diff options
Diffstat (limited to 'src/common/crypto.c')
-rw-r--r-- | src/common/crypto.c | 1802 |
1 files changed, 968 insertions, 834 deletions
diff --git a/src/common/crypto.c b/src/common/crypto.c index 8d816652d3..2f7e053c89 100644 --- a/src/common/crypto.c +++ b/src/common/crypto.c @@ -1,22 +1,20 @@ /* Copyright (c) 2001, Matej Pfajfar. * Copyright (c) 2001-2004, Roger Dingledine. * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. - * Copyright (c) 2007-2013, The Tor Project, Inc. */ + * Copyright (c) 2007-2016, The Tor Project, Inc. */ /* See LICENSE for licensing information */ /** * \file crypto.c * \brief Wrapper functions to present a consistent interface to - * public-key and symmetric cryptography operations from OpenSSL. + * public-key and symmetric cryptography operations from OpenSSL and + * other places. **/ #include "orconfig.h" #ifdef _WIN32 -#ifndef _WIN32_WINNT -#define _WIN32_WINNT 0x0501 -#endif -#define WIN32_LEAN_AND_MEAN +#include <winsock2.h> #include <windows.h> #include <wincrypt.h> /* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually @@ -24,22 +22,50 @@ #undef OCSP_RESPONSE #endif +#define CRYPTO_PRIVATE +#include "crypto.h" +#include "compat_openssl.h" +#include "crypto_curve25519.h" +#include "crypto_ed25519.h" +#include "crypto_format.h" + +#ifdef __GNUC__ +#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) +#endif + +#if __GNUC__ && GCC_VERSION >= 402 +#if GCC_VERSION >= 406 +#pragma GCC diagnostic push +#endif +/* Some versions of OpenSSL declare X509_STORE_CTX_set_verify_cb twice. + * Suppress the GCC warning so we can build with -Wredundant-decl. */ +#pragma GCC diagnostic ignored "-Wredundant-decls" +#endif + #include <openssl/err.h> #include <openssl/rsa.h> #include <openssl/pem.h> #include <openssl/evp.h> #include <openssl/engine.h> #include <openssl/rand.h> -#include <openssl/opensslv.h> #include <openssl/bn.h> #include <openssl/dh.h> #include <openssl/conf.h> #include <openssl/hmac.h> +#if __GNUC__ && GCC_VERSION >= 402 +#if GCC_VERSION >= 406 +#pragma GCC diagnostic pop +#else +#pragma GCC diagnostic warning "-Wredundant-decls" +#endif +#endif + #ifdef HAVE_CTYPE_H #include <ctype.h> #endif #ifdef HAVE_UNISTD_H +#define _GNU_SOURCE #include <unistd.h> #endif #ifdef HAVE_FCNTL_H @@ -48,18 +74,27 @@ #ifdef HAVE_SYS_FCNTL_H #include <sys/fcntl.h> #endif +#ifdef HAVE_SYS_SYSCALL_H +#include <sys/syscall.h> +#endif -#define CRYPTO_PRIVATE -#include "crypto.h" -#include "../common/torlog.h" +#include "torlog.h" #include "aes.h" -#include "../common/util.h" +#include "util.h" #include "container.h" #include "compat.h" #include "sandbox.h" +#include "util_format.h" -#if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(0,9,8) -#error "We require OpenSSL >= 0.9.8" +#include "keccak-tiny/keccak-tiny.h" + +#ifdef __APPLE__ +/* Apple messed up their getentropy definitions in Sierra. It's not insecure + * or anything (as far as I know) but it makes compatible builds hard. 0.2.9 + * contains the necessary tricks to do it right: in 0.2.8, we're just using + * this blunt instrument. + */ +#undef HAVE_GETENTROPY #endif #ifdef ANDROID @@ -67,15 +102,29 @@ #define DISABLE_ENGINES #endif +#if OPENSSL_VERSION_NUMBER >= OPENSSL_VER(1,1,0,0,5) && \ + !defined(LIBRESSL_VERSION_NUMBER) +/* OpenSSL as of 1.1.0pre4 has an "new" thread API, which doesn't require + * seting up various callbacks. + * + * OpenSSL 1.1.0pre4 has a messed up `ERR_remove_thread_state()` prototype, + * while the previous one was restored in pre5, and the function made a no-op + * (along with a deprecated annotation, which produces a compiler warning). + * + * While it is possible to support all three versions of the thread API, + * a version that existed only for one snapshot pre-release is kind of + * pointless, so let's not. + */ +#define NEW_THREAD_API +#endif + /** Longest recognized */ #define MAX_DNS_LABEL_SIZE 63 -/** Macro: is k a valid RSA public or private key? */ -#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n) -/** Macro: is k a valid RSA private key? */ -#define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p) +/** Largest strong entropy request */ +#define MAX_STRONGEST_RAND_SIZE 256 -#ifdef TOR_IS_MULTITHREADED +#ifndef NEW_THREAD_API /** A number of preallocated mutexes for use by OpenSSL. */ static tor_mutex_t **openssl_mutexes_ = NULL; /** How many mutexes have we allocated for use by OpenSSL? */ @@ -105,11 +154,11 @@ struct crypto_dh_t { }; static int setup_openssl_threading(void); -static int tor_check_dh_key(int severity, BIGNUM *bn); +static int tor_check_dh_key(int severity, const BIGNUM *bn); /** Return the number of bytes added by padding method <b>padding</b>. */ -static INLINE int +static inline int crypto_get_rsa_padding_overhead(int padding) { switch (padding) @@ -121,7 +170,7 @@ crypto_get_rsa_padding_overhead(int padding) /** Given a padding method <b>padding</b>, return the correct OpenSSL constant. */ -static INLINE int +static inline int crypto_get_rsa_padding(int padding) { switch (padding) @@ -226,7 +275,7 @@ const char * crypto_openssl_get_version_str(void) { if (crypto_openssl_version_str == NULL) { - const char *raw_version = SSLeay_version(SSLEAY_VERSION); + const char *raw_version = OpenSSL_version(OPENSSL_VERSION); crypto_openssl_version_str = parse_openssl_version_str(raw_version); } return crypto_openssl_version_str; @@ -247,14 +296,16 @@ crypto_openssl_get_header_version_str(void) /** Make sure that openssl is using its default PRNG. Return 1 if we had to * adjust it; 0 otherwise. */ -static int +STATIC int crypto_force_rand_ssleay(void) { - if (RAND_get_rand_method() != RAND_SSLeay()) { + RAND_METHOD *default_method; + default_method = RAND_OpenSSL(); + if (RAND_get_rand_method() != default_method) { log_notice(LD_CRYPTO, "It appears that one of our engines has provided " "a replacement the OpenSSL RNG. Resetting it to the default " "implementation."); - RAND_set_rand_method(RAND_SSLeay()); + RAND_set_rand_method(default_method); return 1; } return 0; @@ -269,8 +320,7 @@ crypto_init_siphash_key(void) if (have_seeded_siphash) return 0; - if (crypto_rand((char*) &key, sizeof(key)) < 0) - return -1; + crypto_rand((char*) &key, sizeof(key)); siphash_set_global_key(&key); have_seeded_siphash = 1; return 0; @@ -290,31 +340,29 @@ crypto_early_init(void) setup_openssl_threading(); - if (SSLeay() == OPENSSL_VERSION_NUMBER && - !strcmp(SSLeay_version(SSLEAY_VERSION), OPENSSL_VERSION_TEXT)) { + unsigned long version_num = OpenSSL_version_num(); + const char *version_str = OpenSSL_version(OPENSSL_VERSION); + if (version_num == OPENSSL_VERSION_NUMBER && + !strcmp(version_str, OPENSSL_VERSION_TEXT)) { log_info(LD_CRYPTO, "OpenSSL version matches version from headers " - "(%lx: %s).", SSLeay(), SSLeay_version(SSLEAY_VERSION)); + "(%lx: %s).", version_num, version_str); } else { log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the " "version we're running with. If you get weird crashes, that " "might be why. (Compiled with %lx: %s; running with %lx: %s).", (unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT, - SSLeay(), SSLeay_version(SSLEAY_VERSION)); - } - - if (SSLeay() < OPENSSL_V_SERIES(1,0,0)) { - log_notice(LD_CRYPTO, - "Your OpenSSL version seems to be %s. We recommend 1.0.0 " - "or later.", - crypto_openssl_get_version_str()); + version_num, version_str); } crypto_force_rand_ssleay(); - if (crypto_seed_rng(1) < 0) + if (crypto_seed_rng() < 0) return -1; if (crypto_init_siphash_key() < 0) return -1; + + curve25519_init(); + ed25519_init(); } return 0; } @@ -325,7 +373,8 @@ int crypto_global_init(int useAccel, const char *accelName, const char *accelDir) { if (!crypto_global_initialized_) { - crypto_early_init(); + if (crypto_early_init() < 0) + return -1; crypto_global_initialized_ = 1; @@ -368,8 +417,12 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir) used by Tor and the set of algorithms available in the engine */ log_engine("RSA", ENGINE_get_default_RSA()); log_engine("DH", ENGINE_get_default_DH()); +#ifdef OPENSSL_1_1_API + log_engine("EC", ENGINE_get_default_EC()); +#else log_engine("ECDH", ENGINE_get_default_ECDH()); log_engine("ECDSA", ENGINE_get_default_ECDSA()); +#endif log_engine("RAND", ENGINE_get_default_RAND()); log_engine("RAND (which we will not use)", ENGINE_get_default_RAND()); log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1)); @@ -393,7 +446,7 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir) } if (crypto_force_rand_ssleay()) { - if (crypto_seed_rng(1) < 0) + if (crypto_seed_rng() < 0) return -1; } @@ -407,7 +460,27 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir) void crypto_thread_cleanup(void) { - ERR_remove_state(0); +#ifndef NEW_THREAD_API + ERR_remove_thread_state(NULL); +#endif +} + +/** used internally: quicly validate a crypto_pk_t object as a private key. + * Return 1 iff the public key is valid, 0 if obviously invalid. + */ +static int +crypto_pk_private_ok(const crypto_pk_t *k) +{ +#ifdef OPENSSL_1_1_API + if (!k || !k->key) + return 0; + + const BIGNUM *p, *q; + RSA_get0_factors(k->key, &p, &q); + return p != NULL; /* XXX/yawning: Should we check q? */ +#else + return k && k->key && k->key->p; +#endif } /** used by tortls.c: wrap an RSA* in a crypto_pk_t. */ @@ -431,9 +504,10 @@ crypto_pk_get_rsa_(crypto_pk_t *env) } /** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff - * private is set, include the private-key portion of the key. */ -EVP_PKEY * -crypto_pk_get_evp_pkey_(crypto_pk_t *env, int private) + * private is set, include the private-key portion of the key. Return a valid + * pointer on success, and NULL on failure. */ +MOCK_IMPL(EVP_PKEY *, + crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private)) { RSA *key = NULL; EVP_PKEY *pkey = NULL; @@ -469,8 +543,8 @@ crypto_dh_get_dh_(crypto_dh_t *dh) /** Allocate and return storage for a public key. The key itself will not yet * be set. */ -crypto_pk_t * -crypto_pk_new(void) +MOCK_IMPL(crypto_pk_t *, + crypto_pk_new,(void)) { RSA *rsa; @@ -552,8 +626,8 @@ crypto_cipher_free(crypto_cipher_t *env) /** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>. * Return 0 on success, -1 on failure. */ -int -crypto_pk_generate_key_with_bits(crypto_pk_t *env, int bits) +MOCK_IMPL(int, + crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits)) { tor_assert(env); @@ -667,7 +741,8 @@ crypto_pk_read_private_key_from_filename(crypto_pk_t *env, return 0; } -/** Helper function to implement crypto_pk_write_*_key_to_string. */ +/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on + * success, -1 on failure. */ static int crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, size_t *len, int is_public) @@ -699,14 +774,13 @@ crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest, } BIO_get_mem_ptr(b, &buf); - (void)BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */ - BIO_free(b); *dest = tor_malloc(buf->length+1); memcpy(*dest, buf->data, buf->length); (*dest)[buf->length] = 0; /* nul terminate it */ *len = buf->length; - BUF_MEM_free(buf); + + BIO_free(b); return 0; } @@ -780,7 +854,7 @@ crypto_pk_write_private_key_to_filename(crypto_pk_t *env, char *s; int r; - tor_assert(PRIVATE_KEY_OK(env)); + tor_assert(crypto_pk_private_ok(env)); if (!