summaryrefslogtreecommitdiff
path: root/src/common/container.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/common/container.c')
-rw-r--r--src/common/container.c1517
1 files changed, 0 insertions, 1517 deletions
diff --git a/src/common/container.c b/src/common/container.c
deleted file mode 100644
index ec59dccf62..0000000000
--- a/src/common/container.c
+++ /dev/null
@@ -1,1517 +0,0 @@
-/* Copyright (c) 2003-2004, Roger Dingledine
- * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson.
- * Copyright (c) 2007-2016, The Tor Project, Inc. */
-/* See LICENSE for licensing information */
-
-/**
- * \file container.c
- * \brief Implements a smartlist (a resizable array) along
- * with helper functions to use smartlists. Also includes
- * hash table implementations of a string-to-void* map, and of
- * a digest-to-void* map.
- **/
-
-#include "compat.h"
-#include "util.h"
-#include "torlog.h"
-#include "container.h"
-#include "crypto.h"
-
-#include <stdlib.h>
-#include <string.h>
-#include <assert.h>
-
-#include "ht.h"
-
-/** All newly allocated smartlists have this capacity. */
-#define SMARTLIST_DEFAULT_CAPACITY 16
-
-/** Allocate and return an empty smartlist.
- */
-MOCK_IMPL(smartlist_t *,
-smartlist_new,(void))
-{
- smartlist_t *sl = tor_malloc(sizeof(smartlist_t));
- sl->num_used = 0;
- sl->capacity = SMARTLIST_DEFAULT_CAPACITY;
- sl->list = tor_calloc(sizeof(void *), sl->capacity);
- return sl;
-}
-
-/** Deallocate a smartlist. Does not release storage associated with the
- * list's elements.
- */
-MOCK_IMPL(void,
-smartlist_free,(smartlist_t *sl))
-{
- if (!sl)
- return;
- tor_free(sl->list);
- tor_free(sl);
-}
-
-/** Remove all elements from the list.
- */
-void
-smartlist_clear(smartlist_t *sl)
-{
- memset(sl->list, 0, sizeof(void *) * sl->num_used);
- sl->num_used = 0;
-}
-
-#if SIZE_MAX < INT_MAX
-#error "We don't support systems where size_t is smaller than int."
-#endif
-
-/** Make sure that <b>sl</b> can hold at least <b>size</b> entries. */
-static inline void
-smartlist_ensure_capacity(smartlist_t *sl, size_t size)
-{
- /* Set MAX_CAPACITY to MIN(INT_MAX, SIZE_MAX / sizeof(void*)) */
-#if (SIZE_MAX/SIZEOF_VOID_P) > INT_MAX
-#define MAX_CAPACITY (INT_MAX)
-#else
-#define MAX_CAPACITY (int)((SIZE_MAX / (sizeof(void*))))
-#endif
-
- tor_assert(size <= MAX_CAPACITY);
-
- if (size > (size_t) sl->capacity) {
- size_t higher = (size_t) sl->capacity;
- if (PREDICT_UNLIKELY(size > MAX_CAPACITY/2)) {
- higher = MAX_CAPACITY;
- } else {
- while (size > higher)
- higher *= 2;
- }
- sl->list = tor_reallocarray(sl->list, sizeof(void *),
- ((size_t)higher));
- memset(sl->list + sl->capacity, 0,
- sizeof(void *) * (higher - sl->capacity));
- sl->capacity = (int) higher;
- }
-#undef ASSERT_CAPACITY
-#undef MAX_CAPACITY
-}
-
-/** Append element to the end of the list. */
-void
-smartlist_add(smartlist_t *sl, void *element)
-{
- smartlist_ensure_capacity(sl, ((size_t) sl->num_used)+1);
- sl->list[sl->num_used++] = element;
-}
-
-/** Append each element from S2 to the end of S1. */
-void
-smartlist_add_all(smartlist_t *s1, const smartlist_t *s2)
-{
- size_t new_size = (size_t)s1->num_used + (size_t)s2->num_used;
- tor_assert(new_size >= (size_t) s1->num_used); /* check for overflow. */
- smartlist_ensure_capacity(s1, new_size);
- memcpy(s1->list + s1->num_used, s2->list, s2->num_used*sizeof(void*));
- tor_assert(new_size <= INT_MAX); /* redundant. */
- s1->num_used = (int) new_size;
-}
-
-/** Remove all elements E from sl such that E==element. Preserve
- * the order of any elements before E, but elements after E can be
- * rearranged.
