summaryrefslogtreecommitdiff
path: root/src/common/crypto.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/crypto.c')
-rw-r--r--src/common/crypto.c746
1 files changed, 610 insertions, 136 deletions
diff --git a/src/common/crypto.c b/src/common/crypto.c
index 57981f9a00..06446ba050 100644
--- a/src/common/crypto.c
+++ b/src/common/crypto.c
@@ -21,18 +21,13 @@
#undef OCSP_RESPONSE
#endif
-#include <openssl/opensslv.h>
-
#define CRYPTO_PRIVATE
#include "crypto.h"
+#include "compat_openssl.h"
#include "crypto_curve25519.h"
#include "crypto_ed25519.h"
#include "crypto_format.h"
-#if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(1,0,0)
-#error "We require OpenSSL >= 1.0.0"
-#endif
-
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
@@ -48,6 +43,7 @@
#include <ctype.h>
#endif
#ifdef HAVE_UNISTD_H
+#define _GNU_SOURCE
#include <unistd.h>
#endif
#ifdef HAVE_FCNTL_H
@@ -56,6 +52,9 @@
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
+#ifdef HAVE_SYS_SYSCALL_H
+#include <sys/syscall.h>
+#endif
#include "torlog.h"
#include "aes.h"
@@ -65,6 +64,8 @@
#include "sandbox.h"
#include "util_format.h"
+#include "keccak-tiny/keccak-tiny.h"
+
#ifdef ANDROID
/* Android's OpenSSL seems to have removed all of its Engine support. */
#define DISABLE_ENGINES
@@ -73,6 +74,9 @@
/** Longest recognized */
#define MAX_DNS_LABEL_SIZE 63
+/** Largest strong entropy request */
+#define MAX_STRONGEST_RAND_SIZE 256
+
/** Macro: is k a valid RSA public or private key? */
#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n)
/** Macro: is k a valid RSA private key? */
@@ -110,7 +114,7 @@ static int tor_check_dh_key(int severity, BIGNUM *bn);
/** Return the number of bytes added by padding method <b>padding</b>.
*/
-static INLINE int
+static inline int
crypto_get_rsa_padding_overhead(int padding)
{
switch (padding)
@@ -122,7 +126,7 @@ crypto_get_rsa_padding_overhead(int padding)
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
*/
-static INLINE int
+static inline int
crypto_get_rsa_padding(int padding)
{
switch (padding)
@@ -227,7 +231,7 @@ const char *
crypto_openssl_get_version_str(void)
{
if (crypto_openssl_version_str == NULL) {
- const char *raw_version = SSLeay_version(SSLEAY_VERSION);
+ const char *raw_version = OpenSSL_version(OPENSSL_VERSION);
crypto_openssl_version_str = parse_openssl_version_str(raw_version);
}
return crypto_openssl_version_str;
@@ -248,14 +252,16 @@ crypto_openssl_get_header_version_str(void)
/** Make sure that openssl is using its default PRNG. Return 1 if we had to
* adjust it; 0 otherwise. */
-static int
+STATIC int
crypto_force_rand_ssleay(void)
{
- if (RAND_get_rand_method() != RAND_SSLeay()) {
+ RAND_METHOD *default_method;
+ default_method = RAND_OpenSSL();
+ if (RAND_get_rand_method() != default_method) {
log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
"a replacement the OpenSSL RNG. Resetting it to the default "
"implementation.");
- RAND_set_rand_method(RAND_SSLeay());
+ RAND_set_rand_method(default_method);
return 1;
}
return 0;
@@ -270,8 +276,7 @@ crypto_init_siphash_key(void)
if (have_seeded_siphash)
return 0;
- if (crypto_rand((char*) &key, sizeof(key)) < 0)
- return -1;
+ crypto_rand((char*) &key, sizeof(key));
siphash_set_global_key(&key);
have_seeded_siphash = 1;
return 0;
@@ -291,16 +296,18 @@ crypto_early_init(void)
setup_openssl_threading();
- if (SSLeay() == OPENSSL_VERSION_NUMBER &&
- !strcmp(SSLeay_version(SSLEAY_VERSION), OPENSSL_VERSION_TEXT)) {
+ unsigned long version_num = OpenSSL_version_num();
+ const char *version_str = OpenSSL_version(OPENSSL_VERSION);
+ if (version_num == OPENSSL_VERSION_NUMBER &&
+ !strcmp(version_str, OPENSSL_VERSION_TEXT)) {
log_info(LD_CRYPTO, "OpenSSL version matches version from headers "
- "(%lx: %s).", SSLeay(), SSLeay_version(SSLEAY_VERSION));
+ "(%lx: %s).", version_num, version_str);
} else {
log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the "
"version we're running with. If you get weird crashes, that "
"might be why. (Compiled with %lx: %s; running with %lx: %s).",
(unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT,
- SSLeay(), SSLeay_version(SSLEAY_VERSION));
+ version_num, version_str);
}
crypto_force_rand_ssleay();
@@ -322,7 +329,8 @@ int
crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
{
if (!crypto_global_initialized_) {
- crypto_early_init();
+ if (crypto_early_init() < 0)
+ return -1;
crypto_global_initialized_ = 1;
@@ -365,8 +373,12 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
used by Tor and the set of algorithms available in the engine */
log_engine("RSA", ENGINE_get_default_RSA());
log_engine("DH", ENGINE_get_default_DH());
+#ifdef OPENSSL_1_1_API
+ log_engine("EC", ENGINE_get_default_EC());
+#else
log_engine("ECDH", ENGINE_get_default_ECDH());
log_engine("ECDSA", ENGINE_get_default_ECDSA());
+#endif
log_engine("RAND", ENGINE_get_default_RAND());
log_engine("RAND (which we will not use)", ENGINE_get_default_RAND());
log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
@@ -404,11 +416,7 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
void
crypto_thread_cleanup(void)
{
-#if OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,0)
ERR_remove_thread_state(NULL);
-#else
- ERR_remove_state(0);
-#endif
}
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
@@ -432,9 +440,10 @@ crypto_pk_get_rsa_(crypto_pk_t *env)
}
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
- * private is set, include the private-key portion of the key. */
-EVP_PKEY *
-crypto_pk_get_evp_pkey_(crypto_pk_t *env, int private)
+ * private is set, include the private-key portion of the key. Return a valid
+ * pointer on success, and NULL on failure. */
+MOCK_IMPL(EVP_PKEY *,
+ crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
{
RSA *key = NULL;
EVP_PKEY *pkey = NULL;
@@ -470,8 +479,8 @@ crypto_dh_get_dh_(crypto_dh_t *dh)
/** Allocate and return storage for a public key. The key itself will not yet
* be set.