(bio = BIO_new(BIO_s_mem()))) return -1; @@ -822,7 +896,7 @@ int crypto_pk_key_is_private(const crypto_pk_t *key) { tor_assert(key); - return PRIVATE_KEY_OK(key); + return crypto_pk_private_ok(key); } /** Return true iff <b>env</b> contains a public key whose public exponent @@ -834,7 +908,15 @@ crypto_pk_public_exponent_ok(crypto_pk_t *env) tor_assert(env); tor_assert(env->key); - return BN_is_word(env->key->e, 65537); + const BIGNUM *e; + +#ifdef OPENSSL_1_1_API + const BIGNUM *n, *d; + RSA_get0_key(env->key, &n, &e, &d); +#else + e = env->key->e; +#endif + return BN_is_word(e, 65537); } /** Compare the public-key components of a and b. Return less than 0 @@ -844,7 +926,7 @@ crypto_pk_public_exponent_ok(crypto_pk_t *env) * Note that this may leak information about the keys through timing. */ int -crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b) +crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b) { int result; char a_is_non_null = (a != NULL) && (a->key != NULL); @@ -855,12 +937,27 @@ crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b) if (an_argument_is_null) return result; - tor_assert(PUBLIC_KEY_OK(a)); - tor_assert(PUBLIC_KEY_OK(b)); - result = BN_cmp((a->key)->n, (b->key)->n); + const BIGNUM *a_n, *a_e; + const BIGNUM *b_n, *b_e; + +#ifdef OPENSSL_1_1_API + const BIGNUM *a_d, *b_d; + RSA_get0_key(a->key, &a_n, &a_e, &a_d); + RSA_get0_key(b->key, &b_n, &b_e, &b_d); +#else + a_n = a->key->n; + a_e = a->key->e; + b_n = b->key->n; + b_e = b->key->e; +#endif + + tor_assert(a_n != NULL && a_e != NULL); + tor_assert(b_n != NULL && b_e != NULL); + + result = BN_cmp(a_n, b_n); if (result) return result; - return BN_cmp((a->key)->e, (b->key)->e); + return BN_cmp(a_e, b_e); } /** Compare the public-key components of a and b. Return non-zero iff @@ -870,19 +967,19 @@ crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b) * Note that this may leak information about the keys through timing. */ int -crypto_pk_eq_keys(crypto_pk_t *a, crypto_pk_t *b) +crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b) { return (crypto_pk_cmp_keys(a, b) == 0); } /** Return the size of the public key modulus in <b>env</b>, in bytes. */ size_t -crypto_pk_keysize(crypto_pk_t *env) +crypto_pk_keysize(const crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); - return (size_t) RSA_size(env->key); + return (size_t) RSA_size((RSA*)env->key); } /** Return the size of the public key modulus of <b>env</b>, in bits. */ @@ -891,9 +988,20 @@ crypto_pk_num_bits(crypto_pk_t *env) { tor_assert(env); tor_assert(env->key); - tor_assert(env->key->n); +#ifdef OPENSSL_1_1_API + /* It's so stupid that there's no other way to check that n is valid + * before calling RSA_bits(). + */ + const BIGNUM *n, *e, *d; + RSA_get0_key(env->key, &n, &e, &d); + tor_assert(n != NULL); + + return RSA_bits(env->key); +#else + tor_assert(env->key->n); return BN_num_bits(env->key->n); +#endif } /** Increase the reference count of <b>env</b>, and return it. @@ -908,7 +1016,8 @@ crypto_pk_dup_key(crypto_pk_t *env) return env; } -/** Make a real honest-to-goodness copy of <b>env</b>, and return it. */ +/** Make a real honest-to-goodness copy of <b>env</b>, and return it. + * Returns NULL on failure. */ crypto_pk_t * crypto_pk_copy_full(crypto_pk_t *env) { @@ -917,7 +1026,7 @@ crypto_pk_copy_full(crypto_pk_t *env) tor_assert(env); tor_assert(env->key); - if (PRIVATE_KEY_OK(env)) { + if (crypto_pk_private_ok(env)) { new_key = RSAPrivateKey_dup(env->key); privatekey = 1; } else { @@ -986,7 +1095,7 @@ crypto_pk_private_decrypt(crypto_pk_t *env, char *to, tor_assert(env->key); tor_assert(fromlen<INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); - if (!env->key->p) + if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; @@ -1011,7 +1120,7 @@ crypto_pk_private_decrypt(crypto_pk_t *env, char *to, * at least the length of the modulus of <b>env</b>. */ int -crypto_pk_public_checksig(crypto_pk_t *env, char *to, +crypto_pk_public_checksig(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { @@ -1026,7 +1135,7 @@ crypto_pk_public_checksig(crypto_pk_t *env, char *to, env->key, RSA_PKCS1_PADDING); if (r<0) { - crypto_log_errors(LOG_WARN, "checking RSA signature"); + crypto_log_errors(LOG_INFO, "checking RSA signature"); return -1; } return r; @@ -1083,7 +1192,7 @@ crypto_pk_public_checksig_digest(crypto_pk_t *env, const char *data, * at least the length of the modulus of <b>env</b>. */ int -crypto_pk_private_sign(crypto_pk_t *env, char *to, size_t tolen, +crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen, const char *from, size_t fromlen) { int r; @@ -1092,13 +1201,13 @@ crypto_pk_private_sign(crypto_pk_t *env, char *to, size_t tolen, tor_assert(to); tor_assert(fromlen < INT_MAX); tor_assert(tolen >= crypto_pk_keysize(env)); - if (!env->key->p) + if (!crypto_pk_key_is_private(env)) /* Not a private key */ return -1; r = RSA_private_encrypt((int)fromlen, (unsigned char*)from, (unsigned char*)to, - env->key, RSA_PKCS1_PADDING); + (RSA*)env->key, RSA_PKCS1_PADDING); if (r<0) { crypto_log_errors(LOG_WARN, "generating RSA signature"); return -1; @@ -1200,7 +1309,8 @@ crypto_pk_public_hybrid_encrypt(crypto_pk_t *env, return -1; } -/** Invert crypto_pk_public_hybrid_encrypt. */ +/** Invert crypto_pk_public_hybrid_encrypt. Returns the number of bytes + * written on success, -1 on failure. */ int crypto_pk_private_hybrid_decrypt(crypto_pk_t *env, char *to, @@ -1307,12 +1417,12 @@ crypto_pk_asn1_decode(const char *str, size_t len) * Return 0 on success, -1 on failure. */ int -crypto_pk_get_digest(crypto_pk_t *pk, char *digest_out) +crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out) { unsigned char *buf = NULL; int len; - len = i2d_RSAPublicKey(pk->key, &buf); + len = i2d_RSAPublicKey((RSA*)pk->key, &buf); if (len < 0 || buf == NULL) return -1; if (crypto_digest(digest_out, (char*)buf, len) < 0) { @@ -1326,7 +1436,7 @@ crypto_pk_get_digest(crypto_pk_t *pk, char *digest_out) /** Compute all digests of the DER encoding of <b>pk</b>, and store them * in <b>digests_out</b>. Return 0 on success, -1 on failure. */ int -crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out) +crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out) { unsigned char *buf = NULL; int len; @@ -1334,7 +1444,7 @@ crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out) len = i2d_RSAPublicKey(pk->key, &buf); if (len < 0 || buf == NULL) return -1; - if (crypto_digest_all(digests_out, (char*)buf, len) < 0) { + if (crypto_common_digests(digests_out, (char*)buf, len) < 0) { OPENSSL_free(buf); return -1; } @@ -1343,7 +1453,7 @@ crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out) } /** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces - * every four spaces. */ + * every four characters. */ void crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in) { @@ -1411,6 +1521,78 @@ crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out) return 0; } +/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the + * Base64 encoding of the DER representation of the private key as a NUL + * terminated string, and return it via <b>priv_out</b>. Return 0 on + * sucess, -1 on failure. + * + * It is the caller's responsibility to sanitize and free the resulting buffer. + */ +int +crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out) +{ + unsigned char *der = NULL; + int der_len; + int ret = -1; + + *priv_out = NULL; + + der_len = i2d_RSAPrivateKey(pk->key, &der); + if (der_len < 0 || der == NULL) + return ret; + + size_t priv_len = base64_encode_size(der_len, 0) + 1; + char *priv = tor_malloc_zero(priv_len); + if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) { + *priv_out = priv; + ret = 0; + } else { + tor_free(priv); + } + + memwipe(der, 0, der_len); + OPENSSL_free(der); + return ret; +} + +/** Given a string containing the Base64 encoded DER representation of the + * private key <b>str</b>, decode and return the result on success, or NULL + * on failure. + */ +crypto_pk_t * +crypto_pk_base64_decode(const char *str, size_t len) +{ + crypto_pk_t *pk = NULL; + + char *der = tor_malloc_zero(len + 1); + int der_len = base64_decode(der, len, str, len); + if (der_len <= 0) { + log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64)."); + goto out; + } + + const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */ + RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len); + if (!rsa) { + crypto_log_errors(LOG_WARN, "decoding