summaryrefslogtreecommitdiff
path: root/src/common/crypto.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/crypto.c')
-rw-r--r--src/common/crypto.c198
1 files changed, 176 insertions, 22 deletions
diff --git a/src/common/crypto.c b/src/common/crypto.c
index a591d92057..12a57dfa5e 100644
--- a/src/common/crypto.c
+++ b/src/common/crypto.c
@@ -217,7 +217,8 @@ crypto_pk_env_t *crypto_new_pk_env(void)
return _crypto_new_pk_env_rsa(rsa);
}
-/*
+/* Release a reference to an asymmetric key; when all the references
+ * are released, free the key.
*/
void crypto_free_pk_env(crypto_pk_env_t *env)
{
@@ -232,9 +233,9 @@ void crypto_free_pk_env(crypto_pk_env_t *env)
free(env);
}
-/* Create a new crypto_cipher_env_t for a given onion cipher type, key,
- * iv, and encryption flag (1=encrypt, 0=decrypt). Return the crypto object
- * on success; NULL on failure.
+/* Create a new symmetric cipher for a given key and encryption flag
+ * (1=encrypt, 0=decrypt). Return the crypto object on success; NULL
+ * on failure.
*/
crypto_cipher_env_t *
crypto_create_init_cipher(const char *key, int encrypt_mode)
@@ -267,6 +268,8 @@ crypto_create_init_cipher(const char *key, int encrypt_mode)
return NULL;
}
+/* Allocate and return a new symmetric cipher.
+ */
crypto_cipher_env_t *crypto_new_cipher_env()
{
crypto_cipher_env_t *env;
@@ -276,6 +279,8 @@ crypto_cipher_env_t *crypto_new_cipher_env()
return env;
}
+/* Free a symmetric cipher.
+ */
void crypto_free_cipher_env(crypto_cipher_env_t *env)
{
tor_assert(env);
@@ -286,6 +291,10 @@ void crypto_free_cipher_env(crypto_cipher_env_t *env)
}
/* public key crypto */
+
+/* Generate a new public/private keypair in 'env'. Return 0 on
+ * success, -1 on failure.
+ */
int crypto_pk_generate_key(crypto_pk_env_t *env)
{
tor_assert(env);
@@ -301,6 +310,8 @@ int crypto_pk_generate_key(crypto_pk_env_t *env)
return 0;
}
+/* Read a PEM-encoded private key from 'src' into 'env'.
+ */
static int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env,
FILE *src)
{
@@ -317,6 +328,9 @@ static int crypto_pk_read_private_key_from_file(crypto_pk_env_t *env,
return 0;
}
+/* Read a PEM-encoded private key from the file named by 'keyfile' into 'env'.
+ * Return 0 on success, -1 on failure.
+ */
int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *keyfile)
{
FILE *f_pr;
@@ -347,6 +361,10 @@ int crypto_pk_read_private_key_from_filename(crypto_pk_env_t *env, const char *k
return 0;
}
+/* PEM-encode the public key portion of 'env' and write it to a newly
+ * allocated string. On success, set *dest to the new string, *len to
+ * the string's length, and return 0. On failure, return -1.
+ */
int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int *len) {
BUF_MEM *buf;
BIO *b;
@@ -376,6 +394,10 @@ int crypto_pk_write_public_key_to_string(crypto_pk_env_t *env, char **dest, int
return 0;
}
+/* Read a PEM-encoded public key from the first 'len' characters of
+ * 'src', and store the result in 'env'. Return 0 on success, -1 on
+ * failure.
+ */
int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src, int len) {
BIO *b;
@@ -397,6 +419,9 @@ int crypto_pk_read_public_key_from_string(crypto_pk_env_t *env, const char *src,
return 0;
}
+/* Write the private key from 'env' into the file named by 'fname',
+ * PEM-encoded. Return 0 on success, -1 on failure.
+ */
int
crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
const char *fname)
@@ -427,6 +452,8 @@ crypto_pk_write_private_key_to_filename(crypto_pk_env_t *env,
return r;
}
+/* Return true iff env has a good key.
