summaryrefslogtreecommitdiff
path: root/src/common/crypto.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/crypto.c')
-rw-r--r--src/common/crypto.c2053
1 files changed, 1139 insertions, 914 deletions
diff --git a/src/common/crypto.c b/src/common/crypto.c
index f7362765d2..0fc8474832 100644
--- a/src/common/crypto.c
+++ b/src/common/crypto.c
@@ -1,22 +1,20 @@
/* Copyright (c) 2001, Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
- * Copyright (c) 2007-2013, The Tor Project, Inc. */
+ * Copyright (c) 2007-2017, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
* \file crypto.c
* \brief Wrapper functions to present a consistent interface to
- * public-key and symmetric cryptography operations from OpenSSL.
+ * public-key and symmetric cryptography operations from OpenSSL and
+ * other places.
**/
#include "orconfig.h"
#ifdef _WIN32
-#ifndef _WIN32_WINNT
-#define _WIN32_WINNT 0x0501
-#endif
-#define WIN32_LEAN_AND_MEAN
+#include <winsock2.h>
#include <windows.h>
#include <wincrypt.h>
/* Windows defines this; so does OpenSSL 0.9.8h and later. We don't actually
@@ -24,18 +22,36 @@
#undef OCSP_RESPONSE
#endif
+#define CRYPTO_PRIVATE
+#include "crypto.h"
+#include "compat_openssl.h"
+#include "crypto_curve25519.h"
+#include "crypto_ed25519.h"
+#include "crypto_format.h"
+
+DISABLE_GCC_WARNING(redundant-decls)
+
#include <openssl/err.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
#include <openssl/evp.h>
#include <openssl/engine.h>
#include <openssl/rand.h>
-#include <openssl/opensslv.h>
#include <openssl/bn.h>
#include <openssl/dh.h>
#include <openssl/conf.h>
#include <openssl/hmac.h>
+ENABLE_GCC_WARNING(redundant-decls)
+
+#if __GNUC__ && GCC_VERSION >= 402
+#if GCC_VERSION >= 406
+#pragma GCC diagnostic pop
+#else
+#pragma GCC diagnostic warning "-Wredundant-decls"
+#endif
+#endif
+
#ifdef HAVE_CTYPE_H
#include <ctype.h>
#endif
@@ -48,34 +64,52 @@
#ifdef HAVE_SYS_FCNTL_H
#include <sys/fcntl.h>
#endif
+#ifdef HAVE_SYS_SYSCALL_H
+#include <sys/syscall.h>
+#endif
+#ifdef HAVE_SYS_RANDOM_H
+#include <sys/random.h>
+#endif
-#define CRYPTO_PRIVATE
-#include "crypto.h"
-#include "../common/torlog.h"
+#include "torlog.h"
+#include "torint.h"
#include "aes.h"
-#include "../common/util.h"
+#include "util.h"
#include "container.h"
#include "compat.h"
#include "sandbox.h"
+#include "util_format.h"
-#if OPENSSL_VERSION_NUMBER < OPENSSL_V_SERIES(0,9,8)
-#error "We require OpenSSL >= 0.9.8"
-#endif
+#include "keccak-tiny/keccak-tiny.h"
#ifdef ANDROID
/* Android's OpenSSL seems to have removed all of its Engine support. */
#define DISABLE_ENGINES
#endif
+#if OPENSSL_VERSION_NUMBER >= OPENSSL_VER(1,1,0,0,5) && \
+ !defined(LIBRESSL_VERSION_NUMBER)
+/* OpenSSL as of 1.1.0pre4 has an "new" thread API, which doesn't require
+ * seting up various callbacks.
+ *
+ * OpenSSL 1.1.0pre4 has a messed up `ERR_remove_thread_state()` prototype,
+ * while the previous one was restored in pre5, and the function made a no-op
+ * (along with a deprecated annotation, which produces a compiler warning).
+ *
+ * While it is possible to support all three versions of the thread API,
+ * a version that existed only for one snapshot pre-release is kind of
+ * pointless, so let's not.
+ */
+#define NEW_THREAD_API
+#endif
+
/** Longest recognized */
#define MAX_DNS_LABEL_SIZE 63
-/** Macro: is k a valid RSA public or private key? */
-#define PUBLIC_KEY_OK(k) ((k) && (k)->key && (k)->key->n)
-/** Macro: is k a valid RSA private key? */
-#define PRIVATE_KEY_OK(k) ((k) && (k)->key && (k)->key->p)
+/** Largest strong entropy request */
+#define MAX_STRONGEST_RAND_SIZE 256
-#ifdef TOR_IS_MULTITHREADED
+#ifndef NEW_THREAD_API
/** A number of preallocated mutexes for use by OpenSSL. */
static tor_mutex_t **openssl_mutexes_ = NULL;
/** How many mutexes have we allocated for use by OpenSSL? */
@@ -89,15 +123,6 @@ struct crypto_pk_t
RSA *key; /**< The key itself */
};
-/** Key and stream information for a stream cipher. */
-struct crypto_cipher_t
-{
- char key[CIPHER_KEY_LEN]; /**< The raw key. */
- char iv[CIPHER_IV_LEN]; /**< The initial IV. */
- aes_cnt_cipher_t *cipher; /**< The key in format usable for counter-mode AES
- * encryption */
-};
-
/** A structure to hold the first half (x, g^x) of a Diffie-Hellman handshake
* while we're waiting for the second.*/
struct crypto_dh_t {
@@ -105,29 +130,29 @@ struct crypto_dh_t {
};
static int setup_openssl_threading(void);
-static int tor_check_dh_key(int severity, BIGNUM *bn);
+static int tor_check_dh_key(int severity, const BIGNUM *bn);
/** Return the number of bytes added by padding method <b>padding</b>.
*/
-static INLINE int
+static inline int
crypto_get_rsa_padding_overhead(int padding)
{
switch (padding)
{
case RSA_PKCS1_OAEP_PADDING: return PKCS1_OAEP_PADDING_OVERHEAD;
- default: tor_assert(0); return -1;
+ default: tor_assert(0); return -1; // LCOV_EXCL_LINE
}
}
/** Given a padding method <b>padding</b>, return the correct OpenSSL constant.
*/
-static INLINE int
+static inline int
crypto_get_rsa_padding(int padding)
{
switch (padding)
{
case PK_PKCS1_OAEP_PADDING: return RSA_PKCS1_OAEP_PADDING;
- default: tor_assert(0); return -1;
+ default: tor_assert(0); return -1; // LCOV_EXCL_LINE
}
}
@@ -152,13 +177,9 @@ crypto_log_errors(int severity, const char *doing)
if (!msg) msg = "(null)";
if (!lib) lib = "(null)";
if (!func) func = "(null)";
- if (doing) {
- tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
+ if (BUG(!doing)) doing = "(null)";
+ tor_log(severity, LD_CRYPTO, "crypto error while %s: %s (in %s:%s)",
doing, msg, lib, func);
- } else {
- tor_log(severity, LD_CRYPTO, "crypto error: %s (in %s:%s)",
- msg, lib, func);
- }
}
}
@@ -226,7 +247,7 @@ const char *
crypto_openssl_get_version_str(void)
{
if (crypto_openssl_version_str == NULL) {
- const char *raw_version = SSLeay_version(SSLEAY_VERSION);
+ const char *raw_version = OpenSSL_version(OPENSSL_VERSION);
crypto_openssl_version_str = parse_openssl_version_str(raw_version);
}
return crypto_openssl_version_str;
@@ -247,14 +268,16 @@ crypto_openssl_get_header_version_str(void)
/** Make sure that openssl is using its default PRNG. Return 1 if we had to
* adjust it; 0 otherwise. */
-static int
+STATIC int
crypto_force_rand_ssleay(void)
{
- if (RAND_get_rand_method() != RAND_SSLeay()) {
+ RAND_METHOD *default_method;
+ default_method = RAND_OpenSSL();
+ if (RAND_get_rand_method() != default_method) {
log_notice(LD_CRYPTO, "It appears that one of our engines has provided "
"a replacement the OpenSSL RNG. Resetting it to the default "
"implementation.");
- RAND_set_rand_method(RAND_SSLeay());
+ RAND_set_rand_method(default_method);
return 1;
}
return 0;
@@ -269,8 +292,7 @@ crypto_init_siphash_key(void)
if (have_seeded_siphash)
return 0;
- if (crypto_rand((char*) &key, sizeof(key)) < 0)
- return -1;
+ crypto_rand((char*) &key, sizeof(key));
siphash_set_global_key(&key);
have_seeded_siphash = 1;
return 0;
@@ -290,31 +312,29 @@ crypto_early_init(void)
setup_openssl_threading();
- if (SSLeay() == OPENSSL_VERSION_NUMBER &&
- !strcmp(SSLeay_version(SSLEAY_VERSION), OPENSSL_VERSION_TEXT)) {
+ unsigned long version_num = OpenSSL_version_num();
+ const char *version_str = OpenSSL_version(OPENSSL_VERSION);
+ if (version_num == OPENSSL_VERSION_NUMBER &&
+ !strcmp(version_str, OPENSSL_VERSION_TEXT)) {
log_info(LD_CRYPTO, "OpenSSL version matches version from headers "
- "(%lx: %s).", SSLeay(), SSLeay_version(SSLEAY_VERSION));
+ "(%lx: %s).", version_num, version_str);
} else {
log_warn(LD_CRYPTO, "OpenSSL version from headers does not match the "
"version we're running with. If you get weird crashes, that "
"might be why. (Compiled with %lx: %s; running with %lx: %s).",
(unsigned long)OPENSSL_VERSION_NUMBER, OPENSSL_VERSION_TEXT,
- SSLeay(), SSLeay_version(SSLEAY_VERSION));
- }
-
- if (SSLeay() < OPENSSL_V_SERIES(1,0,0)) {
- log_notice(LD_CRYPTO,
- "Your OpenSSL version seems to be %s. We recommend 1.0.0 "
- "or later.",
- crypto_openssl_get_version_str());
+ version_num, version_str);
}
crypto_force_rand_ssleay();
- if (crypto_seed_rng(1) < 0)
+ if (crypto_seed_rng() < 0)
return -1;
if (crypto_init_siphash_key() < 0)
return -1;
+
+ curve25519_init();
+ ed25519_init();
}
return 0;
}
@@ -325,7 +345,8 @@ int
crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
{
if (!crypto_global_initialized_) {
- crypto_early_init();
+ if (crypto_early_init() < 0)
+ return -1;
crypto_global_initialized_ = 1;
@@ -368,8 +389,12 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
used by Tor and the set of algorithms available in the engine */
log_engine("RSA", ENGINE_get_default_RSA());
log_engine("DH", ENGINE_get_default_DH());
+#ifdef OPENSSL_1_1_API
+ log_engine("EC", ENGINE_get_default_EC());
+#else
log_engine("ECDH", ENGINE_get_default_ECDH());
log_engine("ECDSA", ENGINE_get_default_ECDSA());
+#endif
log_engine("RAND", ENGINE_get_default_RAND());
log_engine("RAND (which we will not use)", ENGINE_get_default_RAND());
log_engine("SHA1", ENGINE_get_digest_engine(NID_sha1));
@@ -393,7 +418,7 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
}
if (crypto_force_rand_ssleay()) {
- if (crypto_seed_rng(1) < 0)
+ if (crypto_seed_rng() < 0)
return -1;
}
@@ -407,7 +432,27 @@ crypto_global_init(int useAccel, const char *accelName, const char *accelDir)
void
crypto_thread_cleanup(void)
{
- ERR_remove_state(0);
+#ifndef NEW_THREAD_API
+ ERR_remove_thread_state(NULL);
+#endif
+}
+
+/** used internally: quicly validate a crypto_pk_t object as a private key.
+ * Return 1 iff the public key is valid, 0 if obviously invalid.
+ */
+static int
+crypto_pk_private_ok(const crypto_pk_t *k)
+{
+#ifdef OPENSSL_1_1_API
+ if (!k || !k->key)
+ return 0;
+
+ const BIGNUM *p, *q;
+ RSA_get0_factors(k->key, &p, &q);
+ return p != NULL; /* XXX/yawning: Should we check q? */
+#else
+ return k && k->key && k->key->p;
+#endif
}
/** used by tortls.c: wrap an RSA* in a crypto_pk_t. */
@@ -422,7 +467,7 @@ crypto_new_pk_from_rsa_(RSA *rsa)
return env;
}
-/** Helper, used by tor-checkkey.c and tor-gencert.c. Return the RSA from a
+/** Helper, used by tor-gencert.c. Return the RSA from a
* crypto_pk_t. */
RSA *
crypto_pk_get_rsa_(crypto_pk_t *env)
@@ -431,9 +476,10 @@ crypto_pk_get_rsa_(crypto_pk_t *env)
}
/** used by tortls.c: get an equivalent EVP_PKEY* for a crypto_pk_t. Iff
- * private is set, include the private-key portion of the key. */
-EVP_PKEY *
-crypto_pk_get_evp_pkey_(crypto_pk_t *env, int private)
+ * private is set, include the private-key portion of the key. Return a valid
+ * pointer on success, and NULL on failure. */
+MOCK_IMPL(EVP_PKEY *,
+crypto_pk_get_evp_pkey_,(crypto_pk_t *env, int private))
{
RSA *key = NULL;
EVP_PKEY *pkey = NULL;
@@ -469,8 +515,8 @@ crypto_dh_get_dh_(crypto_dh_t *dh)
/** Allocate and return storage for a public key. The key itself will not yet
* be set.
*/
-crypto_pk_t *
-crypto_pk_new(void)
+MOCK_IMPL(crypto_pk_t *,
+crypto_pk_new,(void))
{
RSA *rsa;
@@ -499,38 +545,48 @@ crypto_pk_free(crypto_pk_t *env)
}
/** Allocate and return a new symmetric cipher using the provided key and iv.
- * The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes. If you
- * provide NULL in place of either one, it is generated at random.