private key"); + goto out; + } + + pk = crypto_new_pk_from_rsa_(rsa); + + /* Make sure it's valid. */ + if (crypto_pk_check_key(pk) <= 0) { + crypto_pk_free(pk); + pk = NULL; + goto out; + } + + out: + memwipe(der, 0, len + 1); + tor_free(der); + return pk; +} + /* symmetric crypto */ /** Return a pointer to the key set for the cipher in <b>env</b>. @@ -1423,7 +1605,7 @@ crypto_cipher_get_key(crypto_cipher_t *env) /** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher * <b>env</b>; on success, store the result to <b>to</b> and return 0. - * On failure, return -1. + * Does not check for failure. */ int crypto_cipher_encrypt(crypto_cipher_t *env, char *to, @@ -1436,13 +1618,14 @@ crypto_cipher_encrypt(crypto_cipher_t *env, char *to, tor_assert(to); tor_assert(fromlen < SIZE_T_CEILING); - aes_crypt(env->cipher, from, fromlen, to); + memcpy(to, from, fromlen); + aes_crypt_inplace(env->cipher, to, fromlen); return 0; } /** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher * <b>env</b>; on success, store the result to <b>to</b> and return 0. - * On failure, return -1. + * Does not check for failure. */ int crypto_cipher_decrypt(crypto_cipher_t *env, char *to, @@ -1453,19 +1636,19 @@ crypto_cipher_decrypt(crypto_cipher_t *env, char *to, tor_assert(to); tor_assert(fromlen < SIZE_T_CEILING); - aes_crypt(env->cipher, from, fromlen, to); + memcpy(to, from, fromlen); + aes_crypt_inplace(env->cipher, to, fromlen); return 0; } /** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>; - * on success, return 0. On failure, return -1. + * on success. Does not check for failure. */ -int +void crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len) { tor_assert(len < SIZE_T_CEILING); aes_crypt_inplace(env->cipher, buf, len); - return 0; } /** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in @@ -1530,7 +1713,7 @@ crypto_cipher_decrypt_with_iv(const char *key, /** Compute the SHA1 digest of the <b>len</b> bytes on data stored in * <b>m</b>. Write the DIGEST_LEN byte result into <b>digest</b>. - * Return 0 on success, -1 on failure. + * Return 0 on success, 1 on failure. */ int crypto_digest(char *digest, const char *m, size_t len) @@ -1542,32 +1725,52 @@ crypto_digest(char *digest, const char *m, size_t len) /** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>, * using the algorithm <b>algorithm</b>. Write the DIGEST_LEN256-byte result - * into <b>digest</b>. Return 0 on success, -1 on failure. */ + * into <b>digest</b>. Return 0 on success, 1 on failure. */ int crypto_digest256(char *digest, const char *m, size_t len, digest_algorithm_t algorithm) { tor_assert(m); tor_assert(digest); - tor_assert(algorithm == DIGEST_SHA256); - return (SHA256((const unsigned char*)m,len,(unsigned char*)digest) == NULL); + tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256); + if (algorithm == DIGEST_SHA256) + return (SHA256((const uint8_t*)m,len,(uint8_t*)digest) == NULL); + else + return (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len) + == -1); +} + +/** Compute a 512-bit digest of <b>len</b> bytes in data stored in <b>m</b>, + * using the algorithm <b>algorithm</b>. Write the DIGEST_LEN512-byte result + * into <b>digest</b>. Return 0 on success, 1 on failure. */ +int +crypto_digest512(char *digest, const char *m, size_t len, + digest_algorithm_t algorithm) +{ + tor_assert(m); + tor_assert(digest); + tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512); + if (algorithm == DIGEST_SHA512) + return (SHA512((const unsigned char*)m,len,(unsigned char*)digest) + == NULL); + else + return (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len) + == -1); } -/** Set the digests_t in <b>ds_out</b> to contain every digest on the +/** Set the common_digests_t in <b>ds_out</b> to contain every digest on the * <b>len</b> bytes in <b>m</b> that we know how to compute. Return 0 on * success, -1 on failure. */ int -crypto_digest_all(digests_t *ds_out, const char *m, size_t len) +crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len) { - int i; tor_assert(ds_out); memset(ds_out, 0, sizeof(*ds_out)); if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0) return -1; - for (i = DIGEST_SHA256; i < N_DIGEST_ALGORITHMS; ++i) { - if (crypto_digest256(ds_out->d[i], m, len, i) < 0) - return -1; - } + if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0) + return -1; + return 0; } @@ -1580,6 +1783,12 @@ crypto_digest_algorithm_get_name(digest_algorithm_t alg) return "sha1"; case DIGEST_SHA256: return "sha256"; + case DIGEST_SHA512: + return "sha512"; + case DIGEST_SHA3_256: + return "sha3-256"; + case DIGEST_SHA3_512: + return "sha3-512"; default: tor_fragile_assert(); return "??unknown_digest??"; @@ -1595,27 +1804,90 @@ crypto_digest_algorithm_parse_name(const char *name) return DIGEST_SHA1; else if (!strcmp(name, "sha256")) return DIGEST_SHA256; + else if (!strcmp(name, "sha512")) + return DIGEST_SHA512; + else if (!strcmp(name, "sha3-256")) + return DIGEST_SHA3_256; + else if (!strcmp(name, "sha3-512")) + return DIGEST_SHA3_512; else return -1; } +/** Given an algorithm, return the digest length in bytes. */ +static inline size_t +crypto_digest_algorithm_get_length(digest_algorithm_t alg) +{ + switch (alg) { + case DIGEST_SHA1: + return DIGEST_LEN; + case DIGEST_SHA256: + return DIGEST256_LEN; + case DIGEST_SHA512: + return DIGEST512_LEN; + case DIGEST_SHA3_256: + return DIGEST256_LEN; + case DIGEST_SHA3_512: + return DIGEST512_LEN; + default: + tor_assert(0); + return 0; /* Unreachable */ + } +} + /** Intermediate information about the digest of a stream of data. */ struct crypto_digest_t { + digest_algorithm_t algorithm; /**< Which algorithm is in use? */ + /** State for the digest we're using. Only one member of the + * union is usable, depending on the value of <b>algorithm</b>. Note also + * that space for other members might not even be allocated! + */ union { SHA_CTX sha1; /**< state for SHA1 */ SHA256_CTX sha2; /**< state for SHA256 */ - } d; /**< State for the digest we're using. Only one member of the - * union is usable, depending on the value of <b>algorithm</b>. */ - digest_algorithm_bitfield_t algorithm : 8; /**< Which algorithm is in use? */ + SHA512_CTX sha512; /**< state for SHA512 */ + keccak_state sha3; /**< state for SHA3-[256,512] */ + } d; }; +/** + * Return the number of bytes we need to malloc in order to get a + * crypto_digest_t for <b>alg</b>, or the number of bytes we need to wipe + * when we free one. + */ +static size_t +crypto_digest_alloc_bytes(digest_algorithm_t alg) +{ + /* Helper: returns the number of bytes in the 'f' field of 'st' */ +#define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f )) + /* Gives the length of crypto_digest_t through the end of the field 'd' */ +#define END_OF_FIELD(f) (STRUCT_OFFSET(crypto_digest_t, f) + \ + STRUCT_FIELD_SIZE(crypto_digest_t, f)) + switch (alg) { + case DIGEST_SHA1: + return END_OF_FIELD(d.sha1); + case DIGEST_SHA256: + return END_OF_FIELD(d.sha2); + case DIGEST_SHA512: + return END_OF_FIELD(d.sha512); + case DIGEST_SHA3_256: + case DIGEST_SHA3_512: + return END_OF_FIELD(d.sha3); + default: + tor_assert(0); + return 0; + } +#undef END_OF_FIELD +#undef STRUCT_FIELD_SIZE +} + /** Allocate and return a new digest object to compute SHA1 digests. */ crypto_digest_t * crypto_digest_new(void) { crypto_digest_t *r; - r = tor_malloc(sizeof(crypto_digest_t)); + r = tor_malloc(crypto_digest_alloc_bytes(DIGEST_SHA1)); SHA1_Init(&r->d.sha1); r->algorithm = DIGEST_SHA1; return r; @@ -1627,9 +1899,28 @@ crypto_digest_t * crypto_digest256_new(digest_algorithm_t algorithm) { crypto_digest_t *r; - tor_assert(algorithm == DIGEST_SHA256); - r = tor_malloc(sizeof(crypto_digest_t)); - SHA256_Init(&r->d.sha2); + tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256); + r = tor_malloc(crypto_digest_alloc_bytes(algorithm)); + if (algorithm == DIGEST_SHA256) + SHA256_Init(&r->d.sha2); + else + keccak_digest_init(&r->d.sha3, 256); + r->algorithm = algorithm; + return r; +} + +/** Allocate and return a new digest object to compute 512-bit digests + * using <b>algorithm</b>. */ +crypto_digest_t * +crypto_digest512_new(digest_algorithm_t algorithm) +{ + crypto_digest_t *r; + tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512); + r = tor_malloc(crypto_digest_alloc_bytes(algorithm)); + if (algorithm == DIGEST_SHA512) + SHA512_Init(&r->d.sha512); + else + keccak_digest_init(&r->d.sha3, 512); r->algorithm = algorithm; return r; } @@ -1641,7 +1932,8 @@ crypto_digest_free(crypto_digest_t *digest) { if (!digest) return; - memwipe(digest, 0, sizeof(crypto_digest_t)); + size_t bytes = crypto_digest_alloc_bytes(digest->algorithm); + memwipe(digest, 0, bytes); tor_free(digest); } @@ -1665,6 +1957,13 @@ crypto_digest_add_bytes(crypto_digest_t *digest, const char *data, case DIGEST_SHA256: SHA256_Update(&digest->d.sha2, (void*)data, len); break; + case DIGEST_SHA512: + SHA512_Update(&digest->d.sha512, (void*)data, len); + break; + case DIGEST_SHA3_256: /* FALLSTHROUGH */ + case DIGEST_SHA3_512: + keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len); + break; default: tor_fragile_assert(); break; @@ -1673,33 +1972,45 @@ crypto_digest_add_bytes(crypto_digest_t *digest, const char *data, /** Compute the hash of the data that has been passed to the digest * object; write the first out_len bytes of the result to <b>out</b>. - * <b>out_len</b> must be \<= DIGEST256_LEN. + * <b>out_len</b> must be \<= DIGEST512_LEN. */ void crypto_digest_get_digest(crypto_digest_t *digest, char *out, size_t out_len) { - unsigned char r[DIGEST256_LEN]; + unsigned char r[DIGEST512_LEN]; crypto_digest_t tmpenv; tor_assert(digest); tor_assert(out); + tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm)); + + /* The SHA-3 code handles copying into a temporary ctx, and also can handle + * short