */ +void +crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src) +{ + tor_assert(dest); + tor_assert(dest->refs == 1); + tor_assert(src); + RSA_free(dest->key); + dest->key = RSAPrivateKey_dup(src->key); +} +#endif /* defined(TOR_UNIT_TESTS) */ + +/** Make a real honest-to-goodness copy of <b>env</b>, and return it. + * Returns NULL on failure. */ +crypto_pk_t * +crypto_pk_copy_full(crypto_pk_t *env) +{ + RSA *new_key; + int privatekey = 0; + tor_assert(env); + tor_assert(env->key); + + if (crypto_pk_private_ok(env)) { + new_key = RSAPrivateKey_dup(env->key); + privatekey = 1; + } else { + new_key = RSAPublicKey_dup(env->key); + } + if (!new_key) { + /* LCOV_EXCL_START + * + * We can't cause RSA*Key_dup() to fail, so we can't really test this. + */ + log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.", + privatekey?"private":"public"); + crypto_log_errors(LOG_ERR, + privatekey ? "Duplicating a private key" : + "Duplicating a public key"); + tor_fragile_assert(); + return NULL; + /* LCOV_EXCL_STOP */ + } + + return crypto_new_pk_from_rsa_(new_key); +} + +/** Perform a hybrid (public/secret) encryption on <b>fromlen</b> + * bytes of data from <b>from</b>, with padding type 'padding', + * storing the results on <b>to</b>. + * + * Returns the number of bytes written on success, -1 on failure. + * + * The encrypted data consists of: + * - The source data, padded and encrypted with the public key, if the + * padded source data is no longer than the public key, and <b>force</b> + * is false, OR + * - The beginning of the source data prefixed with a 16-byte symmetric key, + * padded and encrypted with the public key; followed by the rest of + * the source data encrypted in AES-CTR mode with the symmetric key. + * + * NOTE that this format does not authenticate the symmetrically encrypted + * part of the data, and SHOULD NOT BE USED for new protocols. + */ +int +crypto_pk_obsolete_public_hybrid_encrypt(crypto_pk_t *env, + char *to, size_t tolen, + const char *from, + size_t fromlen, + int padding, int force) +{ + int overhead, outlen, r; + size_t pkeylen, symlen; + crypto_cipher_t *cipher = NULL; + char *buf = NULL; + + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen < SIZE_T_CEILING); + + overhead = crypto_get_rsa_padding_overhead(crypto_get_rsa_padding(padding)); + pkeylen = crypto_pk_keysize(env); + + if (!force && fromlen+overhead <= pkeylen) { + /* It all fits in a single encrypt. */ + return crypto_pk_public_encrypt(env,to, + tolen, + from,fromlen,padding); + } + tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN); + tor_assert(tolen >= pkeylen); + + char key[CIPHER_KEY_LEN]; + crypto_rand(key, sizeof(key)); /* generate a new key. */ + cipher = crypto_cipher_new(key); + + buf = tor_malloc(pkeylen+1); + memcpy(buf, key, CIPHER_KEY_LEN); + memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN); + + /* Length of symmetrically encrypted data. */ + symlen = fromlen-(pkeylen-overhead-CIPHER_KEY_LEN); + + outlen = crypto_pk_public_encrypt(env,to,tolen,buf,pkeylen-overhead,padding); + if (outlen!=(int)pkeylen) { + goto err; + } + r = crypto_cipher_encrypt(cipher, to+outlen, + from+pkeylen-overhead-CIPHER_KEY_LEN, symlen); + + if (r<0) goto err; + memwipe(buf, 0, pkeylen); + memwipe(key, 0, sizeof(key)); + tor_free(buf); + crypto_cipher_free(cipher); + tor_assert(outlen+symlen < INT_MAX); + return (int)(outlen + symlen); + err: + + memwipe(buf, 0, pkeylen); + memwipe(key, 0, sizeof(key)); + tor_free(buf); + crypto_cipher_free(cipher); + return -1; +} + +/** Invert crypto_pk_obsolete_public_hybrid_encrypt. Returns the number of + * bytes written on success, -1 on failure. + * + * NOTE that this format does not authenticate the symmetrically encrypted + * part of the data, and SHOULD NOT BE USED for new protocols. + */ +int +crypto_pk_obsolete_private_hybrid_decrypt(crypto_pk_t *env, + char *to, + size_t tolen, + const char *from, + size_t