- */
+ * The key is <b>bits</b> bits long; the IV is CIPHER_IV_LEN bytes. Both
+ * must be provided. Key length must be 128, 192, or 256 */
crypto_cipher_t *
-crypto_cipher_new_with_iv(const char *key, const char *iv)
+crypto_cipher_new_with_iv_and_bits(const uint8_t *key,
+ const uint8_t *iv,
+ int bits)
{
- crypto_cipher_t *env;
-
- env = tor_malloc_zero(sizeof(crypto_cipher_t));
-
- if (key == NULL)
- crypto_rand(env->key, CIPHER_KEY_LEN);
- else
- memcpy(env->key, key, CIPHER_KEY_LEN);
- if (iv == NULL)
- crypto_rand(env->iv, CIPHER_IV_LEN);
- else
- memcpy(env->iv, iv, CIPHER_IV_LEN);
+ tor_assert(key);
+ tor_assert(iv);
- env->cipher = aes_new_cipher(env->key, env->iv);
+ return aes_new_cipher((const uint8_t*)key, (const uint8_t*)iv, bits);
+}
- return env;
+/** Allocate and return a new symmetric cipher using the provided key and iv.
+ * The key is CIPHER_KEY_LEN bytes; the IV is CIPHER_IV_LEN bytes. Both
+ * must be provided.
+ */
+crypto_cipher_t *
+crypto_cipher_new_with_iv(const char *key, const char *iv)
+{
+ return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)iv,
+ 128);
}
/** Return a new crypto_cipher_t with the provided <b>key</b> and an IV of all
- * zero bytes. */
+ * zero bytes and key length <b>bits</b>. Key length must be 128, 192, or
+ * 256. */
crypto_cipher_t *
-crypto_cipher_new(const char *key)
+crypto_cipher_new_with_bits(const char *key, int bits)
{
char zeroiv[CIPHER_IV_LEN];
memset(zeroiv, 0, sizeof(zeroiv));
- return crypto_cipher_new_with_iv(key, zeroiv);
+ return crypto_cipher_new_with_iv_and_bits((uint8_t*)key, (uint8_t*)zeroiv,
+ bits);
+}
+
+/** Return a new crypto_cipher_t with the provided <b>key</b> (of
+ * CIPHER_KEY_LEN bytes) and an IV of all zero bytes. */
+crypto_cipher_t *
+crypto_cipher_new(const char *key)
+{
+ return crypto_cipher_new_with_bits(key, 128);
}
/** Free a symmetric cipher.
@@ -541,10 +597,7 @@ crypto_cipher_free(crypto_cipher_t *env)
if (!env)
return;
- tor_assert(env->cipher);
- aes_cipher_free(env->cipher);
- memwipe(env, 0, sizeof(crypto_cipher_t));
- tor_free(env);
+ aes_cipher_free(env);
}
/* public key crypto */
@@ -552,8 +605,8 @@ crypto_cipher_free(crypto_cipher_t *env)
/** Generate a <b>bits</b>-bit new public/private keypair in <b>env</b>.
* Return 0 on success, -1 on failure.
*/
-int
-crypto_pk_generate_key_with_bits(crypto_pk_t *env, int bits)
+MOCK_IMPL(int,
+crypto_pk_generate_key_with_bits,(crypto_pk_t *env, int bits))
{
tor_assert(env);
@@ -657,7 +710,8 @@ crypto_pk_read_private_key_from_filename(crypto_pk_t *env,
return 0;
}
-/** Helper function to implement crypto_pk_write_*_key_to_string. */
+/** Helper function to implement crypto_pk_write_*_key_to_string. Return 0 on
+ * success, -1 on failure. */
static int
crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
size_t *len, int is_public)
@@ -689,14 +743,13 @@ crypto_pk_write_key_to_string_impl(crypto_pk_t *env, char **dest,
}
BIO_get_mem_ptr(b, &buf);
- (void)BIO_set_close(b, BIO_NOCLOSE); /* so BIO_free doesn't free buf */
- BIO_free(b);
*dest = tor_malloc(buf->length+1);
memcpy(*dest, buf->data, buf->length);
(*dest)[buf->length] = 0; /* nul terminate it */
*len = buf->length;
- BUF_MEM_free(buf);
+
+ BIO_free(b);
return 0;
}
@@ -770,7 +823,7 @@ crypto_pk_write_private_key_to_filename(crypto_pk_t *env,
char *s;
int r;
- tor_assert(PRIVATE_KEY_OK(env));
+ tor_assert(crypto_pk_private_ok(env));
if (!(bio = BIO_new(BIO_s_mem())))
return -1;
@@ -812,7 +865,7 @@ int
crypto_pk_key_is_private(const crypto_pk_t *key)
{
tor_assert(key);
- return PRIVATE_KEY_OK(key);
+ return crypto_pk_private_ok(key);
}
/** Return true iff <b>env</b> contains a public key whose public exponent
@@ -824,7 +877,15 @@ crypto_pk_public_exponent_ok(crypto_pk_t *env)
tor_assert(env);
tor_assert(env->key);
- return BN_is_word(env->key->e, 65537);
+ const BIGNUM *e;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *n, *d;
+ RSA_get0_key(env->key, &n, &e, &d);
+#else
+ e = env->key->e;
+#endif
+ return BN_is_word(e, 65537);
}
/** Compare the public-key components of a and b. Return less than 0
@@ -834,7 +895,7 @@ crypto_pk_public_exponent_ok(crypto_pk_t *env)
* Note that this may leak information about the keys through timing.
*/
int
-crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b)
+crypto_pk_cmp_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
int result;
char a_is_non_null = (a != NULL) && (a->key != NULL);
@@ -845,12 +906,27 @@ crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b)
if (an_argument_is_null)
return result;
- tor_assert(PUBLIC_KEY_OK(a));
- tor_assert(PUBLIC_KEY_OK(b));
- result = BN_cmp((a->key)->n, (b->key)->n);
+ const BIGNUM *a_n, *a_e;
+ const BIGNUM *b_n, *b_e;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *a_d, *b_d;
+ RSA_get0_key(a->key, &a_n, &a_e, &a_d);
+ RSA_get0_key(b->key, &b_n, &b_e, &b_d);
+#else
+ a_n = a->key->n;
+ a_e = a->key->e;
+ b_n = b->key->n;
+ b_e = b->key->e;
+#endif
+
+ tor_assert(a_n != NULL && a_e != NULL);
+ tor_assert(b_n != NULL && b_e != NULL);
+
+ result = BN_cmp(a_n, b_n);
if (result)
return result;
- return BN_cmp((a->key)->e, (b->key)->e);
+ return BN_cmp(a_e, b_e);
}
/** Compare the public-key components of a and b. Return non-zero iff
@@ -860,19 +936,19 @@ crypto_pk_cmp_keys(crypto_pk_t *a, crypto_pk_t *b)
* Note that this may leak information about the keys through timing.
*/
int
-crypto_pk_eq_keys(crypto_pk_t *a, crypto_pk_t *b)
+crypto_pk_eq_keys(const crypto_pk_t *a, const crypto_pk_t *b)
{
return (crypto_pk_cmp_keys(a, b) == 0);
}
/** Return the size of the public key modulus in <b>env</b>, in bytes. */
size_t
-crypto_pk_keysize(crypto_pk_t *env)
+crypto_pk_keysize(const crypto_pk_t *env)
{
tor_assert(env);
tor_assert(env->key);
- return (size_t) RSA_size(env->key);
+ return (size_t) RSA_size((RSA*)env->key);
}
/** Return the size of the public key modulus of <b>env</b>, in bits. */
@@ -881,9 +957,20 @@ crypto_pk_num_bits(crypto_pk_t *env)
{
tor_assert(env);
tor_assert(env->key);
- tor_assert(env->key->n);
+#ifdef OPENSSL_1_1_API
+ /* It's so stupid that there's no other way to check that n is valid
+ * before calling RSA_bits().
+ */
+ const BIGNUM *n, *e, *d;
+ RSA_get0_key(env->key, &n, &e, &d);
+ tor_assert(n != NULL);
+
+ return RSA_bits(env->key);
+#else
+ tor_assert(env->key->n);
return BN_num_bits(env->key->n);
+#endif
}
/** Increase the reference count of <b>env</b>, and return it.
@@ -898,7 +985,22 @@ crypto_pk_dup_key(crypto_pk_t *env)
return env;
}
-/** Make a real honest-to-goodness copy of <b>env</b>, and return it. */
+#ifdef TOR_UNIT_TESTS
+/** For testing: replace dest with src. (Dest must have a refcount
+ * of 1) */
+void
+crypto_pk_assign_(crypto_pk_t *dest, const crypto_pk_t *src)
+{
+ tor_assert(dest);
+ tor_assert(dest->refs == 1);
+ tor_assert(src);
+ RSA_free(dest->key);
+ dest->key = RSAPrivateKey_dup(src->key);
+}
+#endif
+
+/** Make a real honest-to-goodness copy of <b>env</b>, and return it.
+ * Returns NULL on failure. */
crypto_pk_t *
crypto_pk_copy_full(crypto_pk_t *env)
{
@@ -907,13 +1009,17 @@ crypto_pk_copy_full(crypto_pk_t *env)
tor_assert(env);
tor_assert(env->key);
- if (PRIVATE_KEY_OK(env)) {
+ if (crypto_pk_private_ok(env)) {
new_key = RSAPrivateKey_dup(env->key);
privatekey = 1;
} else {
new_key = RSAPublicKey_dup(env->key);
}
if (!new_key) {
+ /* LCOV_EXCL_START
+ *
+ * We can't cause RSA*Key_dup() to fail, so we can't really test this.
+ */
log_err(LD_CRYPTO, "Unable to duplicate a %s key: openssl failed.",
privatekey?"private":"public");
crypto_log_errors(LOG_ERR,
@@ -921,6 +1027,7 @@ crypto_pk_copy_full(crypto_pk_t *env)
"Duplicating a public key");
tor_fragile_assert();
return NULL;
+ /* LCOV_EXCL_STOP */
}
return crypto_new_pk_from_rsa_(new_key);
@@ -976,7 +1083,7 @@ crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
tor_assert(env->key);
tor_assert(fromlen<INT_MAX);
tor_assert(tolen >= crypto_pk_keysize(env));
- if (!env->key->p)
+ if (!crypto_pk_key_is_private(env))
/* Not a private key */
return -1;
@@ -1000,10 +1107,10 @@ crypto_pk_private_decrypt(crypto_pk_t *env, char *to,
* <b>tolen</b> is the number of writable bytes in <b>to</b>, and must be
* at least the length of the modulus of <b>env</b>.
*/
-int
-crypto_pk_public_checksig(crypto_pk_t *env, char *to,
- size_t tolen,
- const char *from, size_t fromlen)
+MOCK_IMPL(int,
+crypto_pk_public_checksig,(const crypto_pk_t *env, char *to,
+ size_t tolen,
+ const char *from, size_t fromlen))
{
int r;
tor_assert(env);
@@ -1016,7 +1123,7 @@ crypto_pk_public_checksig(crypto_pk_t *env, char *to,
env->key, RSA_PKCS1_PADDING);
if (r<0) {
- crypto_log_errors(LOG_WARN, "checking RSA signature");
+ crypto_log_errors(LOG_INFO, "checking RSA signature");
return -1;
}
return r;
@@ -1027,9 +1134,10 @@ crypto_pk_public_checksig(crypto_pk_t *env, char *to,
* in <b>env</b>. Return 0 if <b>sig</b> is a correct signature for
* SHA1(data). Else return -1.
*/
-int
-crypto_pk_public_checksig_digest(crypto_pk_t *env, const char *data,
- size_t datalen, const char *sig, size_t siglen)
+MOCK_IMPL(int,
+crypto_pk_public_checksig_digest,(crypto_pk_t *env, const char *data,
+ size_t datalen, const char *sig,
+ size_t siglen))
{
char digest[DIGEST_LEN];
char *buf;
@@ -1073,7 +1181,7 @@ crypto_pk_public_checksig_digest(crypto_pk_t *env, const char *data,
* at least the length of the modulus of <b>env</b>.
*/
int
-crypto_pk_private_sign(crypto_pk_t *env, char *to, size_t tolen,
+crypto_pk_private_sign(const crypto_pk_t *env, char *to, size_t tolen,
const char *from, size_t fromlen)
{
int r;
@@ -1082,13 +1190,13 @@ crypto_pk_private_sign(crypto_pk_t *env, char *to, size_t tolen,
tor_assert(to);
tor_assert(fromlen < INT_MAX);
tor_assert(tolen >= crypto_pk_keysize(env));
- if (!env->key->p)
+ if (!crypto_pk_key_is_private(env))
/* Not a private key */
return -1;
r = RSA_private_encrypt((int)fromlen,
(unsigned char*)from, (unsigned char*)to,
- env->key, RSA_PKCS1_PADDING);
+ (RSA*)env->key, RSA_PKCS1_PADDING);
if (r<0) {
crypto_log_errors(LOG_WARN, "generating RSA signature");
return -1;
@@ -1160,10 +1268,12 @@ crypto_pk_public_hybrid_encrypt(crypto_pk_t *env,
tor_assert(tolen >= fromlen + overhead + CIPHER_KEY_LEN);
tor_assert(tolen >= pkeylen);
- cipher = crypto_cipher_new(NULL); /* generate a new key. */
+ char key[CIPHER_KEY_LEN];
+ crypto_rand(key, sizeof(key)); /* generate a new key. */
+ cipher = crypto_cipher_new(key);
buf = tor_malloc(pkeylen+1);
- memcpy(buf, cipher->key, CIPHER_KEY_LEN);
+ memcpy(buf, key, CIPHER_KEY_LEN);
memcpy(buf+CIPHER_KEY_LEN, from, pkeylen-overhead-CIPHER_KEY_LEN);
/* Length of symmetrically encrypted data. */
@@ -1178,6 +1288,7 @@ crypto_pk_public_hybrid_encrypt(crypto_pk_t *env,
if (r<0) goto err;
memwipe(buf, 0, pkeylen);
+ memwipe(key, 0, sizeof(key));
tor_free(buf);
crypto_cipher_free(cipher);
tor_assert(outlen+symlen < INT_MAX);
@@ -1185,12 +1296,14 @@ crypto_pk_public_hybrid_encrypt(crypto_pk_t *env,
err:
memwipe(buf, 0, pkeylen);
+ memwipe(key, 0, sizeof(key));
tor_free(buf);
crypto_cipher_free(cipher);
return -1;
}
-/** Invert crypto_pk_public_hybrid_encrypt. */
+/** Invert crypto_pk_public_hybrid_encrypt. Returns the number of bytes
+ * written on success, -1 on failure. */
int
crypto_pk_private_hybrid_decrypt(crypto_pk_t *env,
char *to,
@@ -1297,12 +1410,12 @@ crypto_pk_asn1_decode(const char *str, size_t len)
* Return 0 on success, -1 on failure.