*/
-crypto_pk_t *
-crypto_pk_new(void)
+MOCK_IMPL(crypto_pk_t *,
+ crypto_pk_new,(void))
{
RSA *rsa;
@@ -553,8 +562,8 @@ crypto_cipher_free(crypto_cipher_t *env)
/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
* Return 0 on success, -1 on failure.
*/
-int
-crypto_pk_generate_key_with_bits(crypto_pk_t *env, int bits)
+MOCK_IMPL(int,
+ crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
{
tor_assert(env);
@@ -656,7 +665,8 @@ crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
return 0;
}
-/** Helper function to implement crypto_pk_write_*_key_to_string. */
+/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
+ * success, -1 on failure. */
static int
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
size_t *len, int is_public)
@@ -897,7 +907,8 @@ crypto_pk_dup_key(crypto_pk_t *env)
return env;
}
-/** Make a real honest-to-goodness copy of <b>env</b>, and return it. */
+/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
+ * Returns NULL on failure. */
crypto_pk_t *
crypto_pk_copy_full(crypto_pk_t *env)
{
@@ -1189,7 +1200,8 @@ crypto_pk_public_hybrid_encrypt(crypto_pk_t *env,
return -1;
}
-/** Invert crypto_pk_public_hybrid_encrypt. */
+/** Invert crypto_pk_public_hybrid_encrypt. Returns the number of bytes
+ * written on success, -1 on failure. */
int
crypto_pk_private_hybrid_decrypt(crypto_pk_t *env,
char *to,
@@ -1332,7 +1344,7 @@ crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out)
}
/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
- * every four spaces. */
+ * every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
@@ -1484,7 +1496,7 @@ crypto_cipher_get_key(crypto_cipher_t *env)
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
- * On failure, return -1.
+ * Does not check for failure.
*/
int
crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
@@ -1497,13 +1509,14 @@ crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
tor_assert(to);
tor_assert(fromlen < SIZE_T_CEILING);
- aes_crypt(env->cipher, from, fromlen, to);
+ memcpy(to, from, fromlen);
+ aes_crypt_inplace(env->cipher, to, fromlen);
return 0;
}
/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
- * On failure, return -1.
+ * Does not check for failure.
*/
int
crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
@@ -1514,19 +1527,19 @@ crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
tor_assert(to);
tor_assert(fromlen < SIZE_T_CEILING);
- aes_crypt(env->cipher, from, fromlen, to);
+ memcpy(to, from, fromlen);
+ aes_crypt_inplace(env->cipher, to, fromlen);
return 0;
}
/** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>;
- * on success, return 0. On failure, return -1.
+ * on success. Does not check for failure.
*/
-int
+void
crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len)
{
tor_assert(len < SIZE_T_CEILING);
aes_crypt_inplace(env->cipher, buf, len);
- return 0;
}
/** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in
@@ -1591,7 +1604,7 @@ crypto_cipher_decrypt_with_iv(const char *key,
/** Compute the SHA1 digest of the <b>len</b> bytes on data stored in
* <b>m</b>. Write the DIGEST_LEN byte result into <b>digest</b>.
- * Return 0 on success, -1 on failure.
+ * Return 0 on success, 1 on failure.