fromlen, + int padding, int warnOnFailure) +{ + int outlen, r; + size_t pkeylen; + crypto_cipher_t *cipher = NULL; + char *buf = NULL; + + tor_assert(fromlen < SIZE_T_CEILING); + pkeylen = crypto_pk_keysize(env); + + if (fromlen <= pkeylen) { + return crypto_pk_private_decrypt(env,to,tolen,from,fromlen,padding, + warnOnFailure); + } + + buf = tor_malloc(pkeylen); + outlen = crypto_pk_private_decrypt(env,buf,pkeylen,from,pkeylen,padding, + warnOnFailure); + if (outlen<0) { + log_fn(warnOnFailure?LOG_WARN:LOG_DEBUG, LD_CRYPTO, + "Error decrypting public-key data"); + goto err; + } + if (outlen < CIPHER_KEY_LEN) { + log_fn(warnOnFailure?LOG_WARN:LOG_INFO, LD_CRYPTO, + "No room for a symmetric key"); + goto err; + } + cipher = crypto_cipher_new(buf); + if (!cipher) { + goto err; + } + memcpy(to,buf+CIPHER_KEY_LEN,outlen-CIPHER_KEY_LEN); + outlen -= CIPHER_KEY_LEN; + tor_assert(tolen - outlen >= fromlen - pkeylen); + r = crypto_cipher_decrypt(cipher, to+outlen, from+pkeylen, fromlen-pkeylen); + if (r<0) + goto err; + memwipe(buf,0,pkeylen); + tor_free(buf); + crypto_cipher_free(cipher); + tor_assert(outlen + fromlen < INT_MAX); + return (int)(outlen + (fromlen-pkeylen)); + err: + memwipe(buf,0,pkeylen); + tor_free(buf); + crypto_cipher_free(cipher); + return -1; +} + +/** Encrypt <b>fromlen</b> bytes from <b>from</b> with the public key + * in <b>env</b>, using the padding method <b>padding</b>. On success, + * write the result to <b>to</b>, and return the number of bytes + * written. On failure, return -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_public_encrypt(crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen, int padding) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen<INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + + r = RSA_public_encrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + env->key, crypto_get_rsa_padding(padding)); + if (r<0) { + crypto_log_errors(LOG_WARN, "performing RSA encryption"); + return -1; + } + return r; +} + +/** Decrypt <b>fromlen</b> bytes from <b>from</b> with the private key + * in <b>env</b>, using the padding method <b>padding</b>. On success, + * write the result to <b>to</b>, and return the number of bytes + * written. On failure, return -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_private_decrypt(crypto_pk_t *env, char *to, + size_t tolen, + const char *from, size_t fromlen, + int padding, int warnOnFailure) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(env->key); + tor_assert(fromlen<INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + if (!crypto_pk_key_is_private(env)) + /* Not a private key */ + return -1; + + r = RSA_private_decrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + env->key, crypto_get_rsa_padding(padding)); + + if (r<0) { + crypto_log_errors(warnOnFailure?LOG_WARN:LOG_DEBUG, + "performing RSA decryption"); + return -1; + } + return r; +} + +/** Check the signature in <b>from</b> (<b>fromlen</b> bytes long) with the + * public key in <b>env</b>, using PKCS1 padding. On success, write the + * signed data to <b>to</b>, and return the number of bytes written. + * On failure, return -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +MOCK_IMPL(int, +crypto_pk_public_checksig,(const crypto_pk_t *env, char *to, + size_t tolen, + const char *from, size_t fromlen)) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen < INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + r = RSA_public_decrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + env->key, RSA_PKCS1_PADDING); + + if (r<0) { + crypto_log_errors(LOG_INFO, "checking RSA signature"); + return -1; + } + return r; +} + +/** Sign <b>fromlen</b> bytes of data from <b>from</b> with the private key in + * <b>env</b>, using PKCS1 padding. On success, write the signature to + * <b>to</b>, and return the number of bytes written. On failure, return + * -1. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen) +{ + int r; + tor_assert(env); + tor_assert(from); + tor_assert(to); + tor_assert(fromlen < INT_MAX); + tor_assert(tolen >= crypto_pk_keysize(env)); + if (!crypto_pk_key_is_private(env)) + /* Not a private key */ + return -1; + + r = RSA_private_encrypt((int)fromlen, + (unsigned char*)from, (unsigned char*)to, + (RSA*)env->key, RSA_PKCS1_PADDING); + if (r<0) { + crypto_log_errors(LOG_WARN, "generating RSA signature"); + return -1; + } + return r; +} + +/** ASN.1-encode the public portion of <b>pk</b> into <b>dest</b>. + * Return -1 on error, or the number of characters used on success. + */ +int +crypto_pk_asn1_encode(const crypto_pk_t *pk, char *dest, size_t dest_len) +{ + int len; + unsigned char *buf = NULL; + + len = i2d_RSAPublicKey(pk->key, &buf); + if (len < 0 || buf == NULL) + return -1; + + if ((size_t)len > dest_len || dest_len > SIZE_T_CEILING) { + OPENSSL_free(buf); + return -1; + } + /* We don't encode directly into 'dest', because that would be illegal + * type-punning. (C99 is smarter than me, C99 is smarter than me...) + */ + memcpy(dest,buf,len); + OPENSSL_free(buf); + return len; +} + +/** Decode an ASN.1-encoded public key from <b>str</b>; return the result on + * success and NULL on failure. + */ +crypto_pk_t * +crypto_pk_asn1_decode(const char *str, size_t len) +{ + RSA *rsa; + unsigned char *buf; + const unsigned char *cp; + cp = buf = tor_malloc(len); + memcpy(buf,str,len); + rsa = d2i_RSAPublicKey(NULL, &cp, len); + tor_free(buf); + if (!rsa) { + crypto_log_errors(LOG_WARN,"decoding public key"); + return NULL; + } + return crypto_new_pk_from_rsa_(rsa); +} + +/** Given a private or public key <b>pk</b>, put a fingerprint of the + * public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 bytes of + * space). Return 0 on success, -1 on failure. + * + * Fingerprints are computed as the SHA1 digest of the ASN.1 encoding + * of the public key, converted to hexadecimal, in upper case, with a + * space after every four digits. + * + * If <b>add_space</b> is false, omit the spaces. + */ +int +crypto_pk_get_fingerprint(crypto_pk_t *pk, char *fp_out, int add_space) +{ + char digest[DIGEST_LEN]; + char hexdigest[HEX_DIGEST_LEN+1]; + if (crypto_pk_get_digest(pk, digest)) { + return -1; + } + base16_encode(hexdigest,sizeof(hexdigest),digest,DIGEST_LEN); + if (add_space) { + crypto_add_spaces_to_fp(fp_out, FINGERPRINT_LEN+1, hexdigest); + } else { + strncpy(fp_out, hexdigest, HEX_DIGEST_LEN+1); + } + return 0; +} + +/** Given a private or public key <b>pk</b>, put a hashed fingerprint of + * the public key into <b>fp_out</b> (must have at least FINGERPRINT_LEN+1 + * bytes of space). Return 0 on success, -1 on failure. + * + * Hashed fingerprints are computed as the SHA1 digest of the SHA1 digest + * of the ASN.1 encoding of the public key, converted to hexadecimal, in + * upper case. + */ +int +crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out) +{ + char digest[DIGEST_LEN], hashed_digest[DIGEST_LEN]; + if (crypto_pk_get_digest(pk, digest)) { + return -1; + } + if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) { + return -1; + } + base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN); + return 0; +} + +/** Check a siglen-byte long signature at <b>sig</b> against + * <b>datalen</b> bytes of data at <b>data</b>, using the public key + * in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for + * SHA1(data). Else return -1. + */ +MOCK_IMPL(int, +crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data, + size_t datalen, const char *sig, + size_t siglen)) +{ + char digest[DIGEST_LEN]; + char *buf; + size_t buflen; + int r; + + tor_assert(env); + tor_assert(data); + tor_assert(sig); + tor_assert(datalen < SIZE_T_CEILING); + tor_assert(siglen < SIZE_T_CEILING); + + if (crypto_digest(digest,data,datalen)<0) { + log_warn(LD_BUG, "couldn't compute digest"); + return -1; + } + buflen = crypto_pk_keysize(env); + buf = tor_malloc(buflen); + r = crypto_pk_public_checksig(env,buf,buflen,sig,siglen); + if (r != DIGEST_LEN) { + log_warn(LD_CRYPTO, "Invalid signature"); + tor_free(buf); + return -1; + } + if (tor_memneq(buf, digest, DIGEST_LEN)) { + log_warn(LD_CRYPTO, "Signature mismatched with digest."); + tor_free(buf); + return -1; + } + tor_free(buf); + + return 0; +} + +/** Compute a SHA1 digest of <b>fromlen</b> bytes of data stored at + * <b>from</b>; sign the data with the private key in <b>env</b>, and + * store it in <b>to</b>. Return the number of bytes written on + * success, and -1 on failure. + * + * <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be + * at least the length of the modulus of <b>env</b>. + */ +int +crypto_pk_private_sign_digest(crypto_pk_t *env, char *to, size_t tolen, + const char *from, size_t fromlen) +{ + int r; + char digest[DIGEST_LEN]; + if (crypto_digest(digest,from,fromlen)<0) + return -1; + r = crypto_pk_private_sign(env,to,tolen,digest,DIGEST_LEN); + memwipe(digest, 0, sizeof(digest)); + return r; +} + +/** Given a private or public key <b>pk</b>, put a SHA1 hash of the + * public key into <b>digest_out</b> (must have DIGEST_LEN bytes of space). + * Return 0 on success, -1 on failure. + */ +int +crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out) +{ + char *buf; + size_t buflen; + int len; + int rv = -1; + + buflen = crypto_pk_keysize(pk)*2; + buf = tor_malloc(buflen); + len = crypto_pk_asn1_encode(pk, buf, buflen); + if (len < 0) + goto done; + + if (crypto_digest(digest_out, buf, len) < 0) + goto done; + + rv = 0; + done: + tor_free(buf); + return rv; +} + +/** Compute all digests of the DER encoding of <b>pk</b>, and store them + * in <b>digests_out</b>. Return 0 on success, -1 on failure. */ +int +crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out) +{ + char *buf; + size_t buflen; + int len; + int rv = -1; + + buflen = crypto_pk_keysize(pk)*2; + buf = tor_malloc(buflen); + len = crypto_pk_asn1_encode(pk, buf, buflen); + if (len < 0) + goto done; + + if (crypto_common_digests(digests_out, (char*)buf, len) < 0) + goto done; + + rv = 0; + done: + tor_free(buf); + return rv; +} + +/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the + * Base64 encoding of the DER representation of the private key as a NUL + * terminated string, and return it via <b>priv_out</b>. Return 0 on + * success, -1 on failure. + * + * It is the caller's responsibility to sanitize and free the resulting buffer. + */ +int +crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out) +{ + unsigned char *der = NULL; + int der_len; + int ret = -1; + + *priv_out = NULL; + + der_len = i2d_RSAPrivateKey(pk->key, &der); + if (der_len < 0 || der == NULL) + return ret; + + size_t priv_len = base64_encode_size(der_len, 0) + 1; + char *priv = tor_malloc_zero(priv_len); + if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) { + *priv_out = priv; + ret = 0; + } else { + tor_free(priv); + } + + memwipe(der, 0, der_len); + OPENSSL_free(der); + return ret; +} + +/** Given a string containing the Base64 encoded DER representation of the + * private key <b>str</b>, decode and return the result on success, or NULL + * on failure. + */ +crypto_pk_t * +crypto_pk_base64_decode(const char *str, size_t len) +{ + crypto_pk_t *pk = NULL; + + char *der = tor_malloc_zero(len + 1); + int der_len = base64_decode(der, len, str, len); + if (der_len <= 0) { + log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64)."); + goto out; + } + + const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */ + RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len); + if (!rsa) { + crypto_log_errors(LOG_WARN, "decoding private key"); + goto out; + } + + pk = crypto_new_pk_from_rsa_(rsa); + + /* Make sure it's valid. */ + if (crypto_pk_check_key(pk) <= 0) { + crypto_pk_free(pk); + pk = NULL; + goto out; + } + + out: + memwipe(der, 0, len + 1); + tor_free(der); + return pk; +} + |