- */
-void
-smartlist_remove(smartlist_t *sl, const void *element)
-{
- int i;
- if (element == NULL)
- return;
- for (i=0; i < sl->num_used; i++)
- if (sl->list[i] == element) {
- sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
- i--; /* so we process the new i'th element */
- sl->list[sl->num_used] = NULL;
- }
-}
-
-/** If <b>sl</b> is nonempty, remove and return the final element. Otherwise,
- * return NULL. */
-void *
-smartlist_pop_last(smartlist_t *sl)
-{
- tor_assert(sl);
- if (sl->num_used) {
- void *tmp = sl->list[--sl->num_used];
- sl->list[sl->num_used] = NULL;
- return tmp;
- } else
- return NULL;
-}
-
-/** Reverse the order of the items in <b>sl</b>. */
-void
-smartlist_reverse(smartlist_t *sl)
-{
- int i, j;
- void *tmp;
- tor_assert(sl);
- for (i = 0, j = sl->num_used-1; i < j; ++i, --j) {
- tmp = sl->list[i];
- sl->list[i] = sl->list[j];
- sl->list[j] = tmp;
- }
-}
-
-/** If there are any strings in sl equal to element, remove and free them.
- * Does not preserve order. */
-void
-smartlist_string_remove(smartlist_t *sl, const char *element)
-{
- int i;
- tor_assert(sl);
- tor_assert(element);
- for (i = 0; i < sl->num_used; ++i) {
- if (!strcmp(element, sl->list[i])) {
- tor_free(sl->list[i]);
- sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */
- i--; /* so we process the new i'th element */
- sl->list[sl->num_used] = NULL;
- }
- }
-}
-
-/** Return true iff some element E of sl has E==element.
- */
-int
-smartlist_contains(const smartlist_t *sl, const void *element)
-{
- int i;
- for (i=0; i < sl->num_used; i++)
- if (sl->list[i] == element)
- return 1;
- return 0;
-}
-
-/** Return true iff <b>sl</b> has some element E such that
- * !strcmp(E,<b>element</b>)
- */
-int
-smartlist_contains_string(const smartlist_t *sl, const char *element)
-{
- int i;
- if (!sl) return 0;
- for (i=0; i < sl->num_used; i++)
- if (strcmp((const char*)sl->list[i],element)==0)
- return 1;
- return 0;
-}
-
-/** If <b>element</b> is equal to an element of <b>sl</b>, return that
- * element's index. Otherwise, return -1. */
-int
-smartlist_string_pos(const smartlist_t *sl, const char *element)
-{
- int i;
- if (!sl) return -1;
- for (i=0; i < sl->num_used; i++)
- if (strcmp((const char*)sl->list[i],element)==0)
- return i;
- return -1;
-}
-
-/** If <b>element</b> is the same pointer as an element of <b>sl</b>, return
- * that element's index. Otherwise, return -1. */
-int
-smartlist_pos(const smartlist_t *sl, const void *element)
-{
- int i;
- if (!sl) return -1;
- for (i=0; i < sl->num_used; i++)
- if (element == sl->list[i])
- return i;
- return -1;
-}
-
-/** Return true iff <b>sl</b> has some element E such that
- * !strcasecmp(E,<b>element</b>)
- */
-int
-smartlist_contains_string_case(const smartlist_t *sl, const char *element)
-{
- int i;
- if (!sl) return 0;
- for (i=0; i < sl->num_used; i++)
- if (strcasecmp((const char*)sl->list[i],element)==0)
- return 1;
- return 0;
-}
-
-/** Return true iff <b>sl</b> has some element E such that E is equal
- * to the decimal encoding of <b>num</b>.
- */
-int
-smartlist_contains_int_as_string(const smartlist_t *sl, int num)
-{
- char buf[32]; /* long enough for 64-bit int, and then some. */
- tor_snprintf(buf,sizeof(buf),"%d", num);
- return smartlist_contains_string(sl, buf);
-}
-
-/** Return true iff the two lists contain the same strings in the same
- * order, or if they are both NULL. */
-int
-smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2)
-{
- if (sl1 == NULL)
- return sl2 == NULL;
- if (sl2 == NULL)
- return 0;
- if (smartlist_len(sl1) != smartlist_len(sl2))
- return 0;
- SMARTLIST_FOREACH(sl1, const char *, cp1, {
- const char *cp2 = smartlist_get(sl2, cp1_sl_idx);
- if (strcmp(cp1, cp2))
- return 0;
- });
- return 1;
-}
-
-/** Return true iff the two lists contain the same int pointer values in
- * the same order, or if they are both NULL. */
-int
-smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2)
-{
- if (sl1 == NULL)
- return sl2 == NULL;
- if (sl2 == NULL)
- return 0;
- if (smartlist_len(sl1) != smartlist_len(sl2))
- return 0;
- SMARTLIST_FOREACH(sl1, int *, cp1, {
- int *cp2 = smartlist_get(sl2, cp1_sl_idx);
- if (*cp1 != *cp2)
- return 0;
- });
- return 1;
-}
-
-/** Return true iff <b>sl</b> has some element E such that
- * tor_memeq(E,<b>element</b>,DIGEST_LEN)
- */
-int
-smartlist_contains_digest(const smartlist_t *sl, const char *element)
-{
- int i;
- if (!sl) return 0;
- for (i=0; i < sl->num_used; i++)
- if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN))
- return 1;
- return 0;
-}
-
-/** Return true iff some element E of sl2 has smartlist_contains(sl1,E).
- */
-int
-smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2)
-{
- int i;
- for (i=0; i < sl2->num_used; i++)
- if (smartlist_contains(sl1, sl2->list[i]))
- return 1;
- return 0;
-}
-
-/** Remove every element E of sl1 such that !smartlist_contains(sl2,E).
- * Does not preserve the order of sl1.
- */
-void
-smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2)
-{
- int i;
- for (i=0; i < sl1->num_used; i++)
- if (!smartlist_contains(sl2, sl1->list[i])) {
- sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */
- i--; /* so we process the new i'th element */
- sl1->list[sl1->num_used] = NULL;
- }
-}
-
-/** Remove every element E of sl1 such that smartlist_contains(sl2,E).
- * Does not preserve the order of sl1.
- */
-void
-smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2)
-{
- int i;
- for (i=0; i < sl2->num_used; i++)
- smartlist_remove(sl1, sl2->list[i]);
-}
-
-/** Remove the <b>idx</b>th element of sl; if idx is not the last
- * element, swap the last element of sl into the <b>idx</b>th space.
- */
-void
-smartlist_del(smartlist_t *sl, int idx)
-{
- tor_assert(sl);
- tor_assert(idx>=0);
- tor_assert(idx < sl->num_used);
- sl->list[idx] = sl->list[--sl->num_used];
- sl->list[sl->num_used] = NULL;
-}
-
-/** Remove the <b>idx</b>th element of sl; if idx is not the last element,
- * moving all subsequent elements back one space. Return the old value
- * of the <b>idx</b>th element.
- */
-void
-smartlist_del_keeporder(smartlist_t *sl, int idx)
-{
- tor_assert(sl);
- tor_assert(idx>=0);
- tor_assert(idx < sl->num_used);
- --sl->num_used;
- if (idx < sl->num_used)
- memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx));
- sl->list[sl->num_used] = NULL;
-}
-
-/** Insert the value <b>val</b> as the new <b>idx</b>th element of
- * <b>sl</b>, moving all items previously at <b>idx</b> or later
- * forward one space.
- */
-void
-smartlist_insert(smartlist_t *sl, int idx, void *val)
-{
- tor_assert(sl);
- tor_assert(idx>=0);
- tor_assert(idx <= sl->num_used);
- if (idx == sl->num_used) {
- smartlist_add(sl, val);
- } else {
- smartlist_ensure_capacity(sl, ((size_t) sl->num_used)+1);
- /* Move other elements away */
- if (idx < sl->num_used)
- memmove(sl->list + idx + 1, sl->list + idx,
- sizeof(void*)*(sl->num_used-idx));
- sl->num_used++;
- sl->list[idx] = val;
- }
-}
-
-/**
- * Split a string <b>str</b> along all occurrences of <b>sep</b>,
- * appending the (newly allocated) split strings, in order, to
- * <b>sl</b>. Return the number of strings added to <b>sl</b>.
- *
- * If <b>flags</b>&amp;SPLIT_SKIP_SPACE is true, remove initial and
- * trailing space from each entry.
- * If <b>flags</b>&amp;SPLIT_IGNORE_BLANK is true, remove any entries
- * of length 0.
- * If <b>flags</b>&amp;SPLIT_STRIP_SPACE is true, strip spaces from each
- * split string.
- *
- * If <b>max</b>\>0, divide the string into no more than <b>max</b> pieces. If
- * <b>sep</b> is NULL, split on any sequence of horizontal space.
- */
-int
-smartlist_split_string(smartlist_t *sl, const char *str, const char *sep,
- int flags, int max)
-{
- const char *cp, *end, *next;
- int n = 0;
-
- tor_assert(sl);
- tor_assert(str);
-
- cp = str;
- while (1) {
- if (flags&SPLIT_SKIP_SPACE) {
- while (TOR_ISSPACE(*cp)) ++cp;
- }
-
- if (max>0 && n == max-1) {
- end = strchr(cp,'\0');
- } else if (sep) {
- end = strstr(cp,sep);
- if (!end)
- end = strchr(cp,'\0');
- } else {
- for (end = cp; *end && *end != '\t' && *end != ' '; ++end)
- ;
- }
-
- tor_assert(end);
-
- if (!*end) {
- next = NULL;
- } else if (sep) {
- next = end+strlen(sep);
- } else {
- next = end+1;
- while (*next == '\t' || *next == ' ')
- ++next;
- }
-
- if (flags&SPLIT_SKIP_SPACE) {
- while (end > cp && TOR_ISSPACE(*(end-1)))
- --end;
- }
- if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) {
- char *string = tor_strndup(cp, end-cp);
- if (flags&SPLIT_STRIP_SPACE)
- tor_strstrip(string, " ");
- smartlist_add(sl, string);
- ++n;
- }
- if (!next)
- break;
- cp = next;
- }
-
- return n;
-}
-
-/** Allocate and return a new string containing the concatenation of
- * the elements of <b>sl</b>, in order, separated by <b>join</b>. If
- * <b>terminate</b> is true, also terminate the string with <b>join</b>.
- * If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of
- * the returned string. Requires that every element of <b>sl</b> is
- * NUL-terminated string.
- */
-char *
-smartlist_join_strings(smartlist_t *sl, const char *join,
- int terminate, size_t *len_out)
-{
- return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out);
-}
-
-/** As smartlist_join_strings, but instead of separating/terminated with a
- * NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence
- * at <b>join</b>. (Useful for generating a sequence of NUL-terminated
- * strings.)
- */
-char *
-smartlist_join_strings2(smartlist_t *sl, const char *join,
- size_t join_len, int terminate, size_t *len_out)
-{
- int i;
- size_t n = 0;
- char *r = NULL, *dst, *src;
-
- tor_assert(sl);
- tor_assert(join);
-
- if (terminate)
- n = join_len;
-
- for (i = 0; i < sl->num_used; ++i) {
- n += strlen(sl->list[i]);
- if (i+1 < sl->num_used) /* avoid double-counting the last one */
- n += join_len;
- }
- dst = r = tor_malloc(n+1);
- for (i = 0; i < sl->num_used; ) {
- for (src = sl->list[i]; *src; )
- *dst++ = *src++;
- if (++i < sl->num_used) {
- memcpy(dst, join, join_len);
- dst += join_len;
- }
- }
- if (terminate) {
- memcpy(dst, join, join_len);
- dst += join_len;
- }
- *dst = '\0';
-
- if (len_out)
- *len_out = dst-r;
- return r;
-}
-
-/** Sort the members of <b>sl</b> into an order defined by
- * the ordering function <b>compare</b>, which returns less then 0 if a
- * precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b.
- */
-void
-smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b))
-{
- if (!sl->num_used)
- return;
- qsort(sl->list, sl->num_used, sizeof(void*),
- (int (*)(const void *,const void*))compare);
-}
-
-/** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>,
- * return the most frequent member in the list. Break ties in favor of
- * later elements. If the list is empty, return NULL. If count_out is
- * non-null, set it to the count of the most frequent member.
- */
-void *
-smartlist_get_most_frequent_(const smartlist_t *sl,
- int (*compare)(const void **a, const void **b),
- int *count_out)
-{
- const void *most_frequent = NULL;
- int most_frequent_count = 0;
-
- const void *cur = NULL;
- int i, count=0;
-
- if (!sl->num_used) {
- if (count_out)
- *count_out = 0;
- return NULL;
- }
- for (i = 0; i < sl->num_used; ++i) {
- const void *item = sl->list[i];
- if (cur && 0 == compare(&cur, &item)) {
- ++count;
- } else {
- if (cur && count >= most_frequent_count) {
- most_frequent = cur;
- most_frequent_count = count;
- }
- cur = item;
- count = 1;
- }
- }
- if (cur && count >= most_frequent_count) {
- most_frequent = cur;
- most_frequent_count = count;
- }
- if (count_out)
- *count_out = most_frequent_count;
- return (void*)most_frequent;
-}
-
-/** Given a sorted smartlist <b>sl</b> and the comparison function used to
- * sort it, remove all duplicate members. If free_fn is provided, calls
- * free_fn on each duplicate. Otherwise, just removes them. Preserves order.
- */
-void
-smartlist_uniq(smartlist_t *sl,
- int (*compare)(const void **a, const void **b),
- void (*free_fn)(void *a))
-{
- int i;
- for (i=1; i < sl->num_used; ++i) {
- if (compare((const void **)&(sl->list[i-1]),
- (const void **)&(sl->list[i])) == 0) {
- if (free_fn)
- free_fn(sl->list[i]);
- smartlist_del_keeporder(sl, i--);
- }
- }
-}
-
-/** Assuming the members of <b>sl</b> are in order, return a pointer to the
- * member that matches <b>key</b>. Ordering and matching are defined by a
- * <b>compare</b> function that returns 0 on a match; less than 0 if key is
- * less than member, and greater than 0 if key is greater then member.
- */
-void *
-smartlist_bsearch(smartlist_t *sl, const void *key,
- int (*compare)(const void *key, const void **member))
-{
- int found, idx;
- idx = smartlist_bsearch_idx(sl, key, compare, &found);
- return found ? smartlist_get(sl, idx) : NULL;
-}
-
-/** Assuming the members of <b>sl</b> are in order, return the index of the
- * member that matches <b>key</b>. If no member matches, return the index of
- * the first member greater than <b>key</b>, or smartlist_len(sl) if no member
- * is greater than <b>key</b>. Set <b>found_out</b> to true on a match, to
- * false otherwise. Ordering and matching are defined by a <b>compare</b>
- * function that returns 0 on a match; less than 0 if key is less than member,
- * and greater than 0 if key is greater then member.
- */
-int
-smartlist_bsearch_idx(const smartlist_t *sl, const void *key,
- int (*compare)(const void *key, const void **member),
- int *found_out)
-{
- int hi, lo, cmp, mid, len, diff;
-
- tor_assert(sl);
- tor_assert(compare);
- tor_assert(found_out);
-
- len = smartlist_len(sl);
-
- /* Check for the trivial case of a zero-length list */
- if (len == 0) {
- *found_out = 0;
- /* We already know smartlist_len(sl) is 0 in this case */
- return 0;
- }
-
- /* Okay, we have a real search to do */
- tor_assert(len > 0);
- lo = 0;
- hi = len - 1;
-
- /*
- * These invariants are always true:
- *
- * For all i such that 0 <= i < lo, sl[i] < key
- * For all i such that hi < i <= len, sl[i] > key
- */
-
- while (lo <= hi) {
- diff = hi - lo;
- /*
- * We want mid = (lo + hi) / 2, but that could lead to overflow, so
- * instead diff = hi - lo (non-negative because of loop condition), and
- * then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2).
- */
- mid = lo + (diff / 2);
- cmp = compare(key, (const void**) &(sl->list[mid]));
- if (cmp == 0) {
- /* sl[mid] == key; we found it */
- *found_out = 1;
- return mid;
- } else if (cmp > 0) {
- /*
- * key > sl[mid] and an index i such that sl[i] == key must
- * have i > mid if it exists.
- */
-
- /*
- * Since lo <= mid <= hi, hi can only decrease on each iteration (by
- * being set to mid - 1) and hi is initially len - 1, mid < len should
- * always hold, and this is not symmetric with the left end of list
- * mid > 0 test below. A key greater than the right end of the list
- * should eventually lead to lo == hi == mid == len - 1, and then
- * we set lo to len below and fall out to the same exit we hit for
- * a key in the middle of the list but not matching. Thus, we just
- * assert for consistency here rather than handle a mid == len case.
- */
- tor_assert(mid < len);
- /* Move lo to the element immediately after sl[mid] */
- lo = mid + 1;
- } else {
- /* This should always be true in this case */
- tor_assert(cmp < 0);
-
- /*
- * key < sl[mid] and an index i such that sl[i] == key must
- * have i < mid if it exists.
- */
-
- if (mid > 0) {
- /* Normal case, move hi to the element immediately before sl[mid] */
- hi = mid - 1;
- } else {
- /* These should always be true in this case */
- tor_assert(mid == lo);
- tor_assert(mid == 0);
- /*
- * We were at the beginning of the list and concluded that every
- * element e compares e > key.
- */
- *found_out = 0;
- return 0;
- }
- }
- }
-
- /*
- * lo > hi; we have no element matching key but we have elements falling
- * on both sides of it. The lo index points to the first element > key.
- */
- tor_assert(lo == hi + 1); /* All other cases should have been handled */
- tor_assert(lo >= 0);
- tor_assert(lo <= len);
- tor_assert(hi >= 0);
- tor_assert(hi <= len);
-
- if (lo < len) {
- cmp = compare(key, (const void **) &(sl->list[lo]));
- tor_assert(cmp < 0);
- } else {
- cmp = compare(key, (const void **) &(sl->list[len-1]));
- tor_assert(cmp > 0);
- }
-
- *found_out = 0;
- return lo;
-}
-
-/** Helper: compare two const char **s. */
-static int
-compare_string_ptrs_(const void **_a, const void **_b)
-{
- return strcmp((const char*)*_a, (const char*)*_b);
-}
-
-/** Sort a smartlist <b>sl</b> containing strings into lexically ascending
- * order. */
-void
-smartlist_sort_strings(smartlist_t *sl)
-{
- smartlist_sort(sl, compare_string_ptrs_);
-}
-
-/** Return the most frequent string in the sorted list <b>sl</b> */
-const char *
-smartlist_get_most_frequent_string(smartlist_t *sl)
-{
- return smartlist_get_most_frequent(sl, compare_string_ptrs_);
-}
-
-/** Return the most frequent string in the sorted list <b>sl</b>.
- * If <b>count_out</b> is provided, set <b>count_out</b> to the
- * number of times that string appears.
- */
-const char *
-smartlist_get_most_frequent_string_(smartlist_t *sl, int *count_out)
-{
- return smartlist_get_most_frequent_(sl, compare_string_ptrs_, count_out);
-}
-
-/** Remove duplicate strings from a sorted list, and free them with tor_free().
- */
-void
-smartlist_uniq_strings(smartlist_t *sl)
-{
- smartlist_uniq(sl, compare_string_ptrs_, tor_free_);
-}
-
-/** Helper: compare two pointers. */
-static int
-compare_ptrs_(const void **_a, const void **_b)
-{
- const void *a = *_a, *b = *_b;
- if (a<b)
- return -1;
- else if (a==b)
- return 0;
- else
- return 1;
-}
-
-/** Sort <b>sl</b> in ascending order of the pointers it contains. */
-void
-smartlist_sort_pointers(smartlist_t *sl)
-{
- smartlist_sort(sl, compare_ptrs_);
-}
-
-/* Heap-based priority queue implementation for O(lg N) insert and remove.
- * Recall that the heap property is that, for every index I, h[I] <
- * H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]].
- *
- * For us to remove items other than the topmost item, each item must store
- * its own index within the heap. When calling the pqueue functions, tell
- * them about the offset of the field that stores the index within the item.
- *
- * Example:
- *
- * typedef struct timer_t {
- * struct timeval tv;
- * int heap_index;
- * } timer_t;
- *
- * static int compare(const void *p1, const void *p2) {
- * const timer_t *t1 = p1, *t2 = p2;
- * if (t1->tv.tv_sec < t2->tv.tv_sec) {
- * return -1;
- * } else if (t1->tv.tv_sec > t2->tv.tv_sec) {
- * return 1;
- * } else {
- * return t1->tv.tv_usec - t2->tv_usec;
- * }
- * }
- *
- * void timer_heap_insert(smartlist_t *heap, timer_t *timer) {
- * smartlist_pqueue_add(heap, compare, STRUCT_OFFSET(timer_t, heap_index),
- * timer);
- * }
- *
- * void timer_heap_pop(smartlist_t *heap) {
- * return smartlist_pqueue_pop(heap, compare,
- * STRUCT_OFFSET(timer_t, heap_index));
- * }
- */
-
-/** @{ */
-/** Functions to manipulate heap indices to find a node's parent and children.
- *
- * For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x]
- * = 2*x + 1. But this is C, so we have to adjust a little. */
-
-/* MAX_PARENT_IDX is the largest IDX in the smartlist which might have
- * children whose indices fit inside an int.
- * LEFT_CHILD(MAX_PARENT_IDX) == INT_MAX-2;
- * RIGHT_CHILD(MAX_PARENT_IDX) == INT_MAX-1;
- * LEFT_CHILD(MAX_PARENT_IDX + 1) == INT_MAX // impossible, see max list size.
- */
-#define MAX_PARENT_IDX ((INT_MAX - 2) / 2)
-/* If this is true, then i is small enough to potentially have children
- * in the smartlist, and it is save to use LEFT_CHILD/RIGHT_CHILD on it. */
-#define IDX_MAY_HAVE_CHILDREN(i) ((i) <= MAX_PARENT_IDX)
-#define LEFT_CHILD(i) ( 2*(i) + 1 )
-#define RIGHT_CHILD(i) ( 2*(i) + 2 )
-#define PARENT(i) ( ((i)-1) / 2 )
-/** }@ */
-
-/** @{ */
-/** Helper macros for heaps: Given a local variable <b>idx_field_offset</b>
- * set to the offset of an integer index within the heap element structure,
- * IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to
- * where p's index is stored. Given additionally a local smartlist <b>sl</b>,
- * UPDATE_IDX(i) sets the index of the element at <b>i</b> to the correct
- * value (that is, to <b>i</b>).
- */
-#define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset))
-
-#define UPDATE_IDX(i) do { \
- void *updated = sl->list[i]; \
- *IDXP(updated) = i; \
- } while (0)
-
-#define IDX_OF_ITEM(p) (*IDXP(p))
-/** @} */
-
-/** Helper. <b>sl</b> may have at most one violation of the heap property:
- * the item at <b>idx</b> may be greater than one or both of its children.
- * Restore the heap property. */
-static inline void
-smartlist_heapify(smartlist_t *sl,
- int (*compare)(const void *a, const void *b),
- int idx_field_offset,
- int idx)
-{
- while (1) {
- if (! IDX_MAY_HAVE_CHILDREN(idx)) {
- /* idx is so large that it cannot have any children, since doing so
- * would mean the smartlist was over-capacity. Therefore it cannot
- * violate the heap property by being greater than a child (since it
- * doesn't have any). */
- return;
- }
-
- int left_idx = LEFT_CHILD(idx);
- int best_idx;
-
- if (left_idx >= sl->num_used)
- return;
- if (compare(sl->list[idx],sl->list[left_idx]) < 0)
- best_idx = idx;
- else
- best_idx = left_idx;
- if (left_idx+1 < sl->num_used &&
- compare(sl->list[left_idx+1],sl->list[best_idx]) < 0)
- best_idx = left_idx + 1;
-
- if (best_idx == idx) {
- return;
- } else {
- void *tmp = sl->list[idx];
- sl->list[idx] = sl->list[best_idx];
- sl->list[best_idx] = tmp;
- UPDATE_IDX(idx);
- UPDATE_IDX(best_idx);
-
- idx = best_idx;
- }
- }
-}
-
-/** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is
- * determined by <b>compare</b> and the offset of the item in the heap is
- * stored in an int-typed field at position <b>idx_field_offset</b> within
- * item.
- */
-void
-smartlist_pqueue_add(smartlist_t *sl,
- int (*compare)(const void *a, const void *b),
- int idx_field_offset,
- void *item)
-{
- int idx;
- smartlist_add(sl,item);
- UPDATE_IDX(sl->num_used-1);
-
- for (idx = sl->num_used - 1; idx; ) {
- int parent = PARENT(idx);
- if (compare(sl->list[idx], sl->list[parent]) < 0) {
- void *tmