summaryrefslogtreecommitdiff
path: root/src/common/crypto.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/crypto.c')
-rw-r--r--src/common/crypto.c167
1 files changed, 126 insertions, 41 deletions
diff --git a/src/common/crypto.c b/src/common/crypto.c
index ed8d457d45..672ab2d55f 100644
--- a/src/common/crypto.c
+++ b/src/common/crypto.c
@@ -1,7 +1,7 @@
/* Copyright (c) 2001, Matej Pfajfar.
* Copyright (c) 2001-2004, Roger Dingledine.
* Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
- * Copyright (c) 2007-2012, The Tor Project, Inc. */
+ * Copyright (c) 2007-2013, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/**
@@ -1458,7 +1458,7 @@ crypto_digest256(char *digest, const char *m, size_t len,
int
crypto_digest_all(digests_t *ds_out, const char *m, size_t len)
{
- digest_algorithm_t i;
+ int i;
tor_assert(ds_out);
memset(ds_out, 0, sizeof(*ds_out));
if (crypto_digest(ds_out->d[DIGEST_SHA1], m, len) < 0)
@@ -2036,6 +2036,16 @@ crypto_dh_new(int dh_type)
return NULL;
}
+/** Return a copy of <b>dh</b>, sharing its internal state. */
+crypto_dh_t *
+crypto_dh_dup(const crypto_dh_t *dh)
+{
+ crypto_dh_t *dh_new = tor_malloc_zero(sizeof(crypto_dh_t));
+ dh_new->dh = dh->dh;
+ DH_up_ref(dh->dh);
+ return dh_new;
+}
+
/** Return the length of the DH key in <b>dh</b>, in bytes.
*/
int
@@ -2174,8 +2184,8 @@ crypto_dh_compute_secret(int severity, crypto_dh_t *dh,
goto error;
}
secret_len = result;
- if (crypto_expand_key_material(secret_tmp, secret_len,
- secret_out, secret_bytes_out)<0)
+ if (crypto_expand_key_material_TAP((uint8_t*)secret_tmp, secret_len,
+ (uint8_t*)secret_out, secret_bytes_out)<0)
goto error;
secret_len = secret_bytes_out;
@@ -2201,15 +2211,18 @@ crypto_dh_compute_secret(int severity, crypto_dh_t *dh,
* <b>key_out</b> by taking the first <b>key_out_len</b> bytes of
* H(K | [00]) | H(K | [01]) | ....
*
+ * This is the key expansion algorithm used in the "TAP" circuit extension
+ * mechanism; it shouldn't be used for new protocols.
+ *
* Return 0 on success, -1 on failure.
*/
int
-crypto_expand_key_material(const char *key_in, size_t key_in_len,
- char *key_out, size_t key_out_len)
+crypto_expand_key_material_TAP(const uint8_t *key_in, size_t key_in_len,
+ uint8_t *key_out, size_t key_out_len)
{
int i;
- char *cp, *tmp = tor_malloc(key_in_len+1);
- char digest[DIGEST_LEN];
+ uint8_t *cp, *tmp = tor_malloc(key_in_len+1);
+ uint8_t digest[DIGEST_LEN];
/* If we try to get more than this amount of key data, we'll repeat blocks.*/
tor_assert(key_out_len <= DIGEST_LEN*256);
@@ -2218,7 +2231,7 @@ crypto_expand_key_material(const char *key_in, size_t key_in_len,
for (cp = key_out, i=0; cp < key_out+key_out_len;
++i, cp += DIGEST_LEN) {
tmp[key_in_len] = i;
- if (crypto_digest(digest, tmp, key_in_len+1))
+ if (crypto_digest((char*)digest, (const char *)tmp, key_in_len+1))
goto err;
memcpy(cp, digest, MIN(DIGEST_LEN, key_out_len-(cp-key_out)));
}
@@ -2234,6 +2247,65 @@ crypto_expand_key_material(const char *key_in, size_t key_in_len,
return -1;
}
+/** Expand some secret key material according to RFC5869, using SHA256 as the
+ * underlying hash. The <b>key_in_len</b> bytes at <b>key_in</b> are the
+ * secret key material; the <b>salt_in_len</b> bytes at <b>salt_in</b> and the
+ * <b>info_in_len</b> bytes in <b>info_in_len</b> are the algorithm's "salt"
+ * and "info" parameters respectively. On success, write <b>key_out_len</b>
+ * bytes to <b>key_out</b> and return 0. On failure, return -1.
+ */
+int
+crypto_expand_key_material_rfc5869_sha256(
+ const uint8_t *key_in, size_t key_in_len,
+ const uint8_t *salt_in, size_t salt_in_len,
+ const uint8_t *info_in, size_t info_in_len,
+ uint8_t *key_out, size_t key_out_len)
+{
+ uint8_t prk[DIGEST256_LEN];
+ uint8_t tmp[DIGEST256_LEN + 128 + 1];
+ uint8_t mac[DIGEST256_LEN];
+ int i;
+ uint8_t *outp;
+ size_t tmp_len;
+
+ crypto_hmac_sha256((char*)prk,
+ (const char*)salt_in, salt_in_len,
+ (const char*)key_in, key_in_len);
+
+ /* If we try to get more than this amount of key data, we'll repeat blocks.*/
+ tor_assert(key_out_len <= DIGEST256_LEN * 256);
+ tor_assert(info_in_len <= 128);
+ memset(tmp, 0, sizeof(tmp));
+ outp = key_out;
+ i = 1;
+
+ while (key_out_len) {
+ size_t n;
+ if (i > 1) {
+ memcpy(tmp, mac, DIGEST256_LEN);
+ memcpy(tmp+DIGEST256_LEN, info_in, info_in_len);
+ tmp[DIGEST256_LEN+info_in_len] = i;
+ tmp_len = DIGEST256_LEN + info_in_len + 1;
+ } else {
+ memcpy(tmp, info_in, info_in_len);
+ tmp[info_in_len] = i;
+ tmp_len = info_in_len + 1;
+ }
+ crypto_hmac_sha256((char*)mac,
+ (const char*)prk, DIGEST256_LEN,
+ (const char*)tmp, tmp_len);
+ n = key_out_len < DIGEST256_LEN ? key_out_len : DIGEST256_LEN;
+ memcpy(outp, mac, n);
+ key_out_len -= n;
+ outp += n;
+ ++i;
+ }
+
+ memwipe(tmp, 0, sizeof(tmp));
+ memwipe(mac, 0, sizeof(mac));
+ return 0;
+}
+
/** Free a DH key exchange object.
*/
void
@@ -2272,22 +2344,16 @@ seed_weak_rng(void)
tor_init_weak_random(seed);
}
-/** Seed OpenSSL's random number generator with bytes from the operating
- * system. <b>startup</b> should be true iff we have just started Tor and
- * have not yet allocated a bunch of fds. Return 0 on success, -1 on failure.
+/** Try to get <b>out_len</b> bytes of the strongest entropy we can generate,
+ * storing it into <b>out</b>.
*/
int
-crypto_seed_rng(int startup)
+crypto_strongest_rand(uint8_t *out, size_t out_len)
{
- int rand_poll_status = 0;
-
- /* local variables */
#ifdef _WIN32
- unsigned char buf[ADD_ENTROPY];
static int provider_set = 0;
static HCRYPTPROV provider;
#else
- char buf[ADD_ENTROPY];
static const char *filenames[] = {
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
};
@@ -2295,58 +2361,77 @@ crypto_seed_rng(int startup)
size_t n;
#endif
- /* OpenSSL has a RAND_poll function that knows about more kinds of
- * entropy than we do. We'll try calling that, *and* calling our own entropy
- * functions. If one succeeds, we'll accept the RNG as seeded. */
- if (startup || RAND_POLL_IS_SAFE) {
- rand_poll_status = RAND_poll();
- if (rand_poll_status == 0)
- log_warn(LD_CRYPTO, "RAND_poll() failed.");
- }
-
#ifdef _WIN32
if (!provider_set) {
if (!CryptAcquireContext(&provider, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT)) {
if ((unsigned long)GetLastError() != (unsigned long)NTE_BAD_KEYSET) {
log_warn(LD_CRYPTO, "Can't get CryptoAPI provider [1]");
- return rand_poll_status ? 0 : -1;
+ return -1;
}
}
provider_set = 1;
}
- if (!CryptGenRandom(provider, sizeof(buf), buf)) {
+ if (!CryptGenRandom(provider, out_len, out)) {
log_warn(LD_CRYPTO, "Can't get entropy from CryptoAPI.");
- return rand_poll_status ? 0 : -1;
+ return -1;
}
- RAND_seed(buf, sizeof(buf));
- memwipe(buf, 0, sizeof(buf));
- seed_weak_rng();
+
return 0;
#else
for (i = 0; filenames[i]; ++i) {
fd = open(filenames[i], O_RDONLY, 0);
if (fd<0) continue;
- log_info(LD_CRYPTO, "Seeding RNG from \"%s\"", filenames[i]);
- n = read_all(fd, buf, sizeof(buf), 0);
+ log_info(LD_CRYPTO, "Reading entropy from \"%s\"", filenames[i]);
+ n = read_all(fd, (char*)out, out_len, 0);
close(fd);
- if (n != sizeof(buf)) {
+ if (n != out_len) {
log_warn(LD_CRYPTO,
"Error reading from entropy source (read only %lu bytes).",
(unsigned long)n);
return -1;
}
- RAND_seed(buf, (int)sizeof(buf));
- memwipe(buf, 0, sizeof(buf));
- seed_weak_rng();
+
return 0;
}
- log_warn(LD_CRYPTO, "Cannot seed RNG -- no entropy source found.");
- return rand_poll_status ? 0 : -1;
+ log_warn(LD_CRYPTO, "Cannot get strong entropy: no entropy source found.");
+ return -1;
#endif
}
+/** Seed OpenSSL's random number generator with bytes from the operating
+ * system. <b>startup</b> should be true iff we have just started Tor and
+ * have not yet allocated a bunch of fds. Return 0 on success, -1 on failure.
+ */
+int
+crypto_seed_rng(int startup)
+{
+ int rand_poll_ok = 0, load_entropy_ok = 0;
+ uint8_t buf[ADD_ENTROPY];
+
+ /* OpenSSL has a RAND_poll function that knows about more kinds of
+ * entropy than we do. We'll try calling that, *and* calling our own entropy
+ * functions. If one succeeds, we'll accept the RNG as seeded. */
+ if (startup || RAND_POLL_IS_SAFE) {
+ rand_poll_ok = RAND_poll();
+ if (rand_poll_ok == 0)
+ log_warn(LD_CRYPTO, "RAND_poll() failed.");
+ }
+
+ load_entropy_ok = !crypto_strongest_rand(buf, sizeof(buf));
+ if (load_entropy_ok) {
+ RAND_seed(buf, sizeof(buf));
+ }
+
+ memwipe(buf, 0, sizeof(buf));
+ seed_weak_rng();
+ if (rand_poll_ok || load_entropy_ok)
+ return 0;
+ else
+ return -1;
+}
+
/** Write <b>n</b> bytes of strong random data to <b>to</b>. Return 0 on
* success, -1 on failure.
*/