*/
int
crypto_digest(char *digest, const char *m, size_t len)
@@ -1603,15 +1616,37 @@ crypto_digest(char *digest, const char *m, size_t len)
/** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
* using the algorithm <b>algorithm</b>. Write the DIGEST_LEN256-byte result
- * into <b>digest</b>. Return 0 on success, -1 on failure. */
+ * into <b>digest</b>. Return 0 on success, 1 on failure. */
int
crypto_digest256(char *digest, const char *m, size_t len,
digest_algorithm_t algorithm)
{
tor_assert(m);
tor_assert(digest);
- tor_assert(algorithm == DIGEST_SHA256);
- return (SHA256((const unsigned char*)m,len,(unsigned char*)digest) == NULL);
+ tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
+ if (algorithm == DIGEST_SHA256)
+ return (SHA256((const uint8_t*)m,len,(uint8_t*)digest) == NULL);
+ else
+ return (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len)
+ == -1);
+}
+
+/** Compute a 512-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
+ * using the algorithm <b>algorithm</b>. Write the DIGEST_LEN512-byte result
+ * into <b>digest</b>. Return 0 on success, 1 on failure. */
+int
+crypto_digest512(char *digest, const char *m, size_t len,
+ digest_algorithm_t algorithm)
+{
+ tor_assert(m);
+ tor_assert(digest);
+ tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
+ if (algorithm == DIGEST_SHA512)
+ return (SHA512((const unsigned char*)m,len,(unsigned char*)digest)
+ == NULL);
+ else
+ return (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len)
+ == -1);
}
/** Set the digests_t in <b>ds_out</b> to contain every digest on the
@@ -1626,8 +1661,20 @@ crypto_digest_all(digests_t *ds_out, const char *m, size_t len)
if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
return -1;
for (i = DIGEST_SHA256; i < N_DIGEST_ALGORITHMS; ++i) {
- if (crypto_digest256(ds_out->d[i], m, len, i) < 0)
- return -1;
+ switch (i) {
+ case DIGEST_SHA256: /* FALLSTHROUGH */
+ case DIGEST_SHA3_256:
+ if (crypto_digest256(ds_out->d[i], m, len, i) < 0)
+ return -1;
+ break;
+ case DIGEST_SHA512:
+ case DIGEST_SHA3_512: /* FALLSTHROUGH */
+ if (crypto_digest512(ds_out->d[i], m, len, i) < 0)
+ return -1;
+ break;
+ default:
+ return -1;
+ }
}
return 0;
}
@@ -1641,6 +1688,12 @@ crypto_digest_algorithm_get_name(digest_algorithm_t alg)
return "sha1";
case DIGEST_SHA256:
return "sha256";
+ case DIGEST_SHA512:
+ return "sha512";
+ case DIGEST_SHA3_256:
+ return "sha3-256";
+ case DIGEST_SHA3_512:
+ return "sha3-512";
default:
tor_fragile_assert();
return "??unknown_digest??";
@@ -1656,27 +1709,90 @@ crypto_digest_algorithm_parse_name(const char *name)
return DIGEST_SHA1;
else if (!strcmp(name, "sha256"))
return DIGEST_SHA256;
+ else if (!strcmp(name, "sha512"))
+ return DIGEST_SHA512;
+ else if (!strcmp(name, "sha3-256"))
+ return DIGEST_SHA3_256;
+ else if (!strcmp(name, "sha3-512"))
+ return DIGEST_SHA3_512;
else
return -1;
}
+/** Given an algorithm, return the digest length in bytes. */
+static inline size_t
+crypto_digest_algorithm_get_length(digest_algorithm_t alg)
+{
+ switch (alg) {
+ case DIGEST_SHA1:
+ return DIGEST_LEN;
+ case DIGEST_SHA256:
+ return DIGEST256_LEN;
+ case DIGEST_SHA512:
+ return DIGEST512_LEN;
+ case DIGEST_SHA3_256:
+ return DIGEST256_LEN;
+ case DIGEST_SHA3_512:
+ return DIGEST512_LEN;
+ default:
+ tor_assert(0);
+ return 0; /* Unreachable */
+ }
+}
+
/** Intermediate information about the digest of a stream of data. */
struct crypto_digest_t {
+ digest_algorithm_t algorithm; /**< Which algorithm is in use? */
+ /** State for the digest we're using. Only one member of the
+ * union is usable, depending on the value of <b>algorithm</b>. Note also
+ * that space for other members might not even be allocated!
+ */
union {
SHA_CTX sha1; /**< state for SHA1 */
SHA256_CTX sha2; /**< state for SHA256 */
- } d; /**< State for the digest we're using. Only one member of the
- * union is usable, depending on the value of <b>algorithm</b>. */
- digest_algorithm_bitfield_t algorithm : 8; /**< Which algorithm is in use? */
+ SHA512_CTX sha512; /**< state for SHA512 */
+ keccak_state sha3; /**< state for SHA3-[256,512] */
+ } d;
};
+/**
+ * Return the number of bytes we need to malloc in order to get a
+ * crypto_digest_t for <b>alg</b>, or the number of bytes we need to wipe
+ * when we free one.
+ */
+static size_t
+crypto_digest_alloc_bytes(digest_algorithm_t alg)
+{
+ /* Helper: returns the number of bytes in the 'f' field of 'st' */
+#define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f ))
+ /* Gives the length of crypto_digest_t through the end of the field 'd' */
+#define END_OF_FIELD(f) (STRUCT_OFFSET(crypto_digest_t, f) + \
+ STRUCT_FIELD_SIZE(crypto_digest_t, f))
+ switch (alg) {
+ case DIGEST_SHA1:
+ return END_OF_FIELD(d.sha1);
+ case DIGEST_SHA256:
+ return END_OF_FIELD(d.sha2);
+ case DIGEST_SHA512:
+ return END_OF_FIELD(d.sha512);
+ case DIGEST_SHA3_256:
+ case DIGEST_SHA3_512:
+ return END_OF_FIELD(d.sha3);
+ default:
+ tor_assert(0);
+ return 0;
+ }
+#undef END_OF_FIELD
+#undef STRUCT_FIELD_SIZE
+}
+
/** Allocate and return a new digest object to compute SHA1 digests.