+ */
int crypto_pk_check_key(crypto_pk_env_t *env)
{
int r;
@@ -438,6 +465,9 @@ int crypto_pk_check_key(crypto_pk_env_t *env)
return r;
}
+/* Compare the public-key components of a and b. Return -1 if a<b, 0
+ * if a==b, and 1 if a>b.
+ */
int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
int result;
@@ -455,7 +485,7 @@ int crypto_pk_cmp_keys(crypto_pk_env_t *a, crypto_pk_env_t *b) {
return BN_cmp((a->key)->e, (b->key)->e);
}
-/* return the size of the public key modulus in 'env', in bytes. */
+/* Return the size of the public key modulus in 'env', in bytes. */
int crypto_pk_keysize(crypto_pk_env_t *env)
{
tor_assert(env && env->key);
@@ -463,6 +493,8 @@ int crypto_pk_keysize(crypto_pk_env_t *env)
return RSA_size(env->key);
}
+/* Increase the reference count of 'env'.
+ */
crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
tor_assert(env && env->key);
@@ -470,6 +502,11 @@ crypto_pk_env_t *crypto_pk_dup_key(crypto_pk_env_t *env) {
return env;
}
+/* Encrypt 'fromlen' bytes from 'from' with the public key in 'env',
+ * using the padding method 'padding'. On success, write the result
+ * to 'to', and return the number of bytes written. On failure,
+ * return -1.
+ */
int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
{
int r;
@@ -477,11 +514,18 @@ int crypto_pk_public_encrypt(crypto_pk_env_t *env, const unsigned char *from, in
r = RSA_public_encrypt(fromlen, (unsigned char*)from, to, env->key,
crypto_get_rsa_padding(padding));
- if (r<0)
+ if (r<0) {
crypto_log_errors(LOG_WARN, "performing RSA encryption");
+ return -1;
+ }
return r;
}
+/* Decrypt 'fromlen' bytes from 'from' with the private key in 'env',
+ * using the padding method 'padding'. On success, write the result
+ * to 'to', and return the number of bytes written. On failure,
+ * return -1.
+ */
int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to, int padding)
{
int r;
@@ -492,11 +536,18 @@ int crypto_pk_private_decrypt(crypto_pk_env_t *env, const unsigned char *from, i
r = RSA_private_decrypt(fromlen, (unsigned char*)from, to, env->key,
crypto_get_rsa_padding(padding));
- if (r<0)
+ if (r<0) {
crypto_log_errors(LOG_WARN, "performing RSA decryption");
+ return -1;
+ }
return r;
}
+/* Check a 'fromlen' bytes signature from 'from' with the public key
+ * in 'env', using PKCS1 padding. On success, write the signed data
+ * to 'to', and return the number of bytes written. On failure,
+ * return -1.
+ */
int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{
int r;
@@ -508,6 +559,11 @@ int crypto_pk_public_checksig(crypto_pk_env_t *env, const unsigned char *from, i
return r;
}
+/* Sign 'fromlen' bytes of data from 'from' with the private key in
+ * 'env', using PKCS1 padding. On success, write the signature to
+ * 'to', and return the number of bytes written. On failure, return
+ * -1.
+ */
int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{
int r;
@@ -522,7 +578,9 @@ int crypto_pk_private_sign(crypto_pk_env_t *env, const unsigned char *from, int
return r;
}
-/* Return 0 if sig is a correct signature for SHA1(data). Else return -1.
+/* Check a siglen-byte long signature at 'sig' against 'datalen' bytes
+ * of data at 'data', using the public key in 'env'. Return 0 if 'sig'
+ * is a correct signature for SHA1(data). Else return -1.
*/
int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *data, int datalen, const unsigned char *sig, int siglen)
{
@@ -549,13 +607,15 @@ int crypto_pk_public_checksig_digest(crypto_pk_env_t *env, const unsigned char *
return 0;
}
-/* Fill 'to' with a signature of SHA1(from).
+/* Compute a SHA1 digest of 'fromlen' bytes of data stored at 'from';
+ * sign the data with the private key in 'env', and store it in 'to'.
+ * Return the number of bytes written on success, and -1 on failure.
*/
int crypto_pk_private_sign_digest(crypto_pk_env_t *env, const unsigned char *from, int fromlen, unsigned char *to)
{
char digest[DIGEST_LEN];
if (crypto_digest(from,fromlen,digest)<0)
- return 0;
+ return -1;
return crypto_pk_private_sign(env,digest,DIGEST_LEN,to);
}
@@ -684,8 +744,8 @@ int crypto_pk_private_hybrid_decrypt(crypto_pk_env_t *env,
return -1;
}
-/* Encode the public portion of 'pk' into 'dest'. Return -1 on error,
- * or the number of characters used on success.
+/* ASN.1-encode the public portion of 'pk' into 'dest'. Return -1 on
+ * error, or the number of characters used on success.
*/
int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
{
@@ -709,7 +769,8 @@ int crypto_pk_asn1_encode(crypto_pk_env_t *pk, char *dest, int dest_len)
return len;
}
-/* Decode an ASN1-encoded public key from str.
+/* Decode an ASN.1-encoded public key from str; return the result on
+ * success and -1 on failure.
*/
crypto_pk_env_t *crypto_pk_asn1_decode(const char *str, int len)
{
@@ -789,6 +850,8 @@ crypto_pk_get_fingerprint(crypto_pk_env_t *pk, char *fp_out)
return 0;
}
+/* Return true iff 's' is in the correct format for a fingerprint.
+ */
int
crypto_pk_check_fingerprint_syntax(const char *s)
{
@@ -805,6 +868,10 @@ crypto_pk_check_fingerprint_syntax(const char *s)
}
/* symmetric crypto */
+
+/* Generate a new random key for the symmetric cipher in 'env'.
+ * Return 0 on success, -1 on failure. Does not initialize the cipher.
+ */
int crypto_cipher_generate_key(crypto_cipher_env_t *env)
{
tor_assert(env);
@@ -812,6 +879,9 @@ int crypto_cipher_generate_key(crypto_cipher_env_t *env)
return crypto_rand(CIPHER_KEY_LEN, env->key);
}
+/* Set the symmetric key for the cipehr in 'env' to CIPHER_KEY_LEN
+ * bytes from 'key'. Does not initialize the cipher.
+ */
int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key)
{
tor_assert(env && key);
@@ -824,11 +894,15 @@ int crypto_cipher_set_key(crypto_cipher_env_t *env, const unsigned char *key)
return 0;
}
+/* Return a pointer to the key set for the cipher in 'env'.
+ */
const unsigned char *crypto_cipher_get_key(crypto_cipher_env_t *env)
{
return env->key;
}
+/* Initialize the cipher in 'env' for encryption.
+ */
int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
{
tor_assert(env);
@@ -837,6 +911,8 @@ int crypto_cipher_encrypt_init_cipher(crypto_cipher_env_t *env)
return 0;
}
+/* Initialize the cipher in 'env' for decryption.
+ */
int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
{
tor_assert(env);
@@ -845,6 +921,10 @@ int crypto_cipher_decrypt_init_cipher(crypto_cipher_env_t *env)
return 0;
}
+/* Encrypt 'fromlen' bytes from 'from' using the cipher 'env'; on
+ * success, store the result to 'to' and return 0. On failure, return
+ * -1.
+ */
int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
{
tor_assert(env && env->cipher && from && fromlen && to);
@@ -853,6 +933,10 @@ int crypto_cipher_encrypt(crypto_cipher_env_t *env, const unsigned char *from, u
return 0;
}
+/* Decrypt 'fromlen' bytes from 'from' using the cipher 'env'; on
+ * success, store the result to 'to' and return 0. On failure, return
+ * -1.
+ */
int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, unsigned int fromlen, unsigned char *to)
{
tor_assert(env && from && to);
@@ -861,12 +945,16 @@ int crypto_cipher_decrypt(crypto_cipher_env_t *env, const unsigned char *from, u
return 0;
}
+/* Move the position of the cipher stream backwards by 'delta' bytes.
+ */
int
crypto_cipher_rewind(crypto_cipher_env_t *env, long delta)
{
return crypto_cipher_advance(env, -delta);
}
+/* Move the position of the cipher stream forwards by 'delta' bytes.
+ */
int
crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
{
@@ -875,6 +963,10 @@ crypto_cipher_advance(crypto_cipher_env_t *env, long delta)
}
/* SHA-1 */
+
+/* Compute the SHA1 digest of 'len' bytes in data stored in 'm'. Write the
+ * DIGEST_LEN byte result into 'digest'.
+ */
int crypto_digest(const unsigned char *m, int len, unsigned char *digest)
{
tor_assert(m && digest);
@@ -885,6 +977,8 @@ struct crypto_digest_env_t {
SHA_CTX d;
};
+/* Allocate and return a new digest object.
+ */
crypto_digest_env_t *
crypto_new_digest_env(void)
{
@@ -894,11 +988,15 @@ crypto_new_digest_env(void)
return r;
}
+/* Deallocate a digest object.
+ */
void
crypto_free_digest_env(crypto_digest_env_t *digest) {
tor_free(digest);
}
+/* Add 'len' bytes from 'data' to the digest object.
+ */
void
crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
size_t len)
@@ -908,6 +1006,10 @@ crypto_digest_add_bytes(crypto_digest_env_t *digest, const char *data,
SHA1_Update(&digest->d, (void*)data, len);
}
+/* Compute the hash of the data that has been passed to the digest object;
+ * write the first out_len bytes of the result to 'out'. 'out_len' must be
+ * <= DIGEST_LEN.
+ */
void crypto_digest_get_digest(crypto_digest_env_t *digest,
char *out, size_t out_len)
{
@@ -918,6 +1020,8 @@ void crypto_digest_get_digest(crypto_digest_env_t *digest,
memcpy(out, r, out_len);
}
+/* Allocate and return a new digest object with the same state as 'digest'
+ */
crypto_digest_env_t *
crypto_digest_dup(const crypto_digest_env_t *digest)
{
@@ -928,6 +1032,9 @@ crypto_digest_dup(const crypto_digest_env_t *digest)
return r;
}
+/* Replace the state of the digest object 'into' with the state of the digest
+ * object 'from'.
+ */
void
crypto_digest_assign(crypto_digest_env_t *into,
const crypto_digest_env_t *from)
@@ -937,9 +1044,14 @@ crypto_digest_assign(crypto_digest_env_t *into,
}
/* DH */
+
+/* Shared P parameter for our DH key exchanged */
static BIGNUM *dh_param_p = NULL;
+/* Shared G parameter for our DH key exchanges */
static BIGNUM *dh_param_g = NULL;
+/* Initialize dh_param_p and dh_param_g if they are not already
+ * set. */
static void init_dh_param() {
BIGNUM *p, *g;
int r;
@@ -985,6 +1097,8 @@ static void init_dh_param() {
dh_param_g = g;
}
+/* Allocate and return a new DH object for a key echange.
+ */
crypto_dh_env_t *crypto_dh_new()
{
crypto_dh_env_t *res = NULL;
@@ -1011,11 +1125,18 @@ crypto_dh_env_t *crypto_dh_new()
if (res) free(res);
return NULL;
}
+
+/* Return the length of the DH key in 'dh', in bytes.
+ */
int crypto_dh_get_bytes(crypto_dh_env_t *dh)
{
tor_assert(dh);
return DH_size(dh->dh);
}
+
+/* Generate <x,g^x> for our part of the key exchange. Return 0 on
+ * success, -1 on failure.
+ */
int crypto_dh_generate_public(crypto_dh_env_t *dh)
{
if (!DH_generate_key(dh->dh)) {
@@ -1024,6 +1145,11 @@ int crypto_dh_generate_public(crypto_dh_env_t *dh)
}
return 0;
}
+
+/* Generate g^x as necessary, and write the g^x for the key exchange
+ * as a pubkey_len-byte value into 'pubkey'. Return 0 on success, -1
+ * on failure. pubkey_len must be >= DH_BYTES.
+ */
int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
{
int bytes;
@@ -1046,6 +1172,15 @@ int crypto_dh_get_public(crypto_dh_env_t *dh, char *pubkey, int pubkey_len)
#undef MIN
#define MIN(a,b) ((a)<(b)?(a):(b))
+/* Given a DH key exchange object, and our peer's value of g^y (as a
+ * pubkey_len byte value in 'pubkey') generate 'secret_bytes_out'
+ * bytes of shared key material and write them to 'secret_out'.
+ *
+ * (We generate key material by computing
+ * SHA11( g^xy || "\x00" ) || SHA1( g^xy || "\x01" ) || ...
+ * where || is concatenation.)
+ *
+ */
int crypto_dh_compute_secret(crypto_dh_env_t *dh,
const char *pubkey, int pubkey_len,
char *secret_out, int secret_bytes_out)
@@ -1081,6 +1216,8 @@ int crypto_dh_compute_secret(crypto_dh_env_t *dh,
tor_free(secret_tmp);
return secret_len;
}
+/* Free a DH key exchange object.
+ */
void crypto_dh_free(crypto_dh_env_t *dh)
{
tor_assert(dh && dh->dh);
@@ -1089,9 +1226,13 @@ void crypto_dh_free(crypto_dh_env_t *dh)
}
/* random numbers */
-#ifdef MS_WINDOWS
+
+/* Seed OpenSSL's random number generator with DIGEST_LEN bytes from the
+ * operating system.
+ */
int crypto_seed_rng()
{
+#ifdef MS_WINDOWS
static int provider_set = 0;
static HCRYPTPROV provider;
char buf[DIGEST_LEN+1];
@@ -1120,10 +1261,7 @@ int crypto_seed_rng()
* good measure. */
RAND_screen();
return 0;
-}
#else
-int crypto_seed_rng()
-{
static char *filenames[] = {
"/dev/srandom", "/dev/urandom", "/dev/random", NULL
};
@@ -1147,9 +1285,12 @@ int crypto_seed_rng()
log_fn(LOG_WARN, "Cannot seed RNG -- no entropy source found.");
return -1;
-}
#endif
+}
+/* Write n bytes of strong random data to 'to'. Return 0 on success, -1 on
+ * failure.
+ */
int crypto_rand(unsigned int n, unsigned char *to)
{
int r;
@@ -1157,9 +1298,12 @@ int crypto_rand(unsigned int n, unsigned char *to)
r = RAND_bytes(to, n);
if (r == 0)
crypto_log_errors(LOG_WARN, "generating random data");
- return (r != 1);
+ return (r == 1) ? 0 : -1;
}
+/* Write n bytes of pseudorandom data to 'to'. Return 0 on success, -1
+ * on failure.
+ */
void crypto_pseudo_rand(unsigned int n, unsigned char *to)
{
tor_assert(to);
@@ -1170,7 +1314,8 @@ void crypto_pseudo_rand(unsigned int n, unsigned char *to)
}
}
-/* return a pseudo random number between 0 and max-1 */
+/* Return a pseudorandom integer, choosen uniformly from the values
+ * between 0 and max-1 */
int crypto_pseudo_rand_int(unsigned int max) {
unsigned int val;
unsigned int cutoff;
@@ -1189,6 +1334,10 @@ int crypto_pseudo_rand_int(unsigned int max) {
}
}
+/* Base-64 encode 'srclen' bytes of data from 'src'. Write the result
+ * into 'dest', if it will fit within 'destlen' bytes. Return the
+ * number of bytes written on success; -1 on failure.
+ */
int
base64_encode(char *dest, int destlen, const char *src, int srclen)
{
@@ -1207,6 +1356,11 @@ base64_encode(char *dest, int destlen, const char *src, int srclen)
ret += len;
return ret;
}
+
+/* Base-64 decode 'srclen' bytes of data from 'src'. Write the result
+ * into 'dest', if it will fit within 'destlen' bytes. Return the
+ * number of bytes written on success; -1 on failure.
+ */
int
base64_decode(char *dest, int destlen, const char *src, int srclen)
{
@@ -1225,8 +1379,8 @@ base64_decode(char *dest, int destlen, const char *src, int srclen)
return ret;
}
-/* Implement base32 encoding as in rfc3548. Limitation: Requires that
- * srclen is a multiple of 5.
+/* Implements base32 encoding as in rfc3548. Limitation: Requires
+ * that srclen is a multiple of 5.
*/
int
base32_encode(char *dest, int destlen, const char *src, int srclen)