*/
int
-crypto_pk_get_digest(crypto_pk_t *pk, char *digest_out)
+crypto_pk_get_digest(const crypto_pk_t *pk, char *digest_out)
{
unsigned char *buf = NULL;
int len;
- len = i2d_RSAPublicKey(pk->key, &buf);
+ len = i2d_RSAPublicKey((RSA*)pk->key, &buf);
if (len < 0 || buf == NULL)
return -1;
if (crypto_digest(digest_out, (char*)buf, len) < 0) {
@@ -1316,7 +1429,7 @@ crypto_pk_get_digest(crypto_pk_t *pk, char *digest_out)
/** Compute all digests of the DER encoding of <b>pk</b>, and store them
* in <b>digests_out</b>. Return 0 on success, -1 on failure. */
int
-crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out)
+crypto_pk_get_common_digests(crypto_pk_t *pk, common_digests_t *digests_out)
{
unsigned char *buf = NULL;
int len;
@@ -1324,7 +1437,7 @@ crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out)
len = i2d_RSAPublicKey(pk->key, &buf);
if (len < 0 || buf == NULL)
return -1;
- if (crypto_digest_all(digests_out, (char*)buf, len) < 0) {
+ if (crypto_common_digests(digests_out, (char*)buf, len) < 0) {
OPENSSL_free(buf);
return -1;
}
@@ -1333,7 +1446,7 @@ crypto_pk_get_all_digests(crypto_pk_t *pk, digests_t *digests_out)
}
/** Copy <b>in</b> to the <b>outlen</b>-byte buffer <b>out</b>, adding spaces
- * every four spaces. */
+ * every four characters. */
void
crypto_add_spaces_to_fp(char *out, size_t outlen, const char *in)
{
@@ -1394,45 +1507,110 @@ crypto_pk_get_hashed_fingerprint(crypto_pk_t *pk, char *fp_out)
if (crypto_pk_get_digest(pk, digest)) {
return -1;
}
- if (crypto_digest(hashed_digest, digest, DIGEST_LEN)) {
+ if (crypto_digest(hashed_digest, digest, DIGEST_LEN) < 0) {
return -1;
}
base16_encode(fp_out, FINGERPRINT_LEN + 1, hashed_digest, DIGEST_LEN);
return 0;
}
-/* symmetric crypto */
+/** Given a crypto_pk_t <b>pk</b>, allocate a new buffer containing the
+ * Base64 encoding of the DER representation of the private key as a NUL
+ * terminated string, and return it via <b>priv_out</b>. Return 0 on
+ * sucess, -1 on failure.
+ *
+ * It is the caller's responsibility to sanitize and free the resulting buffer.
+ */
+int
+crypto_pk_base64_encode(const crypto_pk_t *pk, char **priv_out)
+{
+ unsigned char *der = NULL;
+ int der_len;
+ int ret = -1;
+
+ *priv_out = NULL;
+
+ der_len = i2d_RSAPrivateKey(pk->key, &der);
+ if (der_len < 0 || der == NULL)
+ return ret;
+
+ size_t priv_len = base64_encode_size(der_len, 0) + 1;
+ char *priv = tor_malloc_zero(priv_len);
+ if (base64_encode(priv, priv_len, (char *)der, der_len, 0) >= 0) {
+ *priv_out = priv;
+ ret = 0;
+ } else {
+ tor_free(priv);
+ }
-/** Return a pointer to the key set for the cipher in <b>env</b>.
+ memwipe(der, 0, der_len);
+ OPENSSL_free(der);
+ return ret;
+}
+
+/** Given a string containing the Base64 encoded DER representation of the
+ * private key <b>str</b>, decode and return the result on success, or NULL
+ * on failure.
*/
-const char *
-crypto_cipher_get_key(crypto_cipher_t *env)
+crypto_pk_t *
+crypto_pk_base64_decode(const char *str, size_t len)
{
- return env->key;
+ crypto_pk_t *pk = NULL;
+
+ char *der = tor_malloc_zero(len + 1);
+ int der_len = base64_decode(der, len, str, len);
+ if (der_len <= 0) {
+ log_warn(LD_CRYPTO, "Stored RSA private key seems corrupted (base64).");
+ goto out;
+ }
+
+ const unsigned char *dp = (unsigned char*)der; /* Shut the compiler up. */
+ RSA *rsa = d2i_RSAPrivateKey(NULL, &dp, der_len);
+ if (!rsa) {
+ crypto_log_errors(LOG_WARN, "decoding private key");
+ goto out;
+ }
+
+ pk = crypto_new_pk_from_rsa_(rsa);
+
+ /* Make sure it's valid. */
+ if (crypto_pk_check_key(pk) <= 0) {
+ crypto_pk_free(pk);
+ pk = NULL;
+ goto out;
+ }
+
+ out:
+ memwipe(der, 0, len + 1);
+ tor_free(der);
+ return pk;
}
+/* symmetric crypto */
+
/** Encrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
- * On failure, return -1.
+ * Does not check for failure.
*/
int
crypto_cipher_encrypt(crypto_cipher_t *env, char *to,
const char *from, size_t fromlen)
{
tor_assert(env);
- tor_assert(env->cipher);
+ tor_assert(env);
tor_assert(from);
tor_assert(fromlen);
tor_assert(to);
tor_assert(fromlen < SIZE_T_CEILING);
- aes_crypt(env->cipher, from, fromlen, to);
+ memcpy(to, from, fromlen);
+ aes_crypt_inplace(env, to, fromlen);
return 0;
}
/** Decrypt <b>fromlen</b> bytes from <b>from</b> using the cipher
* <b>env</b>; on success, store the result to <b>to</b> and return 0.
- * On failure, return -1.
+ * Does not check for failure.
*/
int
crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
@@ -1443,19 +1621,19 @@ crypto_cipher_decrypt(crypto_cipher_t *env, char *to,
tor_assert(to);
tor_assert(fromlen < SIZE_T_CEILING);
- aes_crypt(env->cipher, from, fromlen, to);
+ memcpy(to, from, fromlen);
+ aes_crypt_inplace(env, to, fromlen);
return 0;
}
/** Encrypt <b>len</b> bytes on <b>from</b> using the cipher in <b>env</b>;
- * on success, return 0. On failure, return -1.
+ * on success. Does not check for failure.
*/
-int
+void
crypto_cipher_crypt_inplace(crypto_cipher_t *env, char *buf, size_t len)
{
tor_assert(len < SIZE_T_CEILING);
- aes_crypt_inplace(env->cipher, buf, len);
- return 0;
+ aes_crypt_inplace(env, buf, len);
}
/** Encrypt <b>fromlen</b> bytes (at least 1) from <b>from</b> with the key in
@@ -1479,11 +1657,14 @@ crypto_cipher_encrypt_with_iv(const char *key,
if (tolen < fromlen + CIPHER_IV_LEN)
return -1;
- cipher = crypto_cipher_new_with_iv(key, NULL);
+ char iv[CIPHER_IV_LEN];
+ crypto_rand(iv, sizeof(iv));
+ cipher = crypto_cipher_new_with_iv(key, iv);
- memcpy(to, cipher->iv, CIPHER_IV_LEN);
+ memcpy(to, iv, CIPHER_IV_LEN);
crypto_cipher_encrypt(cipher, to+CIPHER_IV_LEN, from, fromlen);
crypto_cipher_free(cipher);
+ memwipe(iv, 0, sizeof(iv));
return (int)(fromlen + CIPHER_IV_LEN);
}
@@ -1527,7 +1708,9 @@ crypto_digest(char *digest, const char *m, size_t len)
{
tor_assert(m);
tor_assert(digest);
- return (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL);
+ if (SHA1((const unsigned char*)m,len,(unsigned char*)digest) == NULL)
+ return -1;
+ return 0;
}
/** Compute a 256-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
@@ -1539,25 +1722,57 @@ crypto_digest256(char *digest, const char *m, size_t len,
{
tor_assert(m);
tor_assert(digest);
- tor_assert(algorithm == DIGEST_SHA256);
- return (SHA256((const unsigned char*)m,len,(unsigned char*)digest) == NULL);
+ tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
+
+ int ret = 0;
+ if (algorithm == DIGEST_SHA256)
+ ret = (SHA256((const uint8_t*)m,len,(uint8_t*)digest) != NULL);
+ else
+ ret = (sha3_256((uint8_t *)digest, DIGEST256_LEN,(const uint8_t *)m, len)
+ > -1);
+
+ if (!ret)
+ return -1;
+ return 0;
}
-/** Set the digests_t in <b>ds_out</b> to contain every digest on the
+/** Compute a 512-bit digest of <b>len</b> bytes in data stored in <b>m</b>,
+ * using the algorithm <b>algorithm</b>. Write the DIGEST_LEN512-byte result
+ * into <b>digest</b>. Return 0 on success, -1 on failure. */
+int
+crypto_digest512(char *digest, const char *m, size_t len,
+ digest_algorithm_t algorithm)
+{
+ tor_assert(m);
+ tor_assert(digest);
+ tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
+
+ int ret = 0;
+ if (algorithm == DIGEST_SHA512)
+ ret = (SHA512((const unsigned char*)m,len,(unsigned char*)digest)
+ != NULL);
+ else
+ ret = (sha3_512((uint8_t*)digest, DIGEST512_LEN, (const uint8_t*)m, len)
+ > -1);
+
+ if (!ret)
+ return -1;
+ return 0;
+}
+
+/** Set the common_digests_t in <b>ds_out</b> to contain every digest on the
* <b>len</b> bytes in <b>m</b> that we know how to compute. Return 0 on
* success, -1 on failure. */
int
-crypto_digest_all(digests_t *ds_out, const char *m, size_t len)
+crypto_common_digests(common_digests_t *ds_out, const char *m, size_t len)
{
- int i;
tor_assert(ds_out);
memset(ds_out, 0, sizeof(*ds_out));
if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
return -1;
- for (i = DIGEST_SHA256; i < N_DIGEST_ALGORITHMS; ++i) {
- if (crypto_digest256(ds_out->d[i], m, len, i) < 0)
- return -1;
- }
+ if (crypto_digest256(ds_out->d[DIGEST_SHA256], m, len, DIGEST_SHA256) < 0)
+ return -1;
+
return 0;
}
@@ -1570,9 +1785,17 @@ crypto_digest_algorithm_get_name(digest_algorithm_t alg)
return "sha1";
case DIGEST_SHA256:
return "sha256";
+ case DIGEST_SHA512:
+ return "sha512";
+ case DIGEST_SHA3_256:
+ return "sha3-256";
+ case DIGEST_SHA3_512:
+ return "sha3-512";
default:
+ // LCOV_EXCL_START
tor_fragile_assert();
return "??unknown_digest??";
+ // LCOV_EXCL_STOP
}
}
@@ -1585,30 +1808,123 @@ crypto_digest_algorithm_parse_name(const char *name)
return DIGEST_SHA1;
else if (!strcmp(name, "sha256"))
return DIGEST_SHA256;
+ else if (!strcmp(name, "sha512"))
+ return DIGEST_SHA512;
+ else if (!strcmp(name, "sha3-256"))
+ return DIGEST_SHA3_256;
+ else if (!strcmp(name, "sha3-512"))
+ return DIGEST_SHA3_512;
else
return -1;
}
+/** Given an algorithm, return the digest length in bytes. */
+size_t
+crypto_digest_algorithm_get_length(digest_algorithm_t alg)
+{
+ switch (alg) {
+ case DIGEST_SHA1:
+ return DIGEST_LEN;
+ case DIGEST_SHA256:
+ return DIGEST256_LEN;
+ case DIGEST_SHA512:
+ return DIGEST512_LEN;
+ case DIGEST_SHA3_256:
+ return DIGEST256_LEN;
+ case DIGEST_SHA3_512:
+ return DIGEST512_LEN;
+ default:
+ tor_assert(0); // LCOV_EXCL_LINE
+ return 0; /* Unreachable */ // LCOV_EXCL_LINE
+ }
+}
+
/** Intermediate information about the digest of a stream of data. */
struct crypto_digest_t {
+ digest_algorithm_t algorithm; /**< Which algorithm is in use? */
+ /** State for the digest we're using. Only one member of the
+ * union is usable, depending on the value of <b>algorithm</b>. Note also
+ * that space for other members might not even be allocated!
+ */
union {
SHA_CTX sha1; /**< state for SHA1 */
SHA256_CTX sha2; /**< state for SHA256 */
- } d; /**< State for the digest we're using. Only one member of the
- * union is usable, depending on the value of <b>algorithm</b>. */
- digest_algorithm_bitfield_t algorithm : 8; /**< Which algorithm is in use? */
+ SHA512_CTX sha512; /**< state for SHA512 */
+ keccak_state sha3; /**< state for SHA3-[256,512] */
+ } d;
};
+/**
+ * Return the number of bytes we need to malloc in order to get a
+ * crypto_digest_t for <b>alg</b>, or the number of bytes we need to wipe
+ * when we free one.
+ */
+static size_t
+crypto_digest_alloc_bytes(digest_algorithm_t alg)
+{
+ /* Helper: returns the number of bytes in the 'f' field of 'st' */
+#define STRUCT_FIELD_SIZE(st, f) (sizeof( ((st*)0)->f ))
+ /* Gives the length of crypto_digest_t through the end of the field 'd' */
+#define END_OF_FIELD(f) (STRUCT_OFFSET(crypto_digest_t, f) + \
+ STRUCT_FIELD_SIZE(crypto_digest_t, f))
+ switch (alg) {
+ case DIGEST_SHA1:
+ return END_OF_FIELD(d.sha1);
+ case DIGEST_SHA256:
+ return END_OF_FIELD(d.sha2);
+ case DIGEST_SHA512:
+ return END_OF_FIELD(d.sha512);
+ case DIGEST_SHA3_256:
+ case DIGEST_SHA3_512:
+ return END_OF_FIELD(d.sha3);
+ default:
+ tor_assert(0); // LCOV_EXCL_LINE
+ return 0; // LCOV_EXCL_LINE
+ }
+#undef END_OF_FIELD
+#undef STRUCT_FIELD_SIZE
+}
+
+/**
+ * Internal function: create and return a new digest object for 'algorithm'.