*/
crypto_digest_t *
crypto_digest_new(void)
{
crypto_digest_t *r;
- r = tor_malloc(sizeof(crypto_digest_t));
+ r = tor_malloc(crypto_digest_alloc_bytes(DIGEST_SHA1));
SHA1_Init(&r->d.sha1);
r->algorithm = DIGEST_SHA1;
return r;
@@ -1688,9 +1804,28 @@ crypto_digest_t *
crypto_digest256_new(digest_algorithm_t algorithm)
{
crypto_digest_t *r;
- tor_assert(algorithm == DIGEST_SHA256);
- r = tor_malloc(sizeof(crypto_digest_t));
- SHA256_Init(&r->d.sha2);
+ tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
+ r = tor_malloc(crypto_digest_alloc_bytes(algorithm));
+ if (algorithm == DIGEST_SHA256)
+ SHA256_Init(&r->d.sha2);
+ else
+ keccak_digest_init(&r->d.sha3, 256);
+ r->algorithm = algorithm;
+ return r;
+}
+
+/** Allocate and return a new digest object to compute 512-bit digests
+ * using <b>algorithm</b>. */
+crypto_digest_t *
+crypto_digest512_new(digest_algorithm_t algorithm)
+{
+ crypto_digest_t *r;
+ tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
+ r = tor_malloc(crypto_digest_alloc_bytes(algorithm));
+ if (algorithm == DIGEST_SHA512)
+ SHA512_Init(&r->d.sha512);
+ else
+ keccak_digest_init(&r->d.sha3, 512);
r->algorithm = algorithm;
return r;
}
@@ -1702,7 +1837,8 @@ crypto_digest_free(crypto_digest_t *digest)
{
if (!digest)
return;
- memwipe(digest, 0, sizeof(crypto_digest_t));
+ size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
+ memwipe(digest, 0, bytes);
tor_free(digest);
}
@@ -1726,6 +1862,13 @@ crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
case DIGEST_SHA256:
SHA256_Update(&digest->d.sha2, (void*)data, len);
break;
+ case DIGEST_SHA512:
+ SHA512_Update(&digest->d.sha512, (void*)data, len);
+ break;
+ case DIGEST_SHA3_256: /* FALLSTHROUGH */
+ case DIGEST_SHA3_512:
+ keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len);
+ break;
default:
tor_fragile_assert();
break;
@@ -1734,33 +1877,45 @@ crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
/** Compute the hash of the data that has been passed to the digest
* object; write the first out_len bytes of the result to <b>out</b>.
- * <b>out_len</b> must be \<= DIGEST256_LEN.
+ * <b>out_len</b> must be \<= DIGEST512_LEN.
*/
void
crypto_digest_get_digest(crypto_digest_t *digest,
char *out, size_t out_len)
{
- unsigned char r[DIGEST256_LEN];
+ unsigned char r[DIGEST512_LEN];
crypto_digest_t tmpenv;
tor_assert(digest);
tor_assert(out);
+ tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm));
+
+ /* The SHA-3 code handles copying into a temporary ctx, and also can handle
+ * short output buffers by truncating appropriately. */
+ if (digest->algorithm == DIGEST_SHA3_256 ||
+ digest->algorithm == DIGEST_SHA3_512) {
+ keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len);
+ return;
+ }
+
+ const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
/* memcpy into a temporary ctx, since SHA*_Final clears the context */
- memcpy(&tmpenv, digest, sizeof(crypto_digest_t));
+ memcpy(&tmpenv, digest, alloc_bytes);
switch (digest->algorithm) {
case DIGEST_SHA1:
- tor_assert(out_len <= DIGEST_LEN);
SHA1_Final(r, &tmpenv.d.sha1);
break;
case DIGEST_SHA256:
- tor_assert(out_len <= DIGEST256_LEN);
SHA256_Final(r, &tmpenv.d.sha2);
break;
+ case DIGEST_SHA512:
+ SHA512_Final(r, &tmpenv.d.sha512);
+ break;
+ case DIGEST_SHA3_256: /* FALLSTHROUGH */
+ case DIGEST_SHA3_512:
+ log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm);
+ tor_assert(0); /* This is fatal, because it should never happen. */
default:
- log_warn(LD_BUG, "Called with unknown algorithm %d", digest->algorithm);
- /* If fragile_assert is not enabled, then we should at least not
- * leak anything. */
- memwipe(r, 0xff, sizeof(r));
- tor_fragile_assert();
+ tor_assert(0); /* Unreachable. */
break;
}
memcpy(out, r, out_len);
@@ -1773,15 +1928,14 @@ crypto_digest_get_digest(crypto_digest_t *digest,
crypto_digest_t *
crypto_digest_dup(const crypto_digest_t *digest)
{
- crypto_digest_t *r;
tor_assert(digest);
- r = tor_malloc(sizeof(crypto_digest_t));
- memcpy(r,digest,sizeof(crypto_digest_t));
- return r;
+ const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
+ return tor_memdup(digest, alloc_bytes);
}
/** Replace the state of the digest object <b>into</b> with the state
- * of the digest object <b>from</b>.
+ * of the digest object <b>from</b>. Requires that 'into' and 'from'
+ * have the same digest type.
*/
void
crypto_digest_assign(crypto_digest_t *into,
@@ -1789,14 +1943,16 @@ crypto_digest_assign(crypto_digest_t *into,
{
tor_assert(into);
tor_assert(from);
- memcpy(into,from,sizeof(crypto_digest_t));
+ tor_assert(into->algorithm == from->algorithm);
+ const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm);
+ memcpy(into,from,alloc_bytes);
}
/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
* at <b>digest_out</b> to the hash of the concatenation of those strings,
* plus the optional string <b>append</b>, computed with the algorithm
* <b>alg</b>.
- * <b>out_len</b> must be \<= DIGEST256_LEN. */
+ * <b>out_len</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist(char *digest_out, size_t len_out,
const smartlist_t *lst,
@@ -1811,7 +1967,7 @@ crypto_digest_smartlist(char *digest_out, size_t len_out,
* optional string <b>prepend</b>, those strings,
* and the optional string <b>append</b>, computed with the algorithm
* <b>alg</b>.
- * <b>out_len</b> must be \<= DIGEST256_LEN. */
+ * <b>len_out</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
const char *prepend,
@@ -1819,11 +1975,27 @@ crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
const char *append,
digest_algorithm_t alg)
{
- crypto_digest_t *d;
- if (alg == DIGEST_SHA1)
- d = crypto_digest_new();
- else
- d = crypto_digest256_new(alg);
+ crypto_digest_t *d = NULL;
+ switch (alg) {
+ case DIGEST_SHA1:
+ d = crypto_digest_new();
+ break;
+ case DIGEST_SHA256: /* FALLSTHROUGH */
+ case DIGEST_SHA3_256:
+ d = crypto_digest256_new(alg);
+ break;
+ case DIGEST_SHA512: /* FALLSTHROUGH */
+ case DIGEST_SHA3_512:
+ d = crypto_digest512_new(alg);
+ break;
+ default:
+ log_warn(LD_BUG, "Called with unknown algorithm %d", alg);
+ /* If fragile_assert is not enabled, wipe output and return
+ * without running any calculations */
+ memwipe(digest_out, 0xff, len_out);
+ tor_fragile_assert();
+ goto free;
+ }
if (prepend)
crypto_digest_add_bytes(d, prepend, strlen(prepend));
SMARTLIST_FOREACH(lst, const char *, cp,
@@ -1831,23 +2003,78 @@ crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
if (append)
crypto_digest_add_bytes(d, append, strlen(append));
crypto_digest_get_digest(d, digest_out, len_out);
+
+ free:
crypto_digest_free(d);
}
/** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using
* the <b>key</b> of length <b>key_len</b>. Store the DIGEST256_LEN-byte
- * result in <b>hmac_out</b>.
+ * result in <b>hmac_out</b>. Asserts on failure.
*/
void
crypto_hmac_sha256(char *hmac_out,
const char *key, size_t key_len,
const char *msg, size_t msg_len)
{
+ unsigned char *rv = NULL;
/* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */
tor_assert(key_len < INT_MAX);
tor_assert(msg_len < INT_MAX);
- HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
- (unsigned char*)hmac_out, NULL);
+ tor_assert(hmac_out);
+ rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
+ (unsigned char*)hmac_out, NULL);
+ tor_assert(rv);
+}
+
+/** Internal state for a eXtendable-Output Function (XOF). */
+struct crypto_xof_t {
+ keccak_state s;
+};
+
+/** Allocate a new XOF object backed by SHAKE-256. The security level
+ * provided is a function of the length of the output used. Read and
+ * understand FIPS-202 A.2 "Additional Consideration for Extendable-Output
+ * Functions" before using this construct.
+ */
+crypto_xof_t *
+crypto_xof_new(void)
+{
+ crypto_xof_t *xof;
+ xof = tor_malloc(sizeof(crypto_xof_t));
+ keccak_xof_init(&xof->s, 256);
+ return xof;
+}
+
+/** Absorb bytes into a XOF object. Must not be called after a call to
+ * crypto_xof_squeeze_bytes() for the same instance, and will assert
+ * if attempted.
+ */
+void
+crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len)
+{
+ int i = keccak_xof_absorb(&xof->s, data, len);
+ tor_assert(i == 0);
+}
+
+/** Squeeze bytes out of a XOF object. Calling this routine will render
+ * the XOF instance ineligible to absorb further data.
+ */
+void
+crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len)
+{
+ int i = keccak_xof_squeeze(&xof->s, out, len);
+ tor_assert(i == 0);
+}
+
+/** Cleanse and deallocate a XOF object. */
+void
+crypto_xof_free(crypto_xof_t *xof)
+{
+ if (!xof)
+ return;
+ memwipe(xof, 0, sizeof(crypto_xof_t));
+ tor_free(xof);
}
/* DH */
@@ -1862,6 +2089,71 @@ static BIGNUM *dh_param_p_tls = NULL;
/** Shared G parameter for our DH key exchanges. */
static BIGNUM *dh_param_g = NULL;
+/** Validate a given set of Diffie-Hellman parameters. This is moderately
+ * computationally expensive (milliseconds), so should only be called when
+ * the DH parameters change. Returns 0 on success, * -1 on failure.
+ */
+static int
+crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g)
+{
+ DH *dh = NULL;
+ int ret = -1;
+
+ /* Copy into a temporary DH object. */
+ if (!(dh = DH_new()))
+ goto out;
+ if (!(dh->p = BN_dup(p)))
+ goto out;
+ if (!(dh->g = BN_dup(g)))
+ goto out;
+
+ /* Perform the validation. */
+ int codes = 0;
+ if (!DH_check(dh, &codes))
+ goto out;
+ if (BN_is_word(dh->g, DH_GENERATOR_2)) {
+ /* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters
+ *
+ * OpenSSL checks the prime is congruent to 11 when g = 2; while the
+ * IETF's primes are congruent to 23 when g = 2.
+ */
+ BN_ULONG residue = BN_mod_word(dh->p, 24);
+ if (residue == 11 || residue == 23)
+ codes &= ~DH_NOT_SUITABLE_GENERATOR;
+ }
+ if (codes != 0) /* Specifics on why the params suck is irrelevant. */
+ goto out;
+
+ /* Things are probably not evil. */
+ ret = 0;
+
+ out:
+ if (dh)
+ DH_free(dh);
+ return ret;
+}
+
+/** Set the global Diffie-Hellman generator, used for both TLS and internal
+ * DH stuff.
+ */
+static void
+crypto_set_dh_generator(void)
+{
+ BIGNUM *generator;
+ int r;
+
+ if (dh_param_g)
+ return;
+
+ generator = BN_new();
+ tor_assert(generator);
+
+ r = BN_set_word(generator, DH_GENERATOR);
+ tor_assert(r);
+
+ dh_param_g = generator;
+}
+
/** Set the global TLS Diffie-Hellman modulus. Use the Apache mod_ssl DH
* modulus. */
void
@@ -1894,6 +2186,8 @@ crypto_set_tls_dh_prime(void)
tor_assert(tls_prime);
dh_param_p_tls = tls_prime;
+ crypto_set_dh_generator();
+ tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g));
}
/** Initialize dh_param_p and dh_param_g if they are not already
@@ -1901,18 +2195,13 @@ crypto_set_tls_dh_prime(void)
static void
init_dh_param(void)
{
- BIGNUM *circuit_dh_prime, *generator;
+ BIGNUM *circuit_dh_prime;
int r;
if (dh_param_p && dh_param_g)
return;
circuit_dh_prime = BN_new();
- generator = BN_new();
- tor_assert(circuit_dh_prime && generator);
-
- /* Set our generator for all DH parameters */
- r = BN_set_word(generator, DH_GENERATOR);
- tor_assert(r);
+ tor_assert(circuit_dh_prime);
/* This is from rfc2409, section 6.2. It's a safe prime, and
supposedly it equals:
@@ -1928,7 +2217,8 @@ init_dh_param(void)
/* Set the new values as the global DH parameters. */
dh_param_p = circuit_dh_prime;
- dh_param_g = generator;
+ crypto_set_dh_generator();
+ tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g));
if (!dh_param_p_tls) {
crypto_set_tls_dh_prime();
@@ -1941,7 +2231,8 @@ init_dh_param(void)
*/
#define DH_PRIVATE_KEY_BITS 320
-/** Allocate and return a new DH object for a key exchange.
+/** Allocate and return a new DH object for a key exchange. Returns NULL on
+ * failure.
*/
crypto_dh_t *
crypto_dh_new(int dh_type)
@@ -2164,7 +2455,7 @@ int
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
uint8_t *key_out, size_t key_out_len)
{
- int i;
+ int i, r = -1;
uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
uint8_t digest[DIGEST_LEN];
@@ -2176,19 +2467,16 @@ crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
++i, cp += DIGEST_LEN) {
tmp[key_in_len] = i;
if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1))
- goto err;
+ goto exit;
memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
}
- memwipe(tmp, 0, key_in_len+1);
- tor_free(tmp);
- memwipe(digest, 0, sizeof(digest));
- return 0;
- err:
+ r = 0;
+ exit:
memwipe(tmp, 0, key_in_len+1);
tor_free(tmp);
memwipe(digest, 0, sizeof(digest));
- return -1;
+ return r;
}
/** Expand some secret key material according to RFC5869, using SHA256 as the
@@ -2196,7 +2484,7 @@ crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
* secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
* <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
* and "info" parameters respectively. On success, write <b>key_out_len</b>
- * bytes to <b>key_out</b> and return 0. On failure, return -1.
+ * bytes to <b>key_out</b> and return 0. Assert on failure.
*/
int
crypto_expand_key_material_rfc5869_sha256(
@@ -2280,23 +2568,18 @@ crypto_seed_weak_rng(tor_weak_rng_t *rng)
}
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
- * storing it into <b>out</b>.
+ * via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
+ * failure. A maximum request size of 256 bytes is imposed.
*/
-int
-crypto_strongest_rand(uint8_t *out, size_t out_len)
+static int
+crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
{
-#ifdef _WIN32
+ tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
+
+#if defined(_WIN32)
static int provider_set = 0;
static HCRYPTPROV provider;
-#else
- static const char *filenames[] = {
- "/dev/srandom", "/dev/urandom", "/dev/random", NULL
- };
- int fd, i;
- size_t n;
-#endif
-#ifdef _WIN32
if (!provider_set) {
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT)) {
@@ -2311,7 +2594,84 @@ crypto_strongest_rand(uint8_t *out, size_t out_len)
}
return 0;
+#elif defined(__linux__) && defined(SYS_getrandom)
+ static int getrandom_works = 1; /* Be optimitic about our chances... */
+
+ /* getrandom() isn't as straight foward as getentropy(), and has
+ * no glibc wrapper.
+ *
+ * As far as I can tell from getrandom(2) and the source code, the
+ * requests we issue will always succeed (though it will block on the
+ * call if /dev/urandom isn't seeded yet), since we are NOT specifying
+ * GRND_NONBLOCK and the request is <= 256 bytes.
+ *
+ * The manpage is unclear on what happens if a signal interrupts the call
+ * while the request is blocked due to lack of entropy....
+ *
+ * We optimistically assume that getrandom() is available and functional
+ * because it is the way of the future, and 2 branch mispredicts pale in
+ * comparision to the overheads involved with failing to open
+ * /dev/srandom followed by opening and reading from /dev/urandom.
+ */
+ if (PREDICT_LIKELY(getrandom_works)) {
+ long ret;
+ /* A flag of '0' here means to read from '/dev/urandom', and to
+ * block if insufficient entropy is available to service the
+ * request.
+ */
+ const unsigned int flags = 0;
+ do {
+ ret = syscall(SYS_getrandom, out, out_len, flags);
+ } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));
+
+ if (PREDICT_UNLIKELY(ret == -1)) {
+ tor_assert(errno != EAGAIN);
+ tor_assert(errno != EINTR);
+
+ /* Probably ENOSYS. */
+ log_warn(LD_CRYPTO, "Can't get entropy from getrandom().");
+ getrandom_works = 0; /* Don't bother trying again. */
+ return -1;
+ }
+
+ tor_assert(ret == (long)out_len);
+ return 0;
+ }
+
+ return -1; /* getrandom() previously failed unexpectedly. */
+#elif defined(HAVE_GETENTROPY)
+ /* getentropy() is what Linux's getrandom() wants to be when it grows up.
+ * the only gotcha is that requests are limited to 256 bytes.
+ */
+ return getentropy(out, out_len);
#else
+ (void) out;
+#endif
+
+ /* This platform doesn't have a supported syscall based random. */
+ return -1;
+}
+
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * via the per-platform fallback mechanism, storing it into <b>out</b>.
+ * Return 0 on success, -1 on failure. A maximum request size of 256 bytes
+ * is imposed.
+ */
+static int
+crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
+{
+#ifdef _WIN32
+ /* Windows exclusively uses crypto_strongest_rand_syscall(). */
+ (void)out;
+ (void)out_len;
+ return -1;
+#else
+ static const char *filenames[] = {
+ "/dev/srandom", "/dev/urandom", "/dev/random", NULL
+ };
+ int fd, i;
+ size_t n;
+
for (i = 0; filenames[i]; ++i) {
log_debug(LD_FS, "Opening %s for entropy", filenames[i]);
fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
@@ -2329,14 +2689,95 @@ crypto_strongest_rand(uint8_t *out, size_t out_len)
return 0;
}
- log_warn(LD_CRYPTO, "Cannot get strong entropy: no entropy source found.");
return -1;
#endif
}
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * storing it into <b>out</b>. Return 0 on success, -1 on failure. A maximum
+ * request size of 256 bytes is imposed.
+ */
+static int
+crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
+{
+ static const size_t sanity_min_size = 16;
+ static const int max_attempts = 3;
+ tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
+
+ /* For buffers >= 16 bytes (128 bits), we sanity check the output by
+ * zero filling the buffer and ensuring that it actually was at least
+ * partially modified.
+ *
+ * Checking that any individual byte is non-zero seems like it would
+ * fail too often (p = out_len * 1/256) for comfort, but this is an
+ * "adjust according to taste" sort of check.
+ */
+ memwipe(out, 0, out_len);
+ for (int i = 0; i < max_attempts; i++) {
+ /* Try to use the syscall/OS favored mechanism to get strong entropy. */
+ if (crypto_strongest_rand_syscall(out, out_len) != 0) {
+ /* Try to use the less-favored mechanism to get strong entropy. */
+ if (crypto_strongest_rand_fallback(out, out_len) != 0) {
+ /* Welp, we tried. Hopefully the calling code terminates the process
+ * since we're basically boned without good entropy.
+ */
+ log_warn(LD_CRYPTO,
+ "Cannot get strong entropy: no entropy source found.");
+ return -1;
+ }
+ }
+
+ if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
+ return 0;
+ }
+
+ /* We tried max_attempts times to fill a buffer >= 128 bits long,
+ * and each time it returned all '0's. Either the system entropy
+ * source is busted, or the user should go out and buy a ticket to
+ * every lottery on the planet.
+ */
+ log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");
+ return -1;
+}
+
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * storing it into <b>out</b>.
+ */
+void
+crypto_strongest_rand(uint8_t *out, size_t out_len)
+{
+#define DLEN SHA512_DIGEST_LENGTH
+ /* We're going to hash DLEN bytes from the system RNG together with some
+ * bytes from the openssl PRNG, in order to yield DLEN bytes.
+ */
+ uint8_t inp[DLEN*2];
+ uint8_t tmp[DLEN];
+ tor_assert(out);
+ while (out_len) {
+ crypto_rand((char*) inp, DLEN);
+ if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
+ log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
+ "important key. Exiting.");
+ /* Die with an assertion so we get a stack trace. */
+ tor_assert(0);
+ }
+ if (out_len >= DLEN) {
+ SHA512(inp, sizeof(inp), out);
+ out += DLEN;
+ out_len -= DLEN;
+ } else {
+ SHA512(inp, sizeof(inp), tmp);
+ memcpy(out, tmp, out_len);
+ break;
+ }
+ }
+ memwipe(tmp, 0, sizeof(tmp));
+ memwipe(inp, 0, sizeof(inp));
+#undef DLEN
+}
+
/** Seed OpenSSL's random number generator with bytes from the operating
- * system. <b>startup</b> should be true iff we have just started Tor and
- * have not yet allocated a bunch of fds. Return 0 on success, -1 on failure.
+ * system. Return 0 on success, -1 on failure.
*/
int
crypto_seed_rng(void)
@@ -2351,41 +2792,51 @@ crypto_seed_rng(void)
if (rand_poll_ok == 0)
log_warn(LD_CRYPTO, "RAND_poll() failed.");
- load_entropy_ok = !crypto_strongest_rand(buf, sizeof(buf));
+ load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
if (load_entropy_ok) {
RAND_seed(buf, sizeof(buf));
}
memwipe(buf, 0, sizeof(buf));
- if (rand_poll_ok || load_entropy_ok)
+ if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
return 0;
else
return -1;
}
-/** Write <b>n</b> bytes of strong random data to <b>to</b>. Return 0 on
- * success, -1 on failure, with support for mocking for unit tests.
+/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
+ * for unit tests.
+ *
+ * This function is not allowed to fail; if it would fail to generate strong
+ * entropy, it must terminate the process instead.
*/
-MOCK_IMPL(int,
+MOCK_IMPL(void,
crypto_rand, (char *to, size_t n))
{
- return crypto_rand_unmocked(to, n);
+ crypto_rand_unmocked(to, n);
}
-/** Write <b>n</b> bytes of strong random data to <b>to</b>. Return 0 on
- * success, -1 on failure. Most callers will want crypto_rand instead.
+/** Write <b>n</b> bytes of strong random data to <b>to</b>. Most callers
+ * will want crypto_rand instead.
+ *
+ * This function is not allowed to fail; if it would fail to generate strong
+ * entropy, it must terminate the process instead.
*/
-int
+void
crypto_rand_unmocked(char *to, size_t n)
{
int r;
+ if (n == 0)
+ return;
+
tor_assert(n < INT_MAX);
tor_assert(to);
r = RAND_bytes((unsigned char*)to, (int)n);
- if (r == 0)
- crypto_log_errors(LOG_WARN, "generating random data");
- return (r == 1) ? 0 : -1;
+ /* We consider a PRNG failure non-survivable. Let's assert so that we get a
+ * stack trace about where it happened.
+ */
+ tor_assert(r >= 0);
}
/** Return a pseudorandom integer, chosen uniformly from the values
@@ -2411,8 +2862,8 @@ crypto_rand_int(unsigned int max)
}
}
-/** Return a pseudorandom integer, chosen uniformly from the values <i>i</i>
- * such that <b>min</b> &lt;= <i>i</i> &lt <b>max</b>.
+/** Return a pseudorandom integer, chosen uniformly from the values i such
+ * that min <= i < max.
*
* <b>min</b> MUST be in range [0, <b>max</b>).
* <b>max</b> MUST be in range (min, INT_MAX].
@@ -2489,7 +2940,7 @@ crypto_rand_double(void)
/** Generate and return a new random hostname starting with <b>prefix</b>,
* ending with <b>suffix</b>, and containing no fewer than
* <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
- * characters between.
+ * characters. Does not check for failure.
*
* Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
**/
@@ -2587,13 +3038,32 @@ memwipe(void *mem, uint8_t byte, size_t sz)
* have this function call "memset". A smart compiler could inline it, then
* eliminate dead memsets, and declare itself to be clever. */
+#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY)
+ /* Here's what you do on windows. */
+ SecureZeroMemory(mem,sz);
+#elif defined(HAVE_RTLSECUREZEROMEMORY)
+ RtlSecureZeroMemory(mem,sz);
+#elif defined(HAVE_EXPLICIT_BZERO)
+ /* The BSDs provide this. */
+ explicit_bzero(mem, sz);
+#elif defined(HAVE_MEMSET_S)
+ /* This is in the C99 standard. */
+ memset_s(mem, sz, 0, sz);
+#else
/* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
* based on the pointer value, then uses that junk to update a global
* variable. It's an elaborate ruse to trick the compiler into not
* optimizing out the "wipe this memory" code. Read it if you like zany
* programming tricks! In later versions of Tor, we should look for better
- * not-optimized-out memory wiping stuff. */
+ * not-optimized-out memory wiping stuff...
+ *
+ * ...or maybe not. In practice, there are pure-asm implementations of
+ * OPENSSL_cleanse() on most platforms, which ought to do the job.
+ **/
+
OPENSSL_cleanse(mem, sz);
+#endif
+
/* Just in case some caller of memwipe() is relying on getting a buffer
* filled with a particular value, fill the buffer.
*
@@ -2628,6 +3098,10 @@ openssl_locking_cb_(int mode, int n, const char *file, int line)
tor_mutex_release(openssl_mutexes_[n]);
}
+#if 0
+/* This code is disabled, because OpenSSL never actually uses these callbacks.
+ */
+
/** OpenSSL helper type: wraps a Tor mutex so that OpenSSL can use it
* as a lock. */
struct CRYPTO_dynlock_value {
@@ -2672,6 +3146,7 @@ openssl_dynlock_destroy_cb_(struct CRYPTO_dynlock_value *v,
tor_mutex_free(v->lock);
tor_free(v);
}
+#endif
static void
tor_set_openssl_thread_id(CRYPTO_THREADID *threadid)
@@ -2681,7 +3156,7 @@ tor_set_openssl_thread_id(CRYPTO_THREADID *threadid)
/** @{ */
/** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being
- * multithreaded. */
+ * multithreaded. Returns 0. */
static int
setup_openssl_threading(void)
{
@@ -2693,23 +3168,22 @@ setup_openssl_threading(void)
openssl_mutexes_[i] = tor_mutex_new();
CRYPTO_set_locking_callback(openssl_locking_cb_);
CRYPTO_THREADID_set_callback(tor_set_openssl_thread_id);
+#if 0
CRYPTO_set_dynlock_create_callback(openssl_dynlock_create_cb_);
CRYPTO_set_dynlock_lock_callback(openssl_dynlock_lock_cb_);
CRYPTO_set_dynlock_destroy_callback(openssl_dynlock_destroy_cb_);
+#endif
return 0;
}
-/** Uninitialize the crypto library. Return 0 on success, -1 on failure.
+/** Uninitialize the crypto library. Return 0 on success. Does not detect
+ * failure.
*/
int
crypto_global_cleanup(void)
{
EVP_cleanup();
-#if OPENSSL_VERSION_NUMBER >= OPENSSL_V_SERIES(1,1,0)
ERR_remove_thread_state(NULL);
-#else
- ERR_remove_state(0);
-#endif
ERR_free_strings();
if (dh_param_p)