output buffers by truncating appropriately. */ + if (digest->algorithm == DIGEST_SHA3_256 || + digest->algorithm == DIGEST_SHA3_512) { + keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len); + return; + } + + const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm); /* memcpy into a temporary ctx, since SHA*_Final clears the context */ - memcpy(&tmpenv, digest, sizeof(crypto_digest_t)); + memcpy(&tmpenv, digest, alloc_bytes); switch (digest->algorithm) { case DIGEST_SHA1: - tor_assert(out_len <= DIGEST_LEN); SHA1_Final(r, &tmpenv.d.sha1); break; case DIGEST_SHA256: - tor_assert(out_len <= DIGEST256_LEN); SHA256_Final(r, &tmpenv.d.sha2); break; + case DIGEST_SHA512: + SHA512_Final(r, &tmpenv.d.sha512); + break; + case DIGEST_SHA3_256: /* FALLSTHROUGH */ + case DIGEST_SHA3_512: + log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm); + tor_assert(0); /* This is fatal, because it should never happen. */ default: - log_warn(LD_BUG, "Called with unknown algorithm %d", digest->algorithm); - /* If fragile_assert is not enabled, then we should at least not - * leak anything. */ - memset(r, 0xff, sizeof(r)); - tor_fragile_assert(); + tor_assert(0); /* Unreachable. */ break; } memcpy(out, r, out_len); @@ -1712,15 +2023,14 @@ crypto_digest_get_digest(crypto_digest_t *digest, crypto_digest_t * crypto_digest_dup(const crypto_digest_t *digest) { - crypto_digest_t *r; tor_assert(digest); - r = tor_malloc(sizeof(crypto_digest_t)); - memcpy(r,digest,sizeof(crypto_digest_t)); - return r; + const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm); + return tor_memdup(digest, alloc_bytes); } /** Replace the state of the digest object <b>into</b> with the state - * of the digest object <b>from</b>. + * of the digest object <b>from</b>. Requires that 'into' and 'from' + * have the same digest type. */ void crypto_digest_assign(crypto_digest_t *into, @@ -1728,46 +2038,138 @@ crypto_digest_assign(crypto_digest_t *into, { tor_assert(into); tor_assert(from); - memcpy(into,from,sizeof(crypto_digest_t)); + tor_assert(into->algorithm == from->algorithm); + const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm); + memcpy(into,from,alloc_bytes); } /** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest * at <b>digest_out</b> to the hash of the concatenation of those strings, * plus the optional string <b>append</b>, computed with the algorithm * <b>alg</b>. - * <b>out_len</b> must be \<= DIGEST256_LEN. */ + * <b>out_len</b> must be \<= DIGEST512_LEN. */ void crypto_digest_smartlist(char *digest_out, size_t len_out, - const smartlist_t *lst, const char *append, + const smartlist_t *lst, + const char *append, digest_algorithm_t alg) { - crypto_digest_t *d; - if (alg == DIGEST_SHA1) - d = crypto_digest_new(); - else - d = crypto_digest256_new(alg); + crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg); +} + +/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest + * at <b>digest_out</b> to the hash of the concatenation of: the + * optional string <b>prepend</b>, those strings, + * and the optional string <b>append</b>, computed with the algorithm + * <b>alg</b>. + * <b>len_out</b> must be \<= DIGEST512_LEN. */ +void +crypto_digest_smartlist_prefix(char *digest_out, size_t len_out, + const char *prepend, + const smartlist_t *lst, + const char *append, + digest_algorithm_t alg) +{ + crypto_digest_t *d = NULL; + switch (alg) { + case DIGEST_SHA1: + d = crypto_digest_new(); + break; + case DIGEST_SHA256: /* FALLSTHROUGH */ + case DIGEST_SHA3_256: + d = crypto_digest256_new(alg); + break; + case DIGEST_SHA512: /* FALLSTHROUGH */ + case DIGEST_SHA3_512: + d = crypto_digest512_new(alg); + break; + default: + log_warn(LD_BUG, "Called with unknown algorithm %d", alg); + /* If fragile_assert is not enabled, wipe output and return + * without running any calculations */ + memwipe(digest_out, 0xff, len_out); + tor_fragile_assert(); + goto free; + } + if (prepend) + crypto_digest_add_bytes(d, prepend, strlen(prepend)); SMARTLIST_FOREACH(lst, const char *, cp, crypto_digest_add_bytes(d, cp, strlen(cp))); if (append) crypto_digest_add_bytes(d, append, strlen(append)); crypto_digest_get_digest(d, digest_out, len_out); + + free: crypto_digest_free(d); } /** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using * the <b>key</b> of length <b>key_len</b>. Store the DIGEST256_LEN-byte - * result in <b>hmac_out</b>. + * result in <b>hmac_out</b>. Asserts on failure. */ void crypto_hmac_sha256(char *hmac_out, const char *key, size_t key_len, const char *msg, size_t msg_len) { + unsigned char *rv = NULL; /* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */ tor_assert(key_len < INT_MAX); tor_assert(msg_len < INT_MAX); - HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len, - (unsigned char*)hmac_out, NULL); + tor_assert(hmac_out); + rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len, + (unsigned char*)hmac_out, NULL); + tor_assert(rv); +} + +/** Internal state for a eXtendable-Output Function (XOF). */ +struct crypto_xof_t { + keccak_state s; +}; + +/** Allocate a new XOF object backed by SHAKE-256. The security level + * provided is a function of the length of the output used. Read and + * understand FIPS-202 A.2 "Additional Consideration for Extendable-Output + * Functions" before using this construct. + */ +crypto_xof_t * +crypto_xof_new(void) +{ + crypto_xof_t *xof; + xof = tor_malloc(sizeof(crypto_xof_t)); + keccak_xof_init(&xof->s, 256); + return xof; +} + +/** Absorb bytes into a XOF object. Must not be called after a call to + * crypto_xof_squeeze_bytes() for the same instance, and will assert + * if attempted. + */ +void +crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len) +{ + int i = keccak_xof_absorb(&xof->s, data, len); + tor_assert(i == 0); +} + +/** Squeeze bytes out of a XOF object. Calling this routine will render + * the XOF instance ineligible to absorb further data. + */ +void +crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len) +{ + int i = keccak_xof_squeeze(&xof->s, out, len); + tor_assert(i == 0); +} + +/** Cleanse and deallocate a XOF object. */ +void +crypto_xof_free(crypto_xof_t *xof) +{ + if (!xof) + return; + memwipe(xof, 0, sizeof(crypto_xof_t)); + tor_free(xof); } /* DH */ @@ -1782,231 +2184,87 @@ static BIGNUM *dh_param_p_tls = NULL; /** Shared G parameter for our DH key exchanges. */ static BIGNUM *dh_param_g = NULL; -/** Generate and return a reasonable and safe DH parameter p. */ -static BIGNUM * -crypto_generate_dynamic_dh_modulus(void) -{ - BIGNUM *dynamic_dh_modulus; - DH *dh_parameters; - int r, dh_codes; - char *s; - - dynamic_dh_modulus = BN_new(); - tor_assert(dynamic_dh_modulus); - - dh_parameters = DH_generate_parameters(DH_BYTES*8, DH_GENERATOR, NULL, NULL); - tor_assert(dh_parameters); - - r = DH_check(dh_parameters, &dh_codes); - tor_assert(r && !dh_codes); - - BN_copy(dynamic_dh_modulus, dh_parameters->p); - tor_assert(dynamic_dh_modulus); - - DH_free(dh_parameters); - - { /* log the dynamic DH modulus: */ - s = BN_bn2hex(dynamic_dh_modulus); - tor_assert(s); - log_info(LD_OR, "Dynamic DH modulus generated: [%s]", s); - OPENSSL_free(s); - } - - return dynamic_dh_modulus; -} - -/** Store our dynamic DH modulus (and its group parameters) to - <b>fname</b> for future use. */ +/** Validate a given set of Diffie-Hellman parameters. This is moderately + * computationally expensive (milliseconds), so should only be called when + * the DH parameters change. Returns 0 on success, * -1 on failure. + */ static int -crypto_store_dynamic_dh_modulus(const char *fname) +crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g) { - int len, new_len; DH *dh = NULL; - unsigned char *dh_string_repr = NULL; - char *base64_encoded_dh = NULL; - char *file_string = NULL; - int retval = -1; - static const char file_header[] = "# This file contains stored Diffie-" - "Hellman parameters for future use.\n# You *do not* need to edit this " - "file.\n\n"; - - tor_assert(fname); - - if (!dh_param_p_tls) { - log_info(LD_CRYPTO, "Tried to store a DH modulus that does not exist."); - goto done; - } + int ret = -1; + /* Copy into a temporary DH object, just so that DH_check() can be called. */ if (!(dh = DH_new())) - goto done; - if (!(dh->p = BN_dup(dh_param_p_tls))) - goto done; - if (!(dh->g = BN_new())) - goto done; - if (!BN_set_word(dh->g, DH_GENERATOR)) - goto done; - - len = i2d_DHparams(dh, &dh_string_repr); - if ((len < 0) || (dh_string_repr == NULL)) { - log_warn(LD_CRYPTO, "Error occured while DER encoding DH modulus (2)."); - goto done; - } - - base64_encoded_dh = tor_malloc_zero(len * 2); /* should be enough */ - new_len = base64_encode(base64_encoded_dh, len * 2, - (char *)dh_string_repr, len); - if (new_len < 0) { - log_warn(LD_CRYPTO, "Error occured while base64-encoding DH modulus."); - goto done; - } - - /* concatenate file header and the dh parameters blob */ - new_len = tor_asprintf(&file_string, "%s%s", file_header, base64_encoded_dh); + goto out; +#ifdef OPENSSL_1_1_API + BIGNUM *dh_p, *dh_g; + if (!(dh_p = BN_dup(p))) + goto out; + if (!(dh_g = BN_dup(g))) + goto out; + if (!DH_set0_pqg(dh, dh_p, NULL, dh_g)) + goto out; +#else + if (!(dh->p = BN_dup(p))) + goto out; + if (!(dh->g = BN_dup(g))) + goto out; +#endif - /* write to file */ - if (write_bytes_to_new_file(fname, file_string, new_len, 0) < 0) { - log_info(LD_CRYPTO, "'%s' was already occupied.", fname); - goto done; + /* Perform the validation. */ + int codes = 0; + if (!DH_check(dh, &codes)) + goto out; + if (BN_is_word(g, DH_GENERATOR_2)) { + /* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters + * + * OpenSSL checks the prime is congruent to 11 when g = 2; while the + * IETF's primes are congruent to 23 when g = 2. + */ + BN_ULONG residue = BN_mod_word(p, 24); + if (residue == 11 || residue == 23) + codes &= ~DH_NOT_SUITABLE_GENERATOR; } + if (codes != 0) /* Specifics on why the params suck is irrelevant. */ + goto out; - retval = 0; + /* Things are probably not evil. */ + ret = 0; - done: + out: if (dh) DH_free(dh); - if (dh_string_repr) - OPENSSL_free(dh_string_repr); - tor_free(base64_encoded_dh); - tor_free(file_string); - - return retval; + return ret; } -/** Return the dynamic DH modulus stored in <b>fname</b>. If there is no - dynamic DH modulus stored in <b>fname</b>, return NULL. */ -static BIGNUM * -crypto_get_stored_dynamic_dh_modulus(const char *fname) +/** Set the global Diffie-Hellman generator, used for both TLS and internal + * DH stuff. + */ +static void +crypto_set_dh_generator(void) { - int retval; - char *contents = NULL; - const char *contents_tmp = NULL; - int dh_codes; - DH *stored_dh = NULL; - BIGNUM *dynamic_dh_modulus = NULL; - int length = 0; - unsigned char *base64_decoded_dh = NULL; - const unsigned char *cp = NULL; - - tor_assert(fname); - - contents = read_file_to_str(fname, RFTS_IGNORE_MISSING, NULL); - if (!contents) { - log_info(LD_CRYPTO, "Could not open file '%s'", fname); - goto done; /*usually means that ENOENT. don't try to move file to broken.*/ - } - - /* skip the file header */ - contents_tmp = eat_whitespace(contents); - if (!*contents_tmp) { - log_warn(LD_CRYPTO, "Stored dynamic DH modulus file " - "seems corrupted (eat_whitespace)."); - goto err; - } - - /* 'fname' contains the DH parameters stored in base64-ed DER - * format. We are only interested in the DH modulus. - * NOTE: We allocate more storage here than we need. Since we're already - * doing that, we can also add 1 byte extra to appease Coverity's - * scanner. */ - - cp = base64_decoded_dh = tor_malloc_zero(strlen(contents_tmp) + 1); - length = base64_decode((char *)base64_decoded_dh, strlen(contents_tmp), - contents_tmp, strlen(contents_tmp)); - if (length < 0) { - log_warn(LD_CRYPTO, "Stored dynamic DH modulus seems corrupted (base64)."); - goto err; - } - - stored_dh = d2i_DHparams(NULL, &cp, length); - if ((!stored_dh) || (cp - base64_decoded_dh != length)) { - log_warn(LD_CRYPTO, "Stored dynamic DH modulus seems corrupted (d2i)."); - goto err; - } - - { /* check the cryptographic qualities of the stored dynamic DH modulus: */ - retval = DH_check(stored_dh, &dh_codes); - if (!retval || dh_codes) { - log_warn(LD_CRYPTO, "Stored dynamic DH modulus is not a safe prime."); - goto err; - } - - retval = DH_size(stored_dh); - if (retval < DH_BYTES) { - log_warn(LD_CRYPTO, "Stored dynamic DH modulus is smaller " - "than '%d' bits.", DH_BYTES*8); - goto err; - } - - if (!BN_is_word(stored_dh->g, 2)) { - log_warn(LD_CRYPTO, "Stored dynamic DH parameters do not use '2' " - "as the group generator."); - goto err; - } - } - - { /* log the dynamic DH modulus: */ - char *s = BN_bn2hex(stored_dh->p); - tor_assert(s); - log_info(LD_OR, "Found stored dynamic DH modulus: [%s]", s); - OPENSSL_free(s); - } - - goto done; - - err: - - { - /* move broken prime to $filename.broken */ - char *fname_new=NULL; - tor_asprintf(&fname_new, "%s.broken", fname); - - log_warn(LD_CRYPTO, "Moving broken dynamic DH prime to '%s'.", fname_new); - - if (replace_file(fname, fname_new)) - log_notice(LD_CRYPTO, "Error while moving '%s' to '%s'.", - fname, fname_new); - - tor_free(fname_new); - } + BIGNUM *generator; + int r; - if (stored_dh) { - DH_free(stored_dh); - stored_dh = NULL; - } + if (dh_param_g) + return; - done: - tor_free(contents); - tor_free(base64_decoded_dh); + generator = BN_new(); + tor_assert(generator); - if (stored_dh) { - dynamic_dh_modulus = BN_dup(stored_dh->p); - DH_free(stored_dh); - } + r = BN_set_word(generator, DH_GENERATOR); + tor_assert(r); - return dynamic_dh_modulus; + dh_param_g = generator; } -/** Set the global TLS Diffie-Hellman modulus. - * If <b>dynamic_dh_modulus_fname</b> is set, try to read a dynamic DH modulus - * off it and use it as the DH modulus. If that's not possible, - * generate a new dynamic DH modulus. - * If <b>dynamic_dh_modulus_fname</b> is NULL, use the Apache mod_ssl DH +/** Set the global TLS Diffie-Hellman modulus. Use the Apache mod_ssl DH * modulus. */ void -crypto_set_tls_dh_prime(const char *dynamic_dh_modulus_fname) +crypto_set_tls_dh_prime(void) { BIGNUM *tls_prime = NULL; - int store_dh_prime_afterwards = 0; int r; /* If the space is occupied, free the previous TLS DH prime */ @@ -2015,44 +2273,26 @@ crypto_set_tls_dh_prime(const char *dynamic_dh_modulus_fname) dh_param_p_tls = NULL; } - if (dynamic_dh_modulus_fname) { /* use dynamic DH modulus: */ - log_info(LD_OR, "Using stored dynamic DH modulus."); - tls_prime = crypto_get_stored_dynamic_dh_modulus(dynamic_dh_modulus_fname); - - if (!tls_prime) { - log_notice(LD_OR, "Generating fresh dynamic DH modulus. " - "This might take a while..."); - tls_prime = crypto_generate_dynamic_dh_modulus(); - - store_dh_prime_afterwards++; - } - } else { /* use the static DH prime modulus used by Apache in mod_ssl: */ - tls_prime = BN_new(); - tor_assert(tls_prime); + tls_prime = BN_new(); + tor_assert(tls_prime); - /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see - * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this - * prime. - */ - r =BN_hex2bn(&tls_prime, - "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98" - "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A" - "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7" - "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68" - "B0E7393E0F24218EB3"); - tor_assert(r); - } + /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see + * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this + * prime. + */ + r = BN_hex2bn(&tls_prime, + "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98" + "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A" + "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7" + "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68" + "B0E7393E0F24218EB3"); + tor_assert(r); tor_assert(tls_prime); dh_param_p_tls = tls_prime; - - if (store_dh_prime_afterwards) - /* save the new dynamic DH modulus to disk. */ - if (crypto_store_dynamic_dh_modulus(dynamic_dh_modulus_fname)) { - log_notice(LD_CRYPTO, "Failed while storing dynamic DH modulus. " - "Make sure your data directory is sane."); - } + crypto_set_dh_generator(); + tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g)); } /** Initialize dh_param_p and dh_param_g if they are not already @@ -2060,18 +2300,13 @@ crypto_set_tls_dh_prime(const char *dynamic_dh_modulus_fname) static void init_dh_param(void) { - BIGNUM *circuit_dh_prime, *generator; + BIGNUM *circuit_dh_prime; int r; if (dh_param_p && dh_param_g) return; circuit_dh_prime = BN_new(); - generator = BN_new(); - tor_assert(circuit_dh_prime && generator); - - /* Set our generator for all DH parameters */ - r = BN_set_word(generator, DH_GENERATOR); - tor_assert(r); + tor_assert(circuit_dh_prime); /* This is from rfc2409, section 6.2. It's a safe prime, and supposedly it equals: @@ -2087,12 +2322,11 @@ init_dh_param(void) /* Set the new values as the global DH parameters. */ dh_param_p = circuit_dh_prime; - dh_param_g = generator; + crypto_set_dh_generator(); + tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g)); - /* Ensure that we have TLS DH parameters set up, too, even if we're - going to change them soon. */ if (!dh_param_p_tls) { - crypto_set_tls_dh_prime(NULL); + crypto_set_tls_dh_prime(); } } @@ -2102,7 +2336,8 @@ init_dh_param(void) */ #define DH_PRIVATE_KEY_BITS 320 -/** Allocate and return a new DH object for a key exchange. +/** Allocate and return a new DH object for a key exchange. Returns NULL on + * failure. */ crypto_dh_t * crypto_dh_new(int dh_type) @@ -2118,6 +2353,30 @@ crypto_dh_new(int dh_type) if (!(res->dh = DH_new())) goto err; +#ifdef OPENSSL_1_1_API + BIGNUM *dh_p = NULL, *dh_g = NULL; + + if (dh_type == DH_TYPE_TLS) { + dh_p = BN_dup(dh_param_p_tls); + } else { + dh_p = BN_dup(dh_param_p); + } + if (!dh_p) + goto err; + + dh_g = BN_dup(dh_param_g); + if (!dh_g) { + BN_free(dh_p); + goto err; + } + + if (!DH_set0_pqg(res->dh, dh_p, NULL, dh_g)) { + goto err; + } + + if (!DH_set_length(res->dh, DH_PRIVATE_KEY_BITS)) + goto err; +#else if (dh_type == DH_TYPE_TLS) { if (!(res->dh->p = BN_dup(dh_param_p_tls))) goto err; @@ -2130,6 +2389,7 @@ crypto_dh_new(int dh_type) goto err; res->dh->length = DH_PRIVATE_KEY_BITS; +#endif return res; err: @@ -2144,6 +2404,8 @@ crypto_dh_t * crypto_dh_dup(const crypto_dh_t *dh) { crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t)); + tor_assert(dh); + tor_assert(dh->dh); dh_new->dh = dh->dh; DH_up_ref(dh->dh); return dh_new; @@ -2164,11 +2426,26 @@ crypto_dh_get_bytes(crypto_dh_t *dh) int crypto_dh_generate_public(crypto_dh_t *dh) { +#ifndef OPENSSL_1_1_API again: +#endif if (!DH_generate_key(dh->dh)) { crypto_log_errors(LOG_WARN, "generating DH key"); return -1; } +#ifdef OPENSSL_1_1_API + /* OpenSSL 1.1.x doesn't appear to let you regenerate a DH key, without + * recreating the DH object. I have no idea what sort of aliasing madness + * can occur here, so do the check, and just bail on failure. + */ + const BIGNUM *pub_key, *priv_key; + DH_get0_key(dh->dh, &pub_key, &priv_key); + if (tor_check_dh_key(LOG_WARN, pub_key)<0) { + log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-" + "the-universe chances really do happen. Treating as a failure."); + return -1; + } +#else if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) { log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-" "the-universe chances really do happen. Trying again."); @@ -2178,6 +2455,7 @@ crypto_dh_generate_public(crypto_dh_t *dh) dh->dh->pub_key = dh->dh->priv_key = NULL; goto again; } +#endif return 0; } @@ -2190,13 +2468,30 @@ crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len) { int bytes; tor_assert(dh); - if (!dh->dh->pub_key) { + + const BIGNUM *dh_pub; + +#ifdef OPENSSL_1_1_API + const BIGNUM *dh_priv; + DH_get0_key(dh->dh, &dh_pub, &dh_priv); +#else + dh_pub = dh->dh->pub_key; +#endif + + if (!dh_pub) { if (crypto_dh_generate_public(dh)<0) return -1; + else { +#ifdef OPENSSL_1_1_API + DH_get0_key(dh->dh, &dh_pub, &dh_priv); +#else + dh_pub = dh->dh->pub_key; +#endif + } } - tor_assert(dh->dh->pub_key); - bytes = BN_num_bytes(dh->dh->pub_key); + tor_assert(dh_pub); + bytes = BN_num_bytes(dh_pub); tor_assert(bytes >= 0); if (pubkey_len < (size_t)bytes) { log_warn(LD_CRYPTO, @@ -2206,7 +2501,7 @@ crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len) } memset(pubkey, 0, pubkey_len); - BN_bn2bin(dh->dh->pub_key, (unsigned char*)(pubkey+(pubkey_len-bytes))); + BN_bn2bin(dh_pub, (unsigned char*)(pubkey+(pubkey_len-bytes))); return 0; } @@ -2216,7 +2511,7 @@ crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len) * See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips. */ static int -tor_check_dh_key(int severity, BIGNUM *bn) +tor_check_dh_key(int severity, const BIGNUM *bn) { BIGNUM *x; char *s; @@ -2323,7 +2618,7 @@ int crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len, uint8_t *key_out, size_t key_out_len) { - int i; + int i, r = -1; uint8_t *cp, *tmp = tor_malloc(key_in_len+1); uint8_t digest[DIGEST_LEN]; @@ -2335,19 +2630,16 @@ crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len, ++i, cp += DIGEST_LEN) { tmp[key_in_len] = i; if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1)) - goto err; + goto exit; memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out))); } - memwipe(tmp, 0, key_in_len+1); - tor_free(tmp); - memwipe(digest, 0, sizeof(digest)); - return 0; - err: + r = 0; + exit: memwipe(tmp, 0, key_in_len+1); tor_free(tmp); memwipe(digest, 0, sizeof(digest)); - return -1; + return r; } /** Expand some secret key material according to RFC5869, using SHA256 as the @@ -2355,7 +2647,7 @@ crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len, * secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the * <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt" * and "info" parameters respectively. On success, write <b>key_out_len</b> - * bytes to <b>key_out</b> and return 0. On failure, return -1. + * bytes to <b>key_out</b> and return 0. Assert on failure. */ int crypto_expand_key_material_rfc5869_sha256( @@ -2429,15 +2721,6 @@ crypto_dh_free(crypto_dh_t *dh) * work for us too. */ #define ADD_ENTROPY 32 -/** True iff it's safe to use RAND_poll after setup. - * - * Versions of OpenSSL prior to 0.9.7k and 0.9.8c had a bug where RAND_poll - * would allocate an fd_set on the stack, open a new file, and try to FD_SET - * that fd without checking whether it fit in the fd_set. Thus, if the - * system has not just been started up, it is unsafe to call */ -#define RAND_POLL_IS_SAFE \ - (OPENSSL_VERSION_NUMBER >= OPENSSL_V(0,9,8,'c')) - /** Set the seed of the weak RNG to a random value. */ void crypto_seed_weak_rng(tor_weak_rng_t *rng) @@ -2448,30 +2731,23 @@ crypto_seed_weak_rng(tor_weak_rng_t *rng) } /** Try to get <b>out_len</b> bytes of the strongest entropy we can generate, - * storing it into <b>out</b>. + * via system calls, storing it into <b>out</b>. Return 0 on success, -1 on + * failure. A maximum request size of 256 bytes is imposed. */ -int -crypto_strongest_rand(uint8_t *out, size_t out_len) +static int +crypto_strongest_rand_syscall(uint8_t *out, size_t out_len) { -#ifdef _WIN32 + tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE); + +#if defined(_WIN32) static int provider_set = 0; static HCRYPTPROV provider; -#else - static const char *filenames[] = { - "/dev/srandom", "/dev/urandom", "/dev/random", NULL - }; - int fd, i; - size_t n; -#endif -#ifdef _WIN32 if (!provider_set) { if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { - if ((unsigned long)GetLastError() != (unsigned long)NTE_BAD_KEYSET) { - log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]"); - return -1; - } + log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]"); + return -1; } provider_set = 1; } @@ -2481,7 +2757,84 @@ crypto_strongest_rand(uint8_t *out, size_t out_len) } return 0; +#elif defined(__linux__) && defined(SYS_getrandom) + static int getrandom_works = 1; /* Be optimitic about our chances... */ + + /* getrandom() isn't as straight foward as getentropy(), and has + * no glibc wrapper. + * + * As far as I can tell from getrandom(2) and the source code, the + * requests we issue will always succeed (though it will block on the + * call if /dev/urandom isn't seeded yet), since we are NOT specifying + * GRND_NONBLOCK and the request is <= 256 bytes. + * + * The manpage is unclear on what happens if a signal interrupts the call + * while the request is blocked due to lack of entropy.... + * + * We optimistically assume that getrandom() is available and functional + * because it is the way of the future, and 2 branch mispredicts pale in + * comparision to the overheads involved with failing to open + * /dev/srandom followed by opening and reading from /dev/urandom. + */ + if (PREDICT_LIKELY(getrandom_works)) { + long ret; + /* A flag of '0' here means to read from '/dev/urandom', and to + * block if insufficient entropy is available to service the + * request. + */ + const unsigned int flags = 0; + do { + ret = syscall(SYS_getrandom, out, out_len, flags); + } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN))); + + if (PREDICT_UNLIKELY(ret == -1)) { + tor_assert(errno != EAGAIN); + tor_assert(errno != EINTR); + + /* Probably ENOSYS. */ + log_warn(LD_CRYPTO, "Can't get entropy from getrandom()."); + getrandom_works = 0; /* Don't bother trying again. */ + return -1; + } + + tor_assert(ret == (long)out_len); + return 0; + } + + return -1; /* getrandom() previously failed unexpectedly. */ +#elif defined(HAVE_GETENTROPY) + /* getentropy() is what Linux's getrandom() wants to be when it grows up. + * the only gotcha is that requests are limited to 256 bytes. + */ + return getentropy(out, out_len); +#else + (void) out; +#endif + + /* This platform doesn't have a supported syscall based random. */ + return -1; +} + +/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate, + * via the per-platform fallback mechanism, storing it into <b>out</b>. + * Return 0 on success, -1 on failure. A maximum request size of 256 bytes + * is imposed. + */ +static int +crypto_strongest_rand_fallback(uint8_t *out, size_t out_len) +{ +#ifdef _WIN32 + /* Windows exclusively uses crypto_strongest_rand_syscall(). */ + (void)out; + (void)out_len; + return -1; #else + static const char *filenames[] = { + "/dev/srandom", "/dev/urandom", "/dev/random", NULL + }; + int fd, i; + size_t n; + for (i = 0; filenames[i]; ++i) { log_debug(LD_FS, "Opening %s for entropy", filenames[i]); fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0); @@ -2499,17 +2852,98 @@ crypto_strongest_rand(uint8_t *out, size_t out_len) return 0; } - log_warn(LD_CRYPTO, "Cannot get strong entropy: no entropy source found."); return -1; #endif } +/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate, + * storing it into <b>out</b>. Return 0 on success, -1 on failure. A maximum + * request size of 256 bytes is imposed. + */ +static int +crypto_strongest_rand_raw(uint8_t *out, size_t out_len) +{ + static const size_t sanity_min_size = 16; + static const int max_attempts = 3; + tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE); + + /* For buffers >= 16 bytes (128 bits), we sanity check the output by + * zero filling the buffer and ensuring that it actually was at least + * partially modified. + * + * Checking that any individual byte is non-zero seems like it would + * fail too often (p = out_len * 1/256) for comfort, but this is an + * "adjust according to taste" sort of check. + */ + memwipe(out, 0, out_len); + for (int i = 0; i < max_attempts; i++) { + /* Try to use the syscall/OS favored mechanism to get strong entropy. */ + if (crypto_strongest_rand_syscall(out, out_len) != 0) { + /* Try to use the less-favored mechanism to get strong entropy. */ + if (crypto_strongest_rand_fallback(out, out_len) != 0) { + /* Welp, we tried. Hopefully the calling code terminates the process + * since we're basically boned without good entropy. + */ + log_warn(LD_CRYPTO, + "Cannot get strong entropy: no entropy source found."); + return -1; + } + } + + if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len)) + return 0; + } + + /* We tried max_attempts times to fill a buffer >= 128 bits long, + * and each time it returned all '0's. Either the system entropy + * source is busted, or the user should go out and buy a ticket to + * every lottery on the planet. + */ + log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer."); + return -1; +} + +/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate, + * storing it into <b>out</b>. + */ +void +crypto_strongest_rand(uint8_t *out, size_t out_len) +{ +#define DLEN SHA512_DIGEST_LENGTH + /* We're going to hash DLEN bytes from the system RNG together with some + * bytes from the openssl PRNG, in order to yield DLEN bytes. + */ + uint8_t inp[DLEN*2]; + uint8_t tmp[DLEN]; + tor_assert(out); + while (out_len) { + crypto_rand((char*) inp, DLEN); + if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) { + log_err(LD_CRYPTO, "Failed to load strong entropy when generating an " + "important key. Exiting."); + /* Die with an assertion so we get a stack trace. */ + tor_assert(0); + } + if (out_len >= DLEN) { + SHA512(inp, sizeof(inp), out); + out += DLEN; + out_len -= DLEN; + } else { + SHA512(inp, sizeof(inp), tmp); + memcpy(out, tmp, out_len); + break; + } + } + memwipe(tmp, 0, sizeof(tmp)); + memwipe(inp, 0, sizeof(inp)); +#undef DLEN +} + /** Seed OpenSSL's random number generator with bytes from the operating - * system. <b>startup</b> should be true iff we have just started Tor and - * have not yet allocated a bunch of fds. Return 0 on success, -1 on failure. + * system. Return 0 on success, -1 on failure. */ int -crypto_seed_rng(int startup) +crypto_seed_rng(void) { int rand_poll_ok = 0, load_entropy_ok = 0; uint8_t buf[ADD_ENTROPY]; @@ -2517,38 +2951,55 @@ crypto_seed_rng(int startup) /* OpenSSL has a RAND_poll function that knows about more kinds of * entropy than we do. We'll try calling that, *and* calling our own entropy * functions. If one succeeds, we'll accept the RNG as seeded. */ - if (startup || RAND_POLL_IS_SAFE) { - rand_poll_ok = RAND_poll(); - if (rand_poll_ok == 0) - log_warn(LD_CRYPTO, "RAND_poll() failed."); - } + rand_poll_ok = RAND_poll(); + if (rand_poll_ok == 0) + log_warn(LD_CRYPTO, "RAND_poll() failed."); - load_entropy_ok = !crypto_strongest_rand(buf, sizeof(buf)); + load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf)); if (load_entropy_ok) { RAND_seed(buf, sizeof(buf)); } memwipe(buf, 0, sizeof(buf)); - if (rand_poll_ok || load_entropy_ok) + if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1) return 0; else return -1; } -/** Write <b>n</b> bytes of strong random data to <b>to</b>. Return 0 on - * success, -1 on failure. +/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking + * for unit tests. + * + * This function is not allowed to fail; if it would fail to generate strong + * entropy, it must terminate the process instead. */ -MOCK_IMPL(int, +MOCK_IMPL(void, crypto_rand, (char *to, size_t n)) { + crypto_rand_unmocked(to, n); +} + +/** Write <b>n</b> bytes of strong random data to <b>to</b>. Most callers + * will want crypto_rand instead. + * + * This function is not allowed to fail; if it would fail to generate strong + * entropy, it must terminate the process instead. + */ +void +crypto_rand_unmocked(char *to, size_t n) +{ int r; + if (n == 0) + return; + tor_assert(n < INT_MAX); tor_assert(to); r = RAND_bytes((unsigned char*)to, (int)n); - if (r == 0) - crypto_log_errors(LOG_WARN, "generating random data"); - return (r == 1) ? 0 : -1; + /* We consider a PRNG failure non-survivable. Let's assert so that we get a + * stack trace about where it happened. + */ + tor_assert(r >= 0); } /** Return a pseudorandom integer, chosen uniformly from the values @@ -2574,8 +3025,41 @@ crypto_rand_int(unsigned int max) } } +/** Return a pseudorandom integer, chosen uniformly from the values i such + * that min <= i < max. + * + * <b>min</b> MUST be in range [0, <b>max</b>). + * <b>max</b> MUST be in range (min, INT_MAX]. + */ +int +crypto_rand_int_range(unsigned int min, unsigned int max) +{ + tor_assert(min < max); + tor_assert(max <= INT_MAX); + + /* The overflow is avoided here because crypto_rand_int() returns a value + * between 0 and (max - min) inclusive. */ + return min + crypto_rand_int(max - min); +} + +/** As crypto_rand_int_range, but supports uint64_t. */ +uint64_t +crypto_rand_uint64_range(uint64_t min, uint64_t max) +{ + tor_assert(min < max); + return min + crypto_rand_uint64(max - min); +} + +/** As crypto_rand_int_range, but supports time_t. */ +time_t +crypto_rand_time_range(time_t min, time_t max) +{ + tor_assert(min < max); + return min + (time_t)crypto_rand_uint64(max - min); +} + /** Return a pseudorandom 64-bit integer, chosen uniformly from the values - * between 0 and <b>max</b>-1. */ + * between 0 and <b>max</b>-1 inclusive. */ uint64_t crypto_rand_uint64(uint64_t max) { @@ -2619,7 +3103,7 @@ crypto_rand_double(void) /** Generate and return a new random hostname starting with <b>prefix</b>, * ending with <b>suffix</b>, and containing no fewer than * <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32 - * characters between. + * characters. Does not check for failure. * * Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE. **/ @@ -2636,7 +3120,7 @@ crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix, if (min_rand_len > max_rand_len) min_rand_len = max_rand_len; - randlen = min_rand_len + crypto_rand_int(max_rand_len - min_rand_len + 1); + randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1); prefixlen = strlen(prefix); resultlen = prefixlen + strlen(suffix) + randlen + 16; @@ -2683,388 +3167,6 @@ smartlist_shuffle(smartlist_t *sl) } } -/** Base64 encode <b>srclen</b> bytes of data from <b>src</b>. Write - * the result into <b>dest</b>, if it will fit within <b>destlen</b> - * bytes. Return the number of bytes written on success; -1 if - * destlen is too short, or other failure. - */ -int -base64_encode(char *dest, size_t destlen, const char *src, size_t srclen) -{ - /* FFFF we might want to rewrite this along the lines of base64_decode, if - * it ever shows up in the profile. */ - EVP_ENCODE_CTX ctx; - int len, ret; - tor_assert(srclen < INT_MAX); - - /* 48 bytes of input -> 64 bytes of output plus newline. - Plus one more byte, in case I'm wrong. - */ - if (destlen < ((srclen/48)+1)*66) - return -1; - if (destlen > SIZE_T_CEILING) - return -1; - - EVP_EncodeInit(&ctx); - EVP_EncodeUpdate(&ctx, (unsigned char*)dest, &len, - (unsigned char*)src, (int)srclen); - EVP_EncodeFinal(&ctx, (unsigned char*)(dest+len), &ret); - ret += len; - return ret; -} - -/** @{ */ -/** Special values used for the base64_decode_table */ -#define X 255 -#define SP 64 -#define PAD 65 -/** @} */ -/** Internal table mapping byte values to what they represent in base64. - * Numbers 0..63 are 6-bit integers. SPs are spaces, and should be - * skipped. Xs are invalid and must not appear in base64. PAD indicates - * end-of-string. */ -static const uint8_t base64_decode_table[256] = { - X, X, X, X, X, X, X, X, X, SP, SP, SP, X, SP, X, X, /* */ - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - SP, X, X, X, X, X, X, X, X, X, X, 62, X, X, X, 63, - 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, X, X, X, PAD, X, X, - X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, - 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, X, X, X, X, X, - X, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, - 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, - X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, -}; - -/** Base64 decode <b>srclen</b> bytes of data from <b>src</b>. Write - * the result into <b>dest</b>, if it will fit within <b>destlen</b> - * bytes. Return the number of bytes written on success; -1 if - * destlen is too short, or other failure. - * - * NOTE 1: destlen is checked conservatively, as though srclen contained no - * spaces or padding. - * - * NOTE 2: This implementation does not check for the correct number of - * padding "=" characters at the end of the string, and does not check - * for internal padding characters. - */ -int -base64_decode(char *dest, size_t destlen, const char *src, size_t srclen) -{ -#ifdef USE_OPENSSL_BASE64 - EVP_ENCODE_CTX ctx; - int len, ret; - /* 64 bytes of input -> *up to* 48 bytes of output. - Plus one more byte, in case I'm wrong. - */ - if (destlen < ((srclen/64)+1)*49) - return -1; - if (destlen > SIZE_T_CEILING) - return -1; - - memset(dest, 0, destlen); - - EVP_DecodeInit(&ctx); - EVP_DecodeUpdate(&ctx, (unsigned char*)dest, &len, - (unsigned char*)src, srclen); - EVP_DecodeFinal(&ctx, (unsigned char*)dest, &ret); - ret += len; - return ret; -#else - const char *eos = src+srclen; - uint32_t n=0; - int n_idx=0; - char *dest_orig = dest; - - /* Max number of bits == srclen*6. - * Number of bytes required to hold all bits == (srclen*6)/8. - * Yes, we want to round down: anything that hangs over the end of a - * byte is padding. */ - if (destlen < (srclen*3)/4) - return -1; - if (destlen > SIZE_T_CEILING) - return -1; - - memset(dest, 0, destlen); - - /* Iterate over all the bytes in src. Each one will add 0 or 6 bits to the - * value we're decoding. Accumulate bits in <b>n</b>, and whenever we have - * 24 bits, batch them into 3 bytes and flush those bytes to dest. - */ - for ( ; src < eos; ++src) { - unsigned char c = (unsigned char) *src; - uint8_t v = base64_decode_table[c]; - switch (v) { - case X: - /* This character isn't allowed in base64. */ - return -1; - case SP: - /* This character is whitespace, and has no effect. */ - continue; - case PAD: - /* We've hit an = character: the data is over. */ - goto end_of_loop; - default: - /* We have an actual 6-bit value. Append it to the bits in n. */ - n = (n<<6) | v; - if ((++n_idx) == 4) { - /* We've accumulated 24 bits in n. Flush them. */ - *dest++ = (n>>16); - *dest++ = (n>>8) & 0xff; - *dest++ = (n) & 0xff; - n_idx = 0; - n = 0; - } - } - } - end_of_loop: - /* If we have leftover bits, we need to cope. */ - switch (n_idx) { - case 0: - default: - /* No leftover bits. We win. */ - break; - case 1: - /* 6 leftover bits. That's invalid; we can't form a byte out of that. */ - return -1; - case 2: - /* 12 leftover bits: The last 4 are padding and the first 8 are data. */ - *dest++ = n >> 4; - break; - case 3: - /* 18 leftover bits: The last 2 are padding and the first 16 are data. */ - *dest++ = n >> 10; - *dest++ = n >> 2; - } - - tor_assert((dest-dest_orig) <= (ssize_t)destlen); - tor_assert((dest-dest_orig) <= INT_MAX); - - return (int)(dest-dest_orig); -#endif -} -#undef X -#undef SP -#undef PAD - -/** Base64 encode DIGEST_LINE bytes from <b>digest</b>, remove the trailing = - * and newline characters, and store the nul-terminated result in the first - * BASE64_DIGEST_LEN+1 bytes of <b>d64</b>. */ -int -digest_to_base64(char *d64, const char *digest) -{ - char buf[256]; - base64_encode(buf, sizeof(buf), digest, DIGEST_LEN); - buf[BASE64_DIGEST_LEN] = '\0'; - memcpy(d64, buf, BASE64_DIGEST_LEN+1); - return 0; -} - -/** Given a base64 encoded, nul-terminated digest in <b>d64</b> (without - * trailing newline or = characters), decode it and store the result in the - * first DIGEST_LEN bytes at <b>digest</b>. */ -int -digest_from_base64(char *digest, const char *d64) -{ -#ifdef USE_OPENSSL_BASE64 - char buf_in[BASE64_DIGEST_LEN+3]; - char buf[256]; - if (strlen(d64) != BASE64_DIGEST_LEN) - return -1; - memcpy(buf_in, d64, BASE64_DIGEST_LEN); - memcpy(buf_in+BASE64_DIGEST_LEN, "=\n\0", 3); - if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST_LEN) - return -1; - memcpy(digest, buf, DIGEST_LEN); - return 0; -#else - if (base64_decode(digest, DIGEST_LEN, d64, strlen(d64)) == DIGEST_LEN) - return 0; - else - return -1; -#endif -} - -/** Base64 encode DIGEST256_LINE bytes from <b>digest</b>, remove the - * trailing = and newline characters, and store the nul-terminated result in - * the first BASE64_DIGEST256_LEN+1 bytes of <b>d64</b>. */ -int -digest256_to_base64(char *d64, const char *digest) -{ - char buf[256]; - base64_encode(buf, sizeof(buf), digest, DIGEST256_LEN); - buf[BASE64_DIGEST256_LEN] = '\0'; - memcpy(d64, buf, BASE64_DIGEST256_LEN+1); - return 0; -} - -/** Given a base64 encoded, nul-terminated digest in <b>d64</b> (without - * trailing newline or = characters), decode it and store the result in the - * first DIGEST256_LEN bytes at <b>digest</b>. */ -int -digest256_from_base64(char *digest, const char *d64) -{ -#ifdef USE_OPENSSL_BASE64 - char buf_in[BASE64_DIGEST256_LEN+3]; - char buf[256]; - if (strlen(d64) != BASE64_DIGEST256_LEN) - return -1; - memcpy(buf_in, d64, BASE64_DIGEST256_LEN); - memcpy(buf_in+BASE64_DIGEST256_LEN, "=\n\0", 3); - if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST256_LEN) - return -1; - memcpy(digest, buf, DIGEST256_LEN); - return 0; -#else - if (base64_decode(digest, DIGEST256_LEN, d64, strlen(d64)) == DIGEST256_LEN) - return 0; - else - return -1; -#endif -} - -/** Implements base32 encoding as in RFC 4648. Limitation: Requires - * that srclen*8 is a multiple of 5. - */ -void -base32_encode(char *dest, size_t destlen, const char *src, size_t srclen) -{ - unsigned int i, v, u; - size_t nbits = srclen * 8, bit; - - tor_assert(srclen < SIZE_T_CEILING/8); - tor_assert((nbits%5) == 0); /* We need an even multiple of 5 bits. */ - tor_assert((nbits/5)+1 <= destlen); /* We need enough space. */ - tor_assert(destlen < SIZE_T_CEILING); - - for (i=0,bit=0; bit < nbits; ++i, bit+=5) { - /* set v to the 16-bit value starting at src[bits/8], 0-padded. */ - v = ((uint8_t)src[bit/8]) << 8; - if (bit+5<nbits) v += (uint8_t)src[(bit/8)+1]; - /* set u to the 5-bit value at the bit'th bit of src. */ - u = (v >> (11-(bit%8))) & 0x1F; - dest[i] = BASE32_CHARS[u]; - } - dest[i] = '\0'; -} - -/** Implements base32 decoding as in RFC 4648. Limitation: Requires - * that srclen*5 is a multiple of 8. Returns 0 if successful, -1 otherwise. - */ -int -base32_decode(char *dest, size_t destlen, const char *src, size_t srclen) -{ - /* XXXX we might want to rewrite this along the lines of base64_decode, if - * it ever shows up in the profile. */ - unsigned int i; - size_t nbits, j, bit; - char *tmp; - nbits = srclen * 5; - - tor_assert(srclen < SIZE_T_CEILING / 5); - tor_assert((nbits%8) == 0); /* We need an even multiple of 8 bits. */ - tor_assert((nbits/8) <= destlen); /* We need enough space. */ - tor_assert(destlen < SIZE_T_CEILING); - - memset(dest, 0, destlen); - - /* Convert base32 encoded chars to the 5-bit values that they represent. */ - tmp = tor_malloc_zero(srclen); - for (j = 0; j < srclen; ++j) { - if (src[j] > 0x60 && src[j] < 0x7B) tmp[j] = src[j] - 0x61; - else if (src[j] > 0x31 && src[j] < 0x38) tmp[j] = src[j] - 0x18; - else if (src[j] > 0x40 && src[j] < 0x5B) tmp[j] = src[j] - 0x41; - else { - log_warn(LD_BUG, "illegal character in base32 encoded string"); - tor_free(tmp); - return -1; - } - } - - /* Assemble result byte-wise by applying five possible cases. */ - for (i = 0, bit = 0; bit < nbits; ++i, bit += 8) { - switch (bit % 40) { - case 0: - dest[i] = (((uint8_t)tmp[(bit/5)]) << 3) + - (((uint8_t)tmp[(bit/5)+1]) >> 2); - break; - case 8: - dest[i] = (((uint8_t)tmp[(bit/5)]) << 6) + - (((uint8_t)tmp[(bit/5)+1]) << 1) + - (((uint8_t)tmp[(bit/5)+2]) >> 4); - break; - case 16: - dest[i] = (((uint8_t)tmp[(bit/5)]) << 4) + - (((uint8_t)tmp[(bit/5)+1]) >> 1); - break; - case 24: - dest[i] = (((uint8_t)tmp[(bit/5)]) << 7) + - (((uint8_t)tmp[(bit/5)+1]) << 2) + - (((uint8_t)tmp[(bit/5)+2]) >> 3); - break; - case 32: - dest[i] = (((uint8_t)tmp[(bit/5)]) << 5) + - ((uint8_t)tmp[(bit/5)+1]); - break; - } - } - - memwipe(tmp, 0, srclen); - tor_free(tmp); - tmp = NULL; - return 0; -} - -/** Implement RFC2440-style iterated-salted S2K conversion: convert the - * <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte - * <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier - * are a salt; the 9th byte describes how much iteration to do. - * Does not support <b>key_out_len</b> > DIGEST_LEN. - */ -void -secret_to_key(char *key_out, size_t key_out_len, const char *secret, - size_t secret_len, const char *s2k_specifier) -{ - crypto_digest_t *d; - uint8_t c; - size_t count, tmplen; - char *tmp; - tor_assert(key_out_len < SIZE_T_CEILING); - -#define EXPBIAS 6 - c = s2k_specifier[8]; - count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS); -#undef EXPBIAS - - tor_assert(key_out_len <= DIGEST_LEN); - - d = crypto_digest_new(); - tmplen = 8+secret_len; - tmp = tor_malloc(tmplen); - memcpy(tmp,s2k_specifier,8); - memcpy(tmp+8,secret,secret_len); - secret_len += 8; - while (count) { - if (count >= secret_len) { - crypto_digest_add_bytes(d, tmp, secret_len); - count -= secret_len; - } else { - crypto_digest_add_bytes(d, tmp, count); - count = 0; - } - } - crypto_digest_get_digest(d, key_out, key_out_len); - memwipe(tmp, 0, tmplen); - tor_free(tmp); - crypto_digest_free(d); -} - /** * Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to * the value <b>byte</b>. @@ -3099,13 +3201,32 @@ memwipe(void *mem, uint8_t byte, size_t sz) * have this function call "memset". A smart compiler could inline it, then * eliminate dead memsets, and declare itself to be clever. */ +#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY) + /* Here's what you do on windows. */ + SecureZeroMemory(mem,sz); +#elif defined(HAVE_RTLSECUREZEROMEMORY) + RtlSecureZeroMemory(mem,sz); +#elif defined(HAVE_EXPLICIT_BZERO) + /* The BSDs provide this. */ + explicit_bzero(mem, sz); +#elif defined(HAVE_MEMSET_S) + /* This is in the C99 standard. */ + memset_s(mem, sz, 0, sz); +#else /* This is a slow and ugly function from OpenSSL that fills 'mem' with junk * based on the pointer value, then uses that junk to update a global * variable. It's an elaborate ruse to trick the compiler into not * optimizing out the "wipe this memory" code. Read it if you like zany * programming tricks! In later versions of Tor, we should look for better - * not-optimized-out memory wiping stuff. */ + * not-optimized-out memory wiping stuff... + * + * ...or maybe not. In practice, there are pure-asm implementations of + * OPENSSL_cleanse() on most platforms, which ought to do the job. + **/ + OPENSSL_cleanse(mem, sz); +#endif + /* Just in case some caller of memwipe() is relying on getting a buffer * filled with a particular value, fill the buffer. * @@ -3118,13 +3239,12 @@ memwipe(void *mem, uint8_t byte, size_t sz) memset(mem, byte, sz); } -#ifdef TOR_IS_MULTITHREADED - #ifndef OPENSSL_THREADS #error OpenSSL has been built without thread support. Tor requires an \ OpenSSL library with thread support enabled. #endif +#ifndef NEW_THREAD_API /** Helper: OpenSSL uses this callback to manipulate mutexes. */ static void openssl_locking_cb_(int mode, int n, const char *file, int line) @@ -3142,6 +3262,17 @@ openssl_locking_cb_(int mode, int n, const char *file, int line) tor_mutex_release(openssl_mutexes_[n]); } +static void +tor_set_openssl_thread_id(CRYPTO_THREADID *threadid) +{ + CRYPTO_THREADID_set_numeric(threadid, tor_get_thread_id()); +} +#endif + +#if 0 +/* This code is disabled, because OpenSSL never actually uses these callbacks. + */ + /** OpenSSL helper type: wraps a Tor mutex so that OpenSSL can use it * as a lock. */ struct CRYPTO_dynlock_value { @@ -3186,41 +3317,42 @@ openssl_dynlock_destroy_cb_(struct CRYPTO_dynlock_value *v, tor_mutex_free(v->lock); tor_free(v); } +#endif /** @{ */ /** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being - * multithreaded. */ + * multithreaded. Returns 0. */ static int setup_openssl_threading(void) { +#ifndef NEW_THREAD_API int i; int n = CRYPTO_num_locks(); n_openssl_mutexes_ = n; - openssl_mutexes_ = tor_malloc(n*sizeof(tor_mutex_t *)); + openssl_mutexes_ = tor_calloc(n, sizeof(tor_mutex_t *)); for (i=0; i < n; ++i) openssl_mutexes_[i] = tor_mutex_new(); CRYPTO_set_locking_callback(openssl_locking_cb_); - CRYPTO_set_id_callback(tor_get_thread_id); + CRYPTO_THREADID_set_callback(tor_set_openssl_thread_id); +#endif +#if 0 CRYPTO_set_dynlock_create_callback(openssl_dynlock_create_cb_); CRYPTO_set_dynlock_lock_callback(openssl_dynlock_lock_cb_); CRYPTO_set_dynlock_destroy_callback(openssl_dynlock_destroy_cb_); +#endif return 0; } -#else -static int -setup_openssl_threading(void) -{ - return 0; -} -#endif -/** Uninitialize the crypto library. Return 0 on success, -1 on failure. +/** Uninitialize the crypto library. Return 0 on success. Does not detect + * failure. */ int crypto_global_cleanup(void) { EVP_cleanup(); - ERR_remove_state(0); +#ifndef NEW_THREAD_API + ERR_remove_thread_state(NULL); +#endif ERR_free_strings(); if (dh_param_p) @@ -3236,7 +3368,8 @@ crypto_global_cleanup(void) CONF_modules_unload(1); CRYPTO_cleanup_all_ex_data(); -#ifdef TOR_IS_MULTITHREADED + +#ifndef NEW_THREAD_API if (n_openssl_mutexes_) { int n = n_openssl_mutexes_; tor_mutex_t **ms = openssl_mutexes_; @@ -3249,6 +3382,7 @@ crypto_global_cleanup(void) tor_free(ms); } #endif + tor_free(crypto_openssl_version_str); tor_free(crypto_openssl_header_version_str); return 0; |