+ * Does not typecheck the algorithm.
+ */
+static crypto_digest_t *
+crypto_digest_new_internal(digest_algorithm_t algorithm)
+{
+ crypto_digest_t *r = tor_malloc(crypto_digest_alloc_bytes(algorithm));
+ r->algorithm = algorithm;
+
+ switch (algorithm)
+ {
+ case DIGEST_SHA1:
+ SHA1_Init(&r->d.sha1);
+ break;
+ case DIGEST_SHA256:
+ SHA256_Init(&r->d.sha2);
+ break;
+ case DIGEST_SHA512:
+ SHA512_Init(&r->d.sha512);
+ break;
+ case DIGEST_SHA3_256:
+ keccak_digest_init(&r->d.sha3, 256);
+ break;
+ case DIGEST_SHA3_512:
+ keccak_digest_init(&r->d.sha3, 512);
+ break;
+ default:
+ tor_assert_unreached();
+ }
+
+ return r;
+}
+
/** Allocate and return a new digest object to compute SHA1 digests.
*/
crypto_digest_t *
crypto_digest_new(void)
{
- crypto_digest_t *r;
- r = tor_malloc(sizeof(crypto_digest_t));
- SHA1_Init(&r->d.sha1);
- r->algorithm = DIGEST_SHA1;
- return r;
+ return crypto_digest_new_internal(DIGEST_SHA1);
}
/** Allocate and return a new digest object to compute 256-bit digests
@@ -1616,12 +1932,17 @@ crypto_digest_new(void)
crypto_digest_t *
crypto_digest256_new(digest_algorithm_t algorithm)
{
- crypto_digest_t *r;
- tor_assert(algorithm == DIGEST_SHA256);
- r = tor_malloc(sizeof(crypto_digest_t));
- SHA256_Init(&r->d.sha2);
- r->algorithm = algorithm;
- return r;
+ tor_assert(algorithm == DIGEST_SHA256 || algorithm == DIGEST_SHA3_256);
+ return crypto_digest_new_internal(algorithm);
+}
+
+/** Allocate and return a new digest object to compute 512-bit digests
+ * using <b>algorithm</b>. */
+crypto_digest_t *
+crypto_digest512_new(digest_algorithm_t algorithm)
+{
+ tor_assert(algorithm == DIGEST_SHA512 || algorithm == DIGEST_SHA3_512);
+ return crypto_digest_new_internal(algorithm);
}
/** Deallocate a digest object.
@@ -1631,7 +1952,8 @@ crypto_digest_free(crypto_digest_t *digest)
{
if (!digest)
return;
- memwipe(digest, 0, sizeof(crypto_digest_t));
+ size_t bytes = crypto_digest_alloc_bytes(digest->algorithm);
+ memwipe(digest, 0, bytes);
tor_free(digest);
}
@@ -1655,42 +1977,65 @@ crypto_digest_add_bytes(crypto_digest_t *digest, const char *data,
case DIGEST_SHA256:
SHA256_Update(&digest->d.sha2, (void*)data, len);
break;
+ case DIGEST_SHA512:
+ SHA512_Update(&digest->d.sha512, (void*)data, len);
+ break;
+ case DIGEST_SHA3_256: /* FALLSTHROUGH */
+ case DIGEST_SHA3_512:
+ keccak_digest_update(&digest->d.sha3, (const uint8_t *)data, len);
+ break;
default:
+ /* LCOV_EXCL_START */
tor_fragile_assert();
break;
+ /* LCOV_EXCL_STOP */
}
}
/** Compute the hash of the data that has been passed to the digest
* object; write the first out_len bytes of the result to <b>out</b>.
- * <b>out_len</b> must be \<= DIGEST256_LEN.
+ * <b>out_len</b> must be \<= DIGEST512_LEN.
*/
void
crypto_digest_get_digest(crypto_digest_t *digest,
char *out, size_t out_len)
{
- unsigned char r[DIGEST256_LEN];
+ unsigned char r[DIGEST512_LEN];
crypto_digest_t tmpenv;
tor_assert(digest);
tor_assert(out);
+ tor_assert(out_len <= crypto_digest_algorithm_get_length(digest->algorithm));
+
+ /* The SHA-3 code handles copying into a temporary ctx, and also can handle
+ * short output buffers by truncating appropriately. */
+ if (digest->algorithm == DIGEST_SHA3_256 ||
+ digest->algorithm == DIGEST_SHA3_512) {
+ keccak_digest_sum(&digest->d.sha3, (uint8_t *)out, out_len);
+ return;
+ }
+
+ const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
/* memcpy into a temporary ctx, since SHA*_Final clears the context */
- memcpy(&tmpenv, digest, sizeof(crypto_digest_t));
+ memcpy(&tmpenv, digest, alloc_bytes);
switch (digest->algorithm) {
case DIGEST_SHA1:
- tor_assert(out_len <= DIGEST_LEN);
SHA1_Final(r, &tmpenv.d.sha1);
break;
case DIGEST_SHA256:
- tor_assert(out_len <= DIGEST256_LEN);
SHA256_Final(r, &tmpenv.d.sha2);
break;
+ case DIGEST_SHA512:
+ SHA512_Final(r, &tmpenv.d.sha512);
+ break;
+//LCOV_EXCL_START
+ case DIGEST_SHA3_256: /* FALLSTHROUGH */
+ case DIGEST_SHA3_512:
default:
- log_warn(LD_BUG, "Called with unknown algorithm %d", digest->algorithm);
- /* If fragile_assert is not enabled, then we should at least not
- * leak anything. */
- memset(r, 0xff, sizeof(r));
- tor_fragile_assert();
+ log_warn(LD_BUG, "Handling unexpected algorithm %d", digest->algorithm);
+ /* This is fatal, because it should never happen. */
+ tor_assert_unreached();
break;
+//LCOV_EXCL_STOP
}
memcpy(out, r, out_len);
memwipe(r, 0, sizeof(r));
@@ -1702,15 +2047,14 @@ crypto_digest_get_digest(crypto_digest_t *digest,
crypto_digest_t *
crypto_digest_dup(const crypto_digest_t *digest)
{
- crypto_digest_t *r;
tor_assert(digest);
- r = tor_malloc(sizeof(crypto_digest_t));
- memcpy(r,digest,sizeof(crypto_digest_t));
- return r;
+ const size_t alloc_bytes = crypto_digest_alloc_bytes(digest->algorithm);
+ return tor_memdup(digest, alloc_bytes);
}
/** Replace the state of the digest object <b>into</b> with the state
- * of the digest object <b>from</b>.
+ * of the digest object <b>from</b>. Requires that 'into' and 'from'
+ * have the same digest type.
*/
void
crypto_digest_assign(crypto_digest_t *into,
@@ -1718,24 +2062,41 @@ crypto_digest_assign(crypto_digest_t *into,
{
tor_assert(into);
tor_assert(from);
- memcpy(into,from,sizeof(crypto_digest_t));
+ tor_assert(into->algorithm == from->algorithm);
+ const size_t alloc_bytes = crypto_digest_alloc_bytes(from->algorithm);
+ memcpy(into,from,alloc_bytes);
}
/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
* at <b>digest_out</b> to the hash of the concatenation of those strings,
* plus the optional string <b>append</b>, computed with the algorithm
* <b>alg</b>.
- * <b>out_len</b> must be \<= DIGEST256_LEN. */
+ * <b>out_len</b> must be \<= DIGEST512_LEN. */
void
crypto_digest_smartlist(char *digest_out, size_t len_out,
- const smartlist_t *lst, const char *append,
+ const smartlist_t *lst,
+ const char *append,
digest_algorithm_t alg)
{
- crypto_digest_t *d;
- if (alg == DIGEST_SHA1)
- d = crypto_digest_new();
- else
- d = crypto_digest256_new(alg);
+ crypto_digest_smartlist_prefix(digest_out, len_out, NULL, lst, append, alg);
+}
+
+/** Given a list of strings in <b>lst</b>, set the <b>len_out</b>-byte digest
+ * at <b>digest_out</b> to the hash of the concatenation of: the
+ * optional string <b>prepend</b>, those strings,
+ * and the optional string <b>append</b>, computed with the algorithm
+ * <b>alg</b>.
+ * <b>len_out</b> must be \<= DIGEST512_LEN. */
+void
+crypto_digest_smartlist_prefix(char *digest_out, size_t len_out,
+ const char *prepend,
+ const smartlist_t *lst,
+ const char *append,
+ digest_algorithm_t alg)
+{
+ crypto_digest_t *d = crypto_digest_new_internal(alg);
+ if (prepend)
+ crypto_digest_add_bytes(d, prepend, strlen(prepend));
SMARTLIST_FOREACH(lst, const char *, cp,
crypto_digest_add_bytes(d, cp, strlen(cp)));
if (append)
@@ -1746,303 +2107,228 @@ crypto_digest_smartlist(char *digest_out, size_t len_out,
/** Compute the HMAC-SHA-256 of the <b>msg_len</b> bytes in <b>msg</b>, using
* the <b>key</b> of length <b>key_len</b>. Store the DIGEST256_LEN-byte
- * result in <b>hmac_out</b>.
+ * result in <b>hmac_out</b>. Asserts on failure.
*/
void
crypto_hmac_sha256(char *hmac_out,
const char *key, size_t key_len,
const char *msg, size_t msg_len)
{
+ unsigned char *rv = NULL;
/* If we've got OpenSSL >=0.9.8 we can use its hmac implementation. */
tor_assert(key_len < INT_MAX);
tor_assert(msg_len < INT_MAX);
- HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
- (unsigned char*)hmac_out, NULL);
+ tor_assert(hmac_out);
+ rv = HMAC(EVP_sha256(), key, (int)key_len, (unsigned char*)msg, (int)msg_len,
+ (unsigned char*)hmac_out, NULL);
+ tor_assert(rv);
}
-/* DH */
-
-/** Our DH 'g' parameter */
-#define DH_GENERATOR 2
-
-/** Shared P parameter for our circuit-crypto DH key exchanges. */
-static BIGNUM *dh_param_p = NULL;
-/** Shared P parameter for our TLS DH key exchanges. */
-static BIGNUM *dh_param_p_tls = NULL;
-/** Shared G parameter for our DH key exchanges. */
-static BIGNUM *dh_param_g = NULL;
-
-/** Generate and return a reasonable and safe DH parameter p. */
-static BIGNUM *
-crypto_generate_dynamic_dh_modulus(void)
+/** Compute a MAC using SHA3-256 of <b>msg_len</b> bytes in <b>msg</b> using a
+ * <b>key</b> of length <b>key_len</b> and a <b>salt</b> of length
+ * <b>salt_len</b>. Store the result of <b>len_out</b> bytes in in
+ * <b>mac_out</b>. This function can't fail. */
+void
+crypto_mac_sha3_256(uint8_t *mac_out, size_t len_out,
+ const uint8_t *key, size_t key_len,
+ const uint8_t *msg, size_t msg_len)
{
- BIGNUM *dynamic_dh_modulus;
- DH *dh_parameters;
- int r, dh_codes;
- char *s;
+ crypto_digest_t *digest;
- dynamic_dh_modulus = BN_new();
- tor_assert(dynamic_dh_modulus);
+ const uint64_t key_len_netorder = tor_htonll(key_len);
- dh_parameters = DH_generate_parameters(DH_BYTES*8, DH_GENERATOR, NULL, NULL);
- tor_assert(dh_parameters);
+ tor_assert(mac_out);
+ tor_assert(key);
+ tor_assert(msg);
- r = DH_check(dh_parameters, &dh_codes);
- tor_assert(r && !dh_codes);
+ digest = crypto_digest256_new(DIGEST_SHA3_256);
- BN_copy(dynamic_dh_modulus, dh_parameters->p);
- tor_assert(dynamic_dh_modulus);
+ /* Order matters here that is any subsystem using this function should
+ * expect this very precise ordering in the MAC construction. */
+ crypto_digest_add_bytes(digest, (const char *) &key_len_netorder,
+ sizeof(key_len_netorder));
+ crypto_digest_add_bytes(digest, (const char *) key, key_len);
+ crypto_digest_add_bytes(digest, (const char *) msg, msg_len);
+ crypto_digest_get_digest(digest, (char *) mac_out, len_out);
+ crypto_digest_free(digest);
+}
- DH_free(dh_parameters);
+/** Internal state for a eXtendable-Output Function (XOF). */
+struct crypto_xof_t {
+ keccak_state s;
+};
- { /* log the dynamic DH modulus: */
- s = BN_bn2hex(dynamic_dh_modulus);
- tor_assert(s);
- log_info(LD_OR, "Dynamic DH modulus generated: [%s]", s);
- OPENSSL_free(s);
- }
+/** Allocate a new XOF object backed by SHAKE-256. The security level
+ * provided is a function of the length of the output used. Read and
+ * understand FIPS-202 A.2 "Additional Consideration for Extendable-Output
+ * Functions" before using this construct.
+ */
+crypto_xof_t *
+crypto_xof_new(void)
+{
+ crypto_xof_t *xof;
+ xof = tor_malloc(sizeof(crypto_xof_t));
+ keccak_xof_init(&xof->s, 256);
+ return xof;
+}
- return dynamic_dh_modulus;
+/** Absorb bytes into a XOF object. Must not be called after a call to
+ * crypto_xof_squeeze_bytes() for the same instance, and will assert
+ * if attempted.
+ */
+void
+crypto_xof_add_bytes(crypto_xof_t *xof, const uint8_t *data, size_t len)
+{
+ int i = keccak_xof_absorb(&xof->s, data, len);
+ tor_assert(i == 0);
}
-/** Store our dynamic DH modulus (and its group parameters) to
- <b>fname</b> for future use. */
-static int
-crypto_store_dynamic_dh_modulus(const char *fname)
+/** Squeeze bytes out of a XOF object. Calling this routine will render
+ * the XOF instance ineligible to absorb further data.
+ */
+void
+crypto_xof_squeeze_bytes(crypto_xof_t *xof, uint8_t *out, size_t len)
{
- int len, new_len;
- DH *dh = NULL;
- unsigned char *dh_string_repr = NULL;
- char *base64_encoded_dh = NULL;
- char *file_string = NULL;
- int retval = -1;
- static const char file_header[] = "# This file contains stored Diffie-"
- "Hellman parameters for future use.\n# You *do not* need to edit this "
- "file.\n\n";
+ int i = keccak_xof_squeeze(&xof->s, out, len);
+ tor_assert(i == 0);
+}
- tor_assert(fname);
+/** Cleanse and deallocate a XOF object. */
+void
+crypto_xof_free(crypto_xof_t *xof)
+{
+ if (!xof)
+ return;
+ memwipe(xof, 0, sizeof(crypto_xof_t));
+ tor_free(xof);
+}
- if (!dh_param_p_tls) {
- log_info(LD_CRYPTO, "Tried to store a DH modulus that does not exist.");
- goto done;
- }
+/* DH */
- if (!(dh = DH_new()))
- goto done;
- if (!(dh->p = BN_dup(dh_param_p_tls)))
- goto done;
- if (!(dh->g = BN_new()))
- goto done;
- if (!BN_set_word(dh->g, DH_GENERATOR))
- goto done;
+/** Our DH 'g' parameter */
+#define DH_GENERATOR 2
- len = i2d_DHparams(dh, &dh_string_repr);
- if ((len < 0) || (dh_string_repr == NULL)) {
- log_warn(LD_CRYPTO, "Error occured while DER encoding DH modulus (2).");
- goto done;
- }
+/** Shared P parameter for our circuit-crypto DH key exchanges. */
+static BIGNUM *dh_param_p = NULL;
+/** Shared P parameter for our TLS DH key exchanges. */
+static BIGNUM *dh_param_p_tls = NULL;
+/** Shared G parameter for our DH key exchanges. */
+static BIGNUM *dh_param_g = NULL;
- base64_encoded_dh = tor_malloc_zero(len * 2); /* should be enough */
- new_len = base64_encode(base64_encoded_dh, len * 2,
- (char *)dh_string_repr, len);
- if (new_len < 0) {
- log_warn(LD_CRYPTO, "Error occured while base64-encoding DH modulus.");
- goto done;
- }
+/** Validate a given set of Diffie-Hellman parameters. This is moderately
+ * computationally expensive (milliseconds), so should only be called when
+ * the DH parameters change. Returns 0 on success, * -1 on failure.
+ */
+static int
+crypto_validate_dh_params(const BIGNUM *p, const BIGNUM *g)
+{
+ DH *dh = NULL;
+ int ret = -1;
- /* concatenate file header and the dh parameters blob */
- new_len = tor_asprintf(&file_string, "%s%s", file_header, base64_encoded_dh);
+ /* Copy into a temporary DH object, just so that DH_check() can be called. */
+ if (!(dh = DH_new()))
+ goto out;
+#ifdef OPENSSL_1_1_API
+ BIGNUM *dh_p, *dh_g;
+ if (!(dh_p = BN_dup(p)))
+ goto out;
+ if (!(dh_g = BN_dup(g)))
+ goto out;
+ if (!DH_set0_pqg(dh, dh_p, NULL, dh_g))
+ goto out;
+#else
+ if (!(dh->p = BN_dup(p)))
+ goto out;
+ if (!(dh->g = BN_dup(g)))
+ goto out;
+#endif
- /* write to file */
- if (write_bytes_to_new_file(fname, file_string, new_len, 0) < 0) {
- log_info(LD_CRYPTO, "'%s' was already occupied.", fname);
- goto done;
+ /* Perform the validation. */
+ int codes = 0;
+ if (!DH_check(dh, &codes))
+ goto out;
+ if (BN_is_word(g, DH_GENERATOR_2)) {
+ /* Per https://wiki.openssl.org/index.php/Diffie-Hellman_parameters
+ *
+ * OpenSSL checks the prime is congruent to 11 when g = 2; while the
+ * IETF's primes are congruent to 23 when g = 2.
+ */
+ BN_ULONG residue = BN_mod_word(p, 24);
+ if (residue == 11 || residue == 23)
+ codes &= ~DH_NOT_SUITABLE_GENERATOR;
}
+ if (codes != 0) /* Specifics on why the params suck is irrelevant. */
+ goto out;
- retval = 0;
+ /* Things are probably not evil. */
+ ret = 0;
- done:
+ out:
if (dh)
DH_free(dh);
- if (dh_string_repr)
- OPENSSL_free(dh_string_repr);
- tor_free(base64_encoded_dh);
- tor_free(file_string);
-
- return retval;
+ return ret;
}
-/** Return the dynamic DH modulus stored in <b>fname</b>. If there is no
- dynamic DH modulus stored in <b>fname</b>, return NULL. */
-static BIGNUM *
-crypto_get_stored_dynamic_dh_modulus(const char *fname)
+/** Set the global Diffie-Hellman generator, used for both TLS and internal
+ * DH stuff.
+ */
+static void
+crypto_set_dh_generator(void)
{
- int retval;
- char *contents = NULL;
- const char *contents_tmp = NULL;
- int dh_codes;
- DH *stored_dh = NULL;
- BIGNUM *dynamic_dh_modulus = NULL;
- int length = 0;
- unsigned char *base64_decoded_dh = NULL;
- const unsigned char *cp = NULL;
-
- tor_assert(fname);
-
- contents = read_file_to_str(fname, RFTS_IGNORE_MISSING, NULL);
- if (!contents) {
- log_info(LD_CRYPTO, "Could not open file '%s'", fname);
- goto done; /*usually means that ENOENT. don't try to move file to broken.*/
- }
-
- /* skip the file header */
- contents_tmp = eat_whitespace(contents);
- if (!*contents_tmp) {
- log_warn(LD_CRYPTO, "Stored dynamic DH modulus file "
- "seems corrupted (eat_whitespace).");
- goto err;
- }
-
- /* 'fname' contains the DH parameters stored in base64-ed DER
- * format. We are only interested in the DH modulus.
- * NOTE: We allocate more storage here than we need. Since we're already
- * doing that, we can also add 1 byte extra to appease Coverity's
- * scanner. */
-
- cp = base64_decoded_dh = tor_malloc_zero(strlen(contents_tmp) + 1);
- length = base64_decode((char *)base64_decoded_dh, strlen(contents_tmp),
- contents_tmp, strlen(contents_tmp));
- if (length < 0) {
- log_warn(LD_CRYPTO, "Stored dynamic DH modulus seems corrupted (base64).");
- goto err;
- }
-
- stored_dh = d2i_DHparams(NULL, &cp, length);
- if ((!stored_dh) || (cp - base64_decoded_dh != length)) {
- log_warn(LD_CRYPTO, "Stored dynamic DH modulus seems corrupted (d2i).");
- goto err;
- }
-
- { /* check the cryptographic qualities of the stored dynamic DH modulus: */
- retval = DH_check(stored_dh, &dh_codes);
- if (!retval || dh_codes) {
- log_warn(LD_CRYPTO, "Stored dynamic DH modulus is not a safe prime.");
- goto err;
- }
-
- retval = DH_size(stored_dh);
- if (retval < DH_BYTES) {
- log_warn(LD_CRYPTO, "Stored dynamic DH modulus is smaller "
- "than '%d' bits.", DH_BYTES*8);
- goto err;
- }
-
- if (!BN_is_word(stored_dh->g, 2)) {
- log_warn(LD_CRYPTO, "Stored dynamic DH parameters do not use '2' "
- "as the group generator.");
- goto err;
- }
- }
-
- { /* log the dynamic DH modulus: */
- char *s = BN_bn2hex(stored_dh->p);
- tor_assert(s);
- log_info(LD_OR, "Found stored dynamic DH modulus: [%s]", s);
- OPENSSL_free(s);
- }
-
- goto done;
-
- err:
-
- {
- /* move broken prime to $filename.broken */
- char *fname_new=NULL;
- tor_asprintf(&fname_new, "%s.broken", fname);
-
- log_warn(LD_CRYPTO, "Moving broken dynamic DH prime to '%s'.", fname_new);
-
- if (replace_file(fname, fname_new))
- log_notice(LD_CRYPTO, "Error while moving '%s' to '%s'.",
- fname, fname_new);
-
- tor_free(fname_new);
- }
+ BIGNUM *generator;
+ int r;
- if (stored_dh) {
- DH_free(stored_dh);
- stored_dh = NULL;
- }
+ if (dh_param_g)
+ return;
- done:
- tor_free(contents);
- tor_free(base64_decoded_dh);
+ generator = BN_new();
+ tor_assert(generator);
- if (stored_dh) {
- dynamic_dh_modulus = BN_dup(stored_dh->p);
- DH_free(stored_dh);
- }
+ r = BN_set_word(generator, DH_GENERATOR);
+ tor_assert(r);
- return dynamic_dh_modulus;
+ dh_param_g = generator;
}
-/** Set the global TLS Diffie-Hellman modulus.
- * If <b>dynamic_dh_modulus_fname</b> is set, try to read a dynamic DH modulus
- * off it and use it as the DH modulus. If that's not possible,
- * generate a new dynamic DH modulus.
- * If <b>dynamic_dh_modulus_fname</b> is NULL, use the Apache mod_ssl DH
+/** Set the global TLS Diffie-Hellman modulus. Use the Apache mod_ssl DH
* modulus. */
void
-crypto_set_tls_dh_prime(const char *dynamic_dh_modulus_fname)
+crypto_set_tls_dh_prime(void)
{
BIGNUM *tls_prime = NULL;
- int store_dh_prime_afterwards = 0;
int r;
/* If the space is occupied, free the previous TLS DH prime */
- if (dh_param_p_tls) {
+ if (BUG(dh_param_p_tls)) {
+ /* LCOV_EXCL_START
+ *
+ * We shouldn't be calling this twice.
+ */
BN_clear_free(dh_param_p_tls);
dh_param_p_tls = NULL;
+ /* LCOV_EXCL_STOP */
}
- if (dynamic_dh_modulus_fname) { /* use dynamic DH modulus: */
- log_info(LD_OR, "Using stored dynamic DH modulus.");
- tls_prime = crypto_get_stored_dynamic_dh_modulus(dynamic_dh_modulus_fname);
-
- if (!tls_prime) {
- log_notice(LD_OR, "Generating fresh dynamic DH modulus. "
- "This might take a while...");
- tls_prime = crypto_generate_dynamic_dh_modulus();
-
- store_dh_prime_afterwards++;
- }
- } else { /* use the static DH prime modulus used by Apache in mod_ssl: */
- tls_prime = BN_new();
- tor_assert(tls_prime);
+ tls_prime = BN_new();
+ tor_assert(tls_prime);
- /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see
- * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this
- * prime.
- */
- r =BN_hex2bn(&tls_prime,
- "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98"
- "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A"
- "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7"
- "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68"
- "B0E7393E0F24218EB3");
- tor_assert(r);
- }
+ /* This is the 1024-bit safe prime that Apache uses for its DH stuff; see
+ * modules/ssl/ssl_engine_dh.c; Apache also uses a generator of 2 with this
+ * prime.
+ */
+ r = BN_hex2bn(&tls_prime,
+ "D67DE440CBBBDC1936D693D34AFD0AD50C84D239A45F520BB88174CB98"
+ "BCE951849F912E639C72FB13B4B4D7177E16D55AC179BA420B2A29FE324A"
+ "467A635E81FF5901377BEDDCFD33168A461AAD3B72DAE8860078045B07A7"
+ "DBCA7874087D1510EA9FCC9DDD330507DD62DB88AEAA747DE0F4D6E2BD68"
+ "B0E7393E0F24218EB3");
+ tor_assert(r);
tor_assert(tls_prime);
dh_param_p_tls = tls_prime;
-
- if (store_dh_prime_afterwards)
- /* save the new dynamic DH modulus to disk. */
- if (crypto_store_dynamic_dh_modulus(dynamic_dh_modulus_fname)) {
- log_notice(LD_CRYPTO, "Failed while storing dynamic DH modulus. "
- "Make sure your data directory is sane.");
- }
+ crypto_set_dh_generator();
+ tor_assert(0 == crypto_validate_dh_params(dh_param_p_tls, dh_param_g));
}
/** Initialize dh_param_p and dh_param_g if they are not already
@@ -2050,18 +2336,13 @@ crypto_set_tls_dh_prime(const char *dynamic_dh_modulus_fname)
static void
init_dh_param(void)
{
- BIGNUM *circuit_dh_prime, *generator;
+ BIGNUM *circuit_dh_prime;
int r;
- if (dh_param_p && dh_param_g)
- return;
+ if (BUG(dh_param_p && dh_param_g))
+ return; // LCOV_EXCL_LINE This function isn't supposed to be called twice.
circuit_dh_prime = BN_new();
- generator = BN_new();
- tor_assert(circuit_dh_prime && generator);
-
- /* Set our generator for all DH parameters */
- r = BN_set_word(generator, DH_GENERATOR);
- tor_assert(r);
+ tor_assert(circuit_dh_prime);
/* This is from rfc2409, section 6.2. It's a safe prime, and
supposedly it equals:
@@ -2077,12 +2358,11 @@ init_dh_param(void)
/* Set the new values as the global DH parameters. */
dh_param_p = circuit_dh_prime;
- dh_param_g = generator;
+ crypto_set_dh_generator();
+ tor_assert(0 == crypto_validate_dh_params(dh_param_p, dh_param_g));
- /* Ensure that we have TLS DH parameters set up, too, even if we're
- going to change them soon. */
if (!dh_param_p_tls) {
- crypto_set_tls_dh_prime(NULL);
+ crypto_set_tls_dh_prime();
}
}
@@ -2092,7 +2372,8 @@ init_dh_param(void)
*/
#define DH_PRIVATE_KEY_BITS 320
-/** Allocate and return a new DH object for a key exchange.
+/** Allocate and return a new DH object for a key exchange. Returns NULL on
+ * failure.
*/
crypto_dh_t *
crypto_dh_new(int dh_type)
@@ -2108,6 +2389,30 @@ crypto_dh_new(int dh_type)
if (!(res->dh = DH_new()))
goto err;
+#ifdef OPENSSL_1_1_API
+ BIGNUM *dh_p = NULL, *dh_g = NULL;
+
+ if (dh_type == DH_TYPE_TLS) {
+ dh_p = BN_dup(dh_param_p_tls);
+ } else {
+ dh_p = BN_dup(dh_param_p);
+ }
+ if (!dh_p)
+ goto err;
+
+ dh_g = BN_dup(dh_param_g);
+ if (!dh_g) {
+ BN_free(dh_p);
+ goto err;
+ }
+
+ if (!DH_set0_pqg(res->dh, dh_p, NULL, dh_g)) {
+ goto err;
+ }
+
+ if (!DH_set_length(res->dh, DH_PRIVATE_KEY_BITS))
+ goto err;
+#else
if (dh_type == DH_TYPE_TLS) {
if (!(res->dh->p = BN_dup(dh_param_p_tls)))
goto err;
@@ -2120,13 +2425,17 @@ crypto_dh_new(int dh_type)
goto err;
res->dh->length = DH_PRIVATE_KEY_BITS;
+#endif
return res;
err:
+ /* LCOV_EXCL_START
+ * This error condition is only reached when an allocation fails */
crypto_log_errors(LOG_WARN, "creating DH object");
if (res->dh) DH_free(res->dh); /* frees p and g too */
tor_free(res);
return NULL;
+ /* LCOV_EXCL_STOP */
}
/** Return a copy of <b>dh</b>, sharing its internal state. */
@@ -2134,6 +2443,8 @@ crypto_dh_t *
crypto_dh_dup(const crypto_dh_t *dh)
{
crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t));
+ tor_assert(dh);
+ tor_assert(dh->dh);
dh_new->dh = dh->dh;
DH_up_ref(dh->dh);
return dh_new;
@@ -2154,12 +2465,32 @@ crypto_dh_get_bytes(crypto_dh_t *dh)
int
crypto_dh_generate_public(crypto_dh_t *dh)
{
+#ifndef OPENSSL_1_1_API
again:
+#endif
if (!DH_generate_key(dh->dh)) {
+ /* LCOV_EXCL_START
+ * To test this we would need some way to tell openssl to break DH. */
crypto_log_errors(LOG_WARN, "generating DH key");
return -1;
+ /* LCOV_EXCL_STOP */
+ }
+#ifdef OPENSSL_1_1_API
+ /* OpenSSL 1.1.x doesn't appear to let you regenerate a DH key, without
+ * recreating the DH object. I have no idea what sort of aliasing madness
+ * can occur here, so do the check, and just bail on failure.
+ */
+ const BIGNUM *pub_key, *priv_key;
+ DH_get0_key(dh->dh, &pub_key, &priv_key);
+ if (tor_check_dh_key(LOG_WARN, pub_key)<0) {
+ log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-"
+ "the-universe chances really do happen. Treating as a failure.");
+ return -1;
}
+#else
if (tor_check_dh_key(LOG_WARN, dh->dh->pub_key)<0) {
+ /* LCOV_EXCL_START
+ * If this happens, then openssl's DH implementation is busted. */
log_warn(LD_CRYPTO, "Weird! Our own DH key was invalid. I guess once-in-"
"the-universe chances really do happen. Trying again.");
/* Free and clear the keys, so OpenSSL will actually try again. */
@@ -2167,7 +2498,9 @@ crypto_dh_generate_public(crypto_dh_t *dh)
BN_clear_free(dh->dh->priv_key);
dh->dh->pub_key = dh->dh->priv_key = NULL;
goto again;
+ /* LCOV_EXCL_STOP */
}
+#endif
return 0;
}
@@ -2180,13 +2513,30 @@ crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
{
int bytes;
tor_assert(dh);
- if (!dh->dh->pub_key) {
+
+ const BIGNUM *dh_pub;
+
+#ifdef OPENSSL_1_1_API
+ const BIGNUM *dh_priv;
+ DH_get0_key(dh->dh, &dh_pub, &dh_priv);
+#else
+ dh_pub = dh->dh->pub_key;
+#endif
+
+ if (!dh_pub) {
if (crypto_dh_generate_public(dh)<0)
return -1;
+ else {
+#ifdef OPENSSL_1_1_API
+ DH_get0_key(dh->dh, &dh_pub, &dh_priv);
+#else
+ dh_pub = dh->dh->pub_key;
+#endif
+ }
}
- tor_assert(dh->dh->pub_key);
- bytes = BN_num_bytes(dh->dh->pub_key);
+ tor_assert(dh_pub);
+ bytes = BN_num_bytes(dh_pub);
tor_assert(bytes >= 0);
if (pubkey_len < (size_t)bytes) {
log_warn(LD_CRYPTO,
@@ -2196,7 +2546,7 @@ crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
}
memset(pubkey, 0, pubkey_len);
- BN_bn2bin(dh->dh->pub_key, (unsigned char*)(pubkey+(pubkey_len-bytes)));
+ BN_bn2bin(dh_pub, (unsigned char*)(pubkey+(pubkey_len-bytes)));
return 0;
}
@@ -2206,15 +2556,15 @@ crypto_dh_get_public(crypto_dh_t *dh, char *pubkey, size_t pubkey_len)
* See http://www.cl.cam.ac.uk/ftp/users/rja14/psandqs.ps.gz for some tips.
*/
static int
-tor_check_dh_key(int severity, BIGNUM *bn)
+tor_check_dh_key(int severity, const BIGNUM *bn)
{
BIGNUM *x;
char *s;
tor_assert(bn);
x = BN_new();
tor_assert(x);
- if (!dh_param_p)
- init_dh_param();
+ if (BUG(!dh_param_p))
+ init_dh_param(); //LCOV_EXCL_LINE we already checked whether we did this.
BN_set_word(x, 1);
if (BN_cmp(bn,x)<=0) {
log_fn(severity, LD_CRYPTO, "DH key must be at least 2.");
@@ -2236,8 +2586,6 @@ tor_check_dh_key(int severity, BIGNUM *bn)
return -1;
}
-#undef MIN
-#define MIN(a,b) ((a)<(b)?(a):(b))
/** Given a DH key exchange object, and our peer's value of g^y (as a
* <b>pubkey_len</b>-byte value in <b>pubkey</b>) generate
* <b>secret_bytes_out</b> bytes of shared key material and write them
@@ -2313,7 +2661,7 @@ int
crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
uint8_t *key_out, size_t key_out_len)
{
- int i;
+ int i, r = -1;
uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
uint8_t digest[DIGEST_LEN];
@@ -2324,20 +2672,17 @@ crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
for (cp = key_out, i=0; cp < key_out+key_out_len;
++i, cp += DIGEST_LEN) {
tmp[key_in_len] = i;
- if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1))
- goto err;
+ if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1) < 0)
+ goto exit;
memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
}
- memwipe(tmp, 0, key_in_len+1);
- tor_free(tmp);
- memwipe(digest, 0, sizeof(digest));
- return 0;
- err:
+ r = 0;
+ exit:
memwipe(tmp, 0, key_in_len+1);
tor_free(tmp);
memwipe(digest, 0, sizeof(digest));
- return -1;
+ return r;
}
/** Expand some secret key material according to RFC5869, using SHA256 as the
@@ -2345,7 +2690,7 @@ crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
* secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
* <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
* and "info" parameters respectively. On success, write <b>key_out_len</b>
- * bytes to <b>key_out</b> and return 0. On failure, return -1.
+ * bytes to <b>key_out</b> and return 0. Assert on failure.
*/
int
crypto_expand_key_material_rfc5869_sha256(
@@ -2419,15 +2764,6 @@ crypto_dh_free(crypto_dh_t *dh)
* work for us too. */
#define ADD_ENTROPY 32
-/** True iff it's safe to use RAND_poll after setup.
- *
- * Versions of OpenSSL prior to 0.9.7k and 0.9.8c had a bug where RAND_poll
- * would allocate an fd_set on the stack, open a new file, and try to FD_SET
- * that fd without checking whether it fit in the fd_set. Thus, if the
- * system has not just been started up, it is unsafe to call */
-#define RAND_POLL_IS_SAFE \
- (OPENSSL_VERSION_NUMBER >= OPENSSL_V(0,9,8,'c'))
-
/** Set the seed of the weak RNG to a random value. */
void
crypto_seed_weak_rng(tor_weak_rng_t *rng)
@@ -2437,31 +2773,34 @@ crypto_seed_weak_rng(tor_weak_rng_t *rng)
tor_init_weak_random(rng, seed);
}
+#ifdef TOR_UNIT_TESTS
+int break_strongest_rng_syscall = 0;
+int break_strongest_rng_fallback = 0;
+#endif
+
/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
- * storing it into <b>out</b>.
+ * via system calls, storing it into <b>out</b>. Return 0 on success, -1 on
+ * failure. A maximum request size of 256 bytes is imposed.
*/
-int
-crypto_strongest_rand(uint8_t *out, size_t out_len)
+static int
+crypto_strongest_rand_syscall(uint8_t *out, size_t out_len)
{
-#ifdef _WIN32
+ tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
+
+#ifdef TOR_UNIT_TESTS
+ if (break_strongest_rng_syscall)
+ return -1;
+#endif
+
+#if defined(_WIN32)
static int provider_set = 0;
static HCRYPTPROV provider;
-#else
- static const char *filenames[] = {
- "/dev/srandom", "/dev/urandom", "/dev/random", NULL
- };
- int fd, i;
- size_t n;
-#endif
-#ifdef _WIN32
if (!provider_set) {
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT)) {
- if ((unsigned long)GetLastError() != (unsigned long)NTE_BAD_KEYSET) {
- log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
- return -1;
- }
+ log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
+ return -1;
}
provider_set = 1;
}
@@ -2471,35 +2810,209 @@ crypto_strongest_rand(uint8_t *out, size_t out_len)
}
return 0;
+#elif defined(__linux__) && defined(SYS_getrandom)
+ static int getrandom_works = 1; /* Be optimitic about our chances... */
+
+ /* getrandom() isn't as straight foward as getentropy(), and has
+ * no glibc wrapper.
+ *
+ * As far as I can tell from getrandom(2) and the source code, the
+ * requests we issue will always succeed (though it will block on the
+ * call if /dev/urandom isn't seeded yet), since we are NOT specifying
+ * GRND_NONBLOCK and the request is <= 256 bytes.
+ *
+ * The manpage is unclear on what happens if a signal interrupts the call
+ * while the request is blocked due to lack of entropy....
+ *
+ * We optimistically assume that getrandom() is available and functional
+ * because it is the way of the future, and 2 branch mispredicts pale in
+ * comparision to the overheads involved with failing to open
+ * /dev/srandom followed by opening and reading from /dev/urandom.
+ */
+ if (PREDICT_LIKELY(getrandom_works)) {
+ long ret;
+ /* A flag of '0' here means to read from '/dev/urandom', and to
+ * block if insufficient entropy is available to service the
+ * request.
+ */
+ const unsigned int flags = 0;
+ do {
+ ret = syscall(SYS_getrandom, out, out_len, flags);
+ } while (ret == -1 && ((errno == EINTR) ||(errno == EAGAIN)));
+
+ if (PREDICT_UNLIKELY(ret == -1)) {
+ /* LCOV_EXCL_START we can't actually make the syscall fail in testing. */
+ tor_assert(errno != EAGAIN);
+ tor_assert(errno != EINTR);
+
+ /* Probably ENOSYS. */
+ log_warn(LD_CRYPTO, "Can't get entropy from getrandom().");
+ getrandom_works = 0; /* Don't bother trying again. */
+ return -1;
+ /* LCOV_EXCL_STOP */
+ }
+
+ tor_assert(ret == (long)out_len);
+ return 0;
+ }
+
+ return -1; /* getrandom() previously failed unexpectedly. */
+#elif defined(HAVE_GETENTROPY)
+ /* getentropy() is what Linux's getrandom() wants to be when it grows up.
+ * the only gotcha is that requests are limited to 256 bytes.
+ */
+ return getentropy(out, out_len);
#else
+ (void) out;
+#endif
+
+ /* This platform doesn't have a supported syscall based random. */
+ return -1;
+}
+
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * via the per-platform fallback mechanism, storing it into <b>out</b>.
+ * Return 0 on success, -1 on failure. A maximum request size of 256 bytes
+ * is imposed.
+ */
+static int
+crypto_strongest_rand_fallback(uint8_t *out, size_t out_len)
+{
+#ifdef TOR_UNIT_TESTS
+ if (break_strongest_rng_fallback)
+ return -1;
+#endif
+
+#ifdef _WIN32
+ /* Windows exclusively uses crypto_strongest_rand_syscall(). */
+ (void)out;
+ (void)out_len;
+ return -1;
+#else
+ static const char *filenames[] = {
+ "/dev/srandom", "/dev/urandom", "/dev/random", NULL
+ };
+ int fd, i;
+ size_t n;
+
for (i = 0; filenames[i]; ++i) {
- log_debug(LD_FS, "Opening %s for entropy", filenames[i]);
+ log_debug(LD_FS, "Considering %s for entropy", filenames[i]);
fd = open(sandbox_intern_string(filenames[i]), O_RDONLY, 0);
if (fd<0) continue;
log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
n = read_all(fd, (char*)out, out_len, 0);
close(fd);
if (n != out_len) {
+ /* LCOV_EXCL_START
+ * We can't make /dev/foorandom actually fail. */
log_warn(LD_CRYPTO,
"Error reading from entropy source (read only %lu bytes).",
(unsigned long)n);
return -1;
+ /* LCOV_EXCL_STOP */
}
return 0;
}
- log_warn(LD_CRYPTO, "Cannot get strong entropy: no entropy source found.");
return -1;
#endif
}
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * storing it into <b>out</b>. Return 0 on success, -1 on failure. A maximum
+ * request size of 256 bytes is imposed.
+ */
+STATIC int
+crypto_strongest_rand_raw(uint8_t *out, size_t out_len)
+{
+ static const size_t sanity_min_size = 16;
+ static const int max_attempts = 3;
+ tor_assert(out_len <= MAX_STRONGEST_RAND_SIZE);
+
+ /* For buffers >= 16 bytes (128 bits), we sanity check the output by
+ * zero filling the buffer and ensuring that it actually was at least
+ * partially modified.
+ *
+ * Checking that any individual byte is non-zero seems like it would
+ * fail too often (p = out_len * 1/256) for comfort, but this is an
+ * "adjust according to taste" sort of check.
+ */
+ memwipe(out, 0, out_len);
+ for (int i = 0; i < max_attempts; i++) {
+ /* Try to use the syscall/OS favored mechanism to get strong entropy. */
+ if (crypto_strongest_rand_syscall(out, out_len) != 0) {
+ /* Try to use the less-favored mechanism to get strong entropy. */
+ if (crypto_strongest_rand_fallback(out, out_len) != 0) {
+ /* Welp, we tried. Hopefully the calling code terminates the process
+ * since we're basically boned without good entropy.
+ */
+ log_warn(LD_CRYPTO,
+ "Cannot get strong entropy: no entropy source found.");
+ return -1;
+ }
+ }
+
+ if ((out_len < sanity_min_size) || !tor_mem_is_zero((char*)out, out_len))
+ return 0;
+ }
+
+ /* LCOV_EXCL_START
+ *
+ * We tried max_attempts times to fill a buffer >= 128 bits long,
+ * and each time it returned all '0's. Either the system entropy
+ * source is busted, or the user should go out and buy a ticket to
+ * every lottery on the planet.
+ */
+ log_warn(LD_CRYPTO, "Strong OS entropy returned all zero buffer.");
+
+ return -1;
+ /* LCOV_EXCL_STOP */
+}
+
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * storing it into <b>out</b>.
+ */
+void
+crypto_strongest_rand(uint8_t *out, size_t out_len)
+{
+#define DLEN SHA512_DIGEST_LENGTH
+ /* We're going to hash DLEN bytes from the system RNG together with some
+ * bytes from the openssl PRNG, in order to yield DLEN bytes.
+ */
+ uint8_t inp[DLEN*2];
+ uint8_t tmp[DLEN];
+ tor_assert(out);
+ while (out_len) {
+ crypto_rand((char*) inp, DLEN);
+ if (crypto_strongest_rand_raw(inp+DLEN, DLEN) < 0) {
+ // LCOV_EXCL_START
+ log_err(LD_CRYPTO, "Failed to load strong entropy when generating an "
+ "important key. Exiting.");
+ /* Die with an assertion so we get a stack trace. */
+ tor_assert(0);
+ // LCOV_EXCL_STOP
+ }
+ if (out_len >= DLEN) {
+ SHA512(inp, sizeof(inp), out);
+ out += DLEN;
+ out_len -= DLEN;
+ } else {
+ SHA512(inp, sizeof(inp), tmp);
+ memcpy(out, tmp, out_len);
+ break;
+ }
+ }
+ memwipe(tmp, 0, sizeof(tmp));
+ memwipe(inp, 0, sizeof(inp));
+#undef DLEN
+}
+
/** Seed OpenSSL's random number generator with bytes from the operating
- * system. <b>startup</b> should be true iff we have just started Tor and
- * have not yet allocated a bunch of fds. Return 0 on success, -1 on failure.
+ * system. Return 0 on success, -1 on failure.
*/
int
-crypto_seed_rng(int startup)
+crypto_seed_rng(void)
{
int rand_poll_ok = 0, load_entropy_ok = 0;
uint8_t buf[ADD_ENTROPY];
@@ -2507,38 +3020,55 @@ crypto_seed_rng(int startup)
/* OpenSSL has a RAND_poll function that knows about more kinds of
* entropy than we do. We'll try calling that, *and* calling our own entropy
* functions. If one succeeds, we'll accept the RNG as seeded. */
- if (startup || RAND_POLL_IS_SAFE) {
- rand_poll_ok = RAND_poll();
- if (rand_poll_ok == 0)
- log_warn(LD_CRYPTO, "RAND_poll() failed.");
- }
+ rand_poll_ok = RAND_poll();
+ if (rand_poll_ok == 0)
+ log_warn(LD_CRYPTO, "RAND_poll() failed."); // LCOV_EXCL_LINE
- load_entropy_ok = !crypto_strongest_rand(buf, sizeof(buf));
+ load_entropy_ok = !crypto_strongest_rand_raw(buf, sizeof(buf));
if (load_entropy_ok) {
RAND_seed(buf, sizeof(buf));
}
memwipe(buf, 0, sizeof(buf));
- if (rand_poll_ok || load_entropy_ok)
+ if ((rand_poll_ok || load_entropy_ok) && RAND_status() == 1)
return 0;
else
return -1;
}
-/** Write <b>n</b> bytes of strong random data to <b>to</b>. Return 0 on
- * success, -1 on failure.
+/** Write <b>n</b> bytes of strong random data to <b>to</b>. Supports mocking
+ * for unit tests.
+ *
+ * This function is not allowed to fail; if it would fail to generate strong
+ * entropy, it must terminate the process instead.
*/
-MOCK_IMPL(int,
+MOCK_IMPL(void,
crypto_rand, (char *to, size_t n))
{
+ crypto_rand_unmocked(to, n);
+}
+
+/** Write <b>n</b> bytes of strong random data to <b>to</b>. Most callers
+ * will want crypto_rand instead.
+ *
+ * This function is not allowed to fail; if it would fail to generate strong
+ * entropy, it must terminate the process instead.
+ */
+void
+crypto_rand_unmocked(char *to, size_t n)
+{
int r;
+ if (n == 0)
+ return;
+
tor_assert(n < INT_MAX);
tor_assert(to);
r = RAND_bytes((unsigned char*)to, (int)n);
- if (r == 0)
- crypto_log_errors(LOG_WARN, "generating random data");
- return (r == 1) ? 0 : -1;
+ /* We consider a PRNG failure non-survivable. Let's assert so that we get a
+ * stack trace about where it happened.
+ */
+ tor_assert(r >= 0);
}
/** Return a pseudorandom integer, chosen uniformly from the values
@@ -2564,8 +3094,41 @@ crypto_rand_int(unsigned int max)
}
}
+/** Return a pseudorandom integer, chosen uniformly from the values i such
+ * that min <= i < max.
+ *
+ * <b>min</b> MUST be in range [0, <b>max</b>).
+ * <b>max</b> MUST be in range (min, INT_MAX].
+ */
+int
+crypto_rand_int_range(unsigned int min, unsigned int max)
+{
+ tor_assert(min < max);
+ tor_assert(max <= INT_MAX);
+
+ /* The overflow is avoided here because crypto_rand_int() returns a value
+ * between 0 and (max - min) inclusive. */
+ return min + crypto_rand_int(max - min);
+}
+
+/** As crypto_rand_int_range, but supports uint64_t. */
+uint64_t
+crypto_rand_uint64_range(uint64_t min, uint64_t max)
+{
+ tor_assert(min < max);
+ return min + crypto_rand_uint64(max - min);
+}
+
+/** As crypto_rand_int_range, but supports time_t. */
+time_t
+crypto_rand_time_range(time_t min, time_t max)
+{
+ tor_assert(min < max);
+ return min + (time_t)crypto_rand_uint64(max - min);
+}
+
/** Return a pseudorandom 64-bit integer, chosen uniformly from the values
- * between 0 and <b>max</b>-1. */
+ * between 0 and <b>max</b>-1 inclusive. */
uint64_t
crypto_rand_uint64(uint64_t max)
{
@@ -2594,8 +3157,8 @@ crypto_rand_double(void)
{
/* We just use an unsigned int here; we don't really care about getting
* more than 32 bits of resolution */
- unsigned int uint;
- crypto_rand((char*)&uint, sizeof(uint));
+ unsigned int u;
+ crypto_rand((char*)&u, sizeof(u));
#if SIZEOF_INT == 4
#define UINT_MAX_AS_DOUBLE 4294967296.0
#elif SIZEOF_INT == 8
@@ -2603,13 +3166,13 @@ crypto_rand_double(void)
#else
#error SIZEOF_INT is neither 4 nor 8
#endif
- return ((double)uint) / UINT_MAX_AS_DOUBLE;
+ return ((double)u) / UINT_MAX_AS_DOUBLE;
}
/** Generate and return a new random hostname starting with <b>prefix</b>,
* ending with <b>suffix</b>, and containing no fewer than
* <b>min_rand_len</b> and no more than <b>max_rand_len</b> random base32
- * characters between.
+ * characters. Does not check for failure.
*
* Clip <b>max_rand_len</b> to MAX_DNS_LABEL_SIZE.
**/
@@ -2626,7 +3189,7 @@ crypto_random_hostname(int min_rand_len, int max_rand_len, const char *prefix,
if (min_rand_len > max_rand_len)
min_rand_len = max_rand_len;
- randlen = min_rand_len + crypto_rand_int(max_rand_len - min_rand_len + 1);
+ randlen = crypto_rand_int_range(min_rand_len, max_rand_len+1);
prefixlen = strlen(prefix);
resultlen = prefixlen + strlen(suffix) + randlen + 16;
@@ -2673,388 +3236,6 @@ smartlist_shuffle(smartlist_t *sl)
}
}
-/** Base64 encode <b>srclen</b> bytes of data from <b>src</b>. Write
- * the result into <b>dest</b>, if it will fit within <b>destlen</b>
- * bytes. Return the number of bytes written on success; -1 if
- * destlen is too short, or other failure.
- */
-int
-base64_encode(char *dest, size_t destlen, const char *src, size_t srclen)
-{
- /* FFFF we might want to rewrite this along the lines of base64_decode, if
- * it ever shows up in the profile. */
- EVP_ENCODE_CTX ctx;
- int len, ret;
- tor_assert(srclen < INT_MAX);
-
- /* 48 bytes of input -> 64 bytes of output plus newline.
- Plus one more byte, in case I'm wrong.
- */
- if (destlen < ((srclen/48)+1)*66)
- return -1;
- if (destlen > SIZE_T_CEILING)
- return -1;
-
- EVP_EncodeInit(&ctx);
- EVP_EncodeUpdate(&ctx, (unsigned char*)dest, &len,
- (unsigned char*)src, (int)srclen);
- EVP_EncodeFinal(&ctx, (unsigned char*)(dest+len), &ret);
- ret += len;
- return ret;
-}
-
-/** @{ */
-/** Special values used for the base64_decode_table */
-#define X 255
-#define SP 64
-#define PAD 65
-/** @} */
-/** Internal table mapping byte values to what they represent in base64.
- * Numbers 0..63 are 6-bit integers. SPs are spaces, and should be
- * skipped. Xs are invalid and must not appear in base64. PAD indicates
- * end-of-string. */
-static const uint8_t base64_decode_table[256] = {
- X, X, X, X, X, X, X, X, X, SP, SP, SP, X, SP, X, X, /* */
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- SP, X, X, X, X, X, X, X, X, X, X, 62, X, X, X, 63,
- 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, X, X, X, PAD, X, X,
- X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
- 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, X, X, X, X, X,
- X, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
- 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
- X, X, X, X, X, X, X, X, X, X, X, X, X, X, X, X,
-};
-
-/** Base64 decode <b>srclen</b> bytes of data from <b>src</b>. Write
- * the result into <b>dest</b>, if it will fit within <b>destlen</b>
- * bytes. Return the number of bytes written on success; -1 if
- * destlen is too short, or other failure.
- *
- * NOTE 1: destlen is checked conservatively, as though srclen contained no
- * spaces or padding.
- *
- * NOTE 2: This implementation does not check for the correct number of
- * padding "=" characters at the end of the string, and does not check
- * for internal padding characters.
- */
-int
-base64_decode(char *dest, size_t destlen, const char *src, size_t srclen)
-{
-#ifdef USE_OPENSSL_BASE64
- EVP_ENCODE_CTX ctx;
- int len, ret;
- /* 64 bytes of input -> *up to* 48 bytes of output.
- Plus one more byte, in case I'm wrong.
- */
- if (destlen < ((srclen/64)+1)*49)
- return -1;
- if (destlen > SIZE_T_CEILING)
- return -1;
-
- memset(dest, 0, destlen);
-
- EVP_DecodeInit(&ctx);
- EVP_DecodeUpdate(&ctx, (unsigned char*)dest, &len,
- (unsigned char*)src, srclen);
- EVP_DecodeFinal(&ctx, (unsigned char*)dest, &ret);
- ret += len;
- return ret;
-#else
- const char *eos = src+srclen;
- uint32_t n=0;
- int n_idx=0;
- char *dest_orig = dest;
-
- /* Max number of bits == srclen*6.
- * Number of bytes required to hold all bits == (srclen*6)/8.
- * Yes, we want to round down: anything that hangs over the end of a
- * byte is padding. */
- if (destlen < (srclen*3)/4)
- return -1;
- if (destlen > SIZE_T_CEILING)
- return -1;
-
- memset(dest, 0, destlen);
-
- /* Iterate over all the bytes in src. Each one will add 0 or 6 bits to the
- * value we're decoding. Accumulate bits in <b>n</b>, and whenever we have
- * 24 bits, batch them into 3 bytes and flush those bytes to dest.
- */
- for ( ; src < eos; ++src) {
- unsigned char c = (unsigned char) *src;
- uint8_t v = base64_decode_table[c];
- switch (v) {
- case X:
- /* This character isn't allowed in base64. */
- return -1;
- case SP:
- /* This character is whitespace, and has no effect. */
- continue;
- case PAD:
- /* We've hit an = character: the data is over. */
- goto end_of_loop;
- default:
- /* We have an actual 6-bit value. Append it to the bits in n. */
- n = (n<<6) | v;
- if ((++n_idx) == 4) {
- /* We've accumulated 24 bits in n. Flush them. */
- *dest++ = (n>>16);
- *dest++ = (n>>8) & 0xff;
- *dest++ = (n) & 0xff;
- n_idx = 0;
- n = 0;
- }
- }
- }
- end_of_loop:
- /* If we have leftover bits, we need to cope. */
- switch (n_idx) {
- case 0:
- default:
- /* No leftover bits. We win. */
- break;
- case 1:
- /* 6 leftover bits. That's invalid; we can't form a byte out of that. */
- return -1;
- case 2:
- /* 12 leftover bits: The last 4 are padding and the first 8 are data. */
- *dest++ = n >> 4;
- break;
- case 3:
- /* 18 leftover bits: The last 2 are padding and the first 16 are data. */
- *dest++ = n >> 10;
- *dest++ = n >> 2;
- }
-
- tor_assert((dest-dest_orig) <= (ssize_t)destlen);
- tor_assert((dest-dest_orig) <= INT_MAX);
-
- return (int)(dest-dest_orig);
-#endif
-}
-#undef X
-#undef SP
-#undef PAD
-
-/** Base64 encode DIGEST_LINE bytes from <b>digest</b>, remove the trailing =
- * and newline characters, and store the nul-terminated result in the first
- * BASE64_DIGEST_LEN+1 bytes of <b>d64</b>. */
-int
-digest_to_base64(char *d64, const char *digest)
-{
- char buf[256];
- base64_encode(buf, sizeof(buf), digest, DIGEST_LEN);
- buf[BASE64_DIGEST_LEN] = '\0';
- memcpy(d64, buf, BASE64_DIGEST_LEN+1);
- return 0;
-}
-
-/** Given a base64 encoded, nul-terminated digest in <b>d64</b> (without
- * trailing newline or = characters), decode it and store the result in the
- * first DIGEST_LEN bytes at <b>digest</b>. */
-int
-digest_from_base64(char *digest, const char *d64)
-{
-#ifdef USE_OPENSSL_BASE64
- char buf_in[BASE64_DIGEST_LEN+3];
- char buf[256];
- if (strlen(d64) != BASE64_DIGEST_LEN)
- return -1;
- memcpy(buf_in, d64, BASE64_DIGEST_LEN);
- memcpy(buf_in+BASE64_DIGEST_LEN, "=\n\0", 3);
- if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST_LEN)
- return -1;
- memcpy(digest, buf, DIGEST_LEN);
- return 0;
-#else
- if (base64_decode(digest, DIGEST_LEN, d64, strlen(d64)) == DIGEST_LEN)
- return 0;
- else
- return -1;
-#endif
-}
-
-/** Base64 encode DIGEST256_LINE bytes from <b>digest</b>, remove the
- * trailing = and newline characters, and store the nul-terminated result in
- * the first BASE64_DIGEST256_LEN+1 bytes of <b>d64</b>. */
-int
-digest256_to_base64(char *d64, const char *digest)
-{
- char buf[256];
- base64_encode(buf, sizeof(buf), digest, DIGEST256_LEN);
- buf[BASE64_DIGEST256_LEN] = '\0';
- memcpy(d64, buf, BASE64_DIGEST256_LEN+1);
- return 0;
-}
-
-/** Given a base64 encoded, nul-terminated digest in <b>d64</b> (without
- * trailing newline or = characters), decode it and store the result in the
- * first DIGEST256_LEN bytes at <b>digest</b>. */
-int
-digest256_from_base64(char *digest, const char *d64)
-{
-#ifdef USE_OPENSSL_BASE64
- char buf_in[BASE64_DIGEST256_LEN+3];
- char buf[256];
- if (strlen(d64) != BASE64_DIGEST256_LEN)
- return -1;
- memcpy(buf_in, d64, BASE64_DIGEST256_LEN);
- memcpy(buf_in+BASE64_DIGEST256_LEN, "=\n\0", 3);
- if (base64_decode(buf, sizeof(buf), buf_in, strlen(buf_in)) != DIGEST256_LEN)
- return -1;
- memcpy(digest, buf, DIGEST256_LEN);
- return 0;
-#else
- if (base64_decode(digest, DIGEST256_LEN, d64, strlen(d64)) == DIGEST256_LEN)
- return 0;
- else
- return -1;
-#endif
-}
-
-/** Implements base32 encoding as in RFC 4648. Limitation: Requires
- * that srclen*8 is a multiple of 5.
- */
-void
-base32_encode(char *dest, size_t destlen, const char *src, size_t srclen)
-{
- unsigned int i, v, u;
- size_t nbits = srclen * 8, bit;
-
- tor_assert(srclen < SIZE_T_CEILING/8);
- tor_assert((nbits%5) == 0); /* We need an even multiple of 5 bits. */
- tor_assert((nbits/5)+1 <= destlen); /* We need enough space. */
- tor_assert(destlen < SIZE_T_CEILING);
-
- for (i=0,bit=0; bit < nbits; ++i, bit+=5) {
- /* set v to the 16-bit value starting at src[bits/8], 0-padded. */
- v = ((uint8_t)src[bit/8]) << 8;
- if (bit+5<nbits) v += (uint8_t)src[(bit/8)+1];
- /* set u to the 5-bit value at the bit'th bit of src. */
- u = (v >> (11-(bit%8))) & 0x1F;
- dest[i] = BASE32_CHARS[u];
- }
- dest[i] = '\0';
-}
-
-/** Implements base32 decoding as in RFC 4648. Limitation: Requires
- * that srclen*5 is a multiple of 8. Returns 0 if successful, -1 otherwise.
- */
-int
-base32_decode(char *dest, size_t destlen, const char *src, size_t srclen)
-{
- /* XXXX we might want to rewrite this along the lines of base64_decode, if
- * it ever shows up in the profile. */
- unsigned int i;
- size_t nbits, j, bit;
- char *tmp;
- nbits = srclen * 5;
-
- tor_assert(srclen < SIZE_T_CEILING / 5);
- tor_assert((nbits%8) == 0); /* We need an even multiple of 8 bits. */
- tor_assert((nbits/8) <= destlen); /* We need enough space. */
- tor_assert(destlen < SIZE_T_CEILING);
-
- memset(dest, 0, destlen);
-
- /* Convert base32 encoded chars to the 5-bit values that they represent. */
- tmp = tor_malloc_zero(srclen);
- for (j = 0; j < srclen; ++j) {
- if (src[j] > 0x60 && src[j] < 0x7B) tmp[j] = src[j] - 0x61;
- else if (src[j] > 0x31 && src[j] < 0x38) tmp[j] = src[j] - 0x18;
- else if (src[j] > 0x40 && src[j] < 0x5B) tmp[j] = src[j] - 0x41;
- else {
- log_warn(LD_BUG, "illegal character in base32 encoded string");
- tor_free(tmp);
- return -1;
- }
- }
-
- /* Assemble result byte-wise by applying five possible cases. */
- for (i = 0, bit = 0; bit < nbits; ++i, bit += 8) {
- switch (bit % 40) {
- case 0:
- dest[i] = (((uint8_t)tmp[(bit/5)]) << 3) +
- (((uint8_t)tmp[(bit/5)+1]) >> 2);
- break;
- case 8:
- dest[i] = (((uint8_t)tmp[(bit/5)]) << 6) +
- (((uint8_t)tmp[(bit/5)+1]) << 1) +
- (((uint8_t)tmp[(bit/5)+2]) >> 4);
- break;
- case 16:
- dest[i] = (((uint8_t)tmp[(bit/5)]) << 4) +
- (((uint8_t)tmp[(bit/5)+1]) >> 1);
- break;
- case 24:
- dest[i] = (((uint8_t)tmp[(bit/5)]) << 7) +
- (((uint8_t)tmp[(bit/5)+1]) << 2) +
- (((uint8_t)tmp[(bit/5)+2]) >> 3);
- break;
- case 32:
- dest[i] = (((uint8_t)tmp[(bit/5)]) << 5) +
- ((uint8_t)tmp[(bit/5)+1]);
- break;
- }
- }
-
- memwipe(tmp, 0, srclen);
- tor_free(tmp);
- tmp = NULL;
- return 0;
-}
-
-/** Implement RFC2440-style iterated-salted S2K conversion: convert the
- * <b>secret_len</b>-byte <b>secret</b> into a <b>key_out_len</b> byte
- * <b>key_out</b>. As in RFC2440, the first 8 bytes of s2k_specifier
- * are a salt; the 9th byte describes how much iteration to do.
- * Does not support <b>key_out_len</b> &gt; DIGEST_LEN.
- */
-void
-secret_to_key(char *key_out, size_t key_out_len, const char *secret,
- size_t secret_len, const char *s2k_specifier)
-{
- crypto_digest_t *d;
- uint8_t c;
- size_t count, tmplen;
- char *tmp;
- tor_assert(key_out_len < SIZE_T_CEILING);
-
-#define EXPBIAS 6
- c = s2k_specifier[8];
- count = ((uint32_t)16 + (c & 15)) << ((c >> 4) + EXPBIAS);
-#undef EXPBIAS
-
- tor_assert(key_out_len <= DIGEST_LEN);
-
- d = crypto_digest_new();
- tmplen = 8+secret_len;
- tmp = tor_malloc(tmplen);
- memcpy(tmp,s2k_specifier,8);
- memcpy(tmp+8,secret,secret_len);
- secret_len += 8;
- while (count) {
- if (count >= secret_len) {
- crypto_digest_add_bytes(d, tmp, secret_len);
- count -= secret_len;
- } else {
- crypto_digest_add_bytes(d, tmp, count);
- count = 0;
- }
- }
- crypto_digest_get_digest(d, key_out, key_out_len);
- memwipe(tmp, 0, tmplen);
- tor_free(tmp);
- crypto_digest_free(d);
-}
-
/**
* Destroy the <b>sz</b> bytes of data stored at <b>mem</b>, setting them to
* the value <b>byte</b>.
@@ -3089,13 +3270,32 @@ memwipe(void *mem, uint8_t byte, size_t sz)
* have this function call "memset". A smart compiler could inline it, then
* eliminate dead memsets, and declare itself to be clever. */
+#if defined(SecureZeroMemory) || defined(HAVE_SECUREZEROMEMORY)
+ /* Here's what you do on windows. */
+ SecureZeroMemory(mem,sz);
+#elif defined(HAVE_RTLSECUREZEROMEMORY)
+ RtlSecureZeroMemory(mem,sz);
+#elif defined(HAVE_EXPLICIT_BZERO)
+ /* The BSDs provide this. */
+ explicit_bzero(mem, sz);
+#elif defined(HAVE_MEMSET_S)
+ /* This is in the C99 standard. */
+ memset_s(mem, sz, 0, sz);
+#else
/* This is a slow and ugly function from OpenSSL that fills 'mem' with junk
* based on the pointer value, then uses that junk to update a global
* variable. It's an elaborate ruse to trick the compiler into not
* optimizing out the "wipe this memory" code. Read it if you like zany
* programming tricks! In later versions of Tor, we should look for better
- * not-optimized-out memory wiping stuff. */
+ * not-optimized-out memory wiping stuff...
+ *
+ * ...or maybe not. In practice, there are pure-asm implementations of
+ * OPENSSL_cleanse() on most platforms, which ought to do the job.
+ **/
+
OPENSSL_cleanse(mem, sz);
+#endif
+
/* Just in case some caller of memwipe() is relying on getting a buffer
* filled with a particular value, fill the buffer.
*
@@ -3108,13 +3308,12 @@ memwipe(void *mem, uint8_t byte, size_t sz)
memset(mem, byte, sz);
}
-#ifdef TOR_IS_MULTITHREADED
-
#ifndef OPENSSL_THREADS
#error OpenSSL has been built without thread support. Tor requires an \
OpenSSL library with thread support enabled.
#endif
+#ifndef NEW_THREAD_API
/** Helper: OpenSSL uses this callback to manipulate mutexes. */
static void
openssl_locking_cb_(int mode, int n, const char *file, int line)
@@ -3132,6 +3331,17 @@ openssl_locking_cb_(int mode, int n, const char *file, int line)
tor_mutex_release(openssl_mutexes_[n]);
}
+static void
+tor_set_openssl_thread_id(CRYPTO_THREADID *threadid)
+{
+ CRYPTO_THREADID_set_numeric(threadid, tor_get_thread_id());
+}
+#endif
+
+#if 0
+/* This code is disabled, because OpenSSL never actually uses these callbacks.
+ */
+
/** OpenSSL helper type: wraps a Tor mutex so that OpenSSL can use it
* as a lock. */
struct CRYPTO_dynlock_value {
@@ -3176,41 +3386,42 @@ openssl_dynlock_destroy_cb_(struct CRYPTO_dynlock_value *v,
tor_mutex_free(v->lock);
tor_free(v);
}
+#endif
/** @{ */
/** Helper: Construct mutexes, and set callbacks to help OpenSSL handle being
- * multithreaded. */
+ * multithreaded. Returns 0. */
static int
setup_openssl_threading(void)
{
+#ifndef NEW_THREAD_API
int i;
int n = CRYPTO_num_locks();
n_openssl_mutexes_ = n;
- openssl_mutexes_ = tor_malloc(n*sizeof(tor_mutex_t *));
+ openssl_mutexes_ = tor_calloc(n, sizeof(tor_mutex_t *));
for (i=0; i < n; ++i)
openssl_mutexes_[i] = tor_mutex_new();
CRYPTO_set_locking_callback(openssl_locking_cb_);
- CRYPTO_set_id_callback(tor_get_thread_id);
+ CRYPTO_THREADID_set_callback(tor_set_openssl_thread_id);
+#endif
+#if 0
CRYPTO_set_dynlock_create_callback(openssl_dynlock_create_cb_);
CRYPTO_set_dynlock_lock_callback(openssl_dynlock_lock_cb_);
CRYPTO_set_dynlock_destroy_callback(openssl_dynlock_destroy_cb_);
+#endif
return 0;
}
-#else
-static int
-setup_openssl_threading(void)
-{
- return 0;
-}
-#endif
-/** Uninitialize the crypto library. Return 0 on success, -1 on failure.
+/** Uninitialize the crypto library. Return 0 on success. Does not detect
+ * failure.
*/
int
crypto_global_cleanup(void)
{
EVP_cleanup();
- ERR_remove_state(0);
+#ifndef NEW_THREAD_API
+ ERR_remove_thread_state(NULL);
+#endif
ERR_free_strings();
if (dh_param_p)
@@ -3226,7 +3437,8 @@ crypto_global_cleanup(void)
CONF_modules_unload(1);
CRYPTO_cleanup_all_ex_data();
-#ifdef TOR_IS_MULTITHREADED
+
+#ifndef NEW_THREAD_API
if (n_openssl_mutexes_) {
int n = n_openssl_mutexes_;
tor_mutex_t **ms = openssl_mutexes_;
@@ -3239,6 +3451,7 @@ crypto_global_cleanup(void)
tor_free(ms);
}
#endif
+
tor_free(crypto_openssl_version_str);
tor_free(crypto_openssl_header_version_str);
return 0;
@@ -3246,3 +3459,15 @@ crypto_global_cleanup(void)
/** @} */
+#ifdef USE_DMALLOC
+/** Tell the crypto library to use Tor's allocation functions rather than
+ * calling libc's allocation functions directly. Return 0 on success, -1
+ * on failure. */
+int
+crypto_use_tor_alloc_functions(void)
+{
+ int r = CRYPTO_set_mem_ex_functions(tor_malloc_, tor_realloc_, tor_free_);
+ return r ? 0 : -1;
+}
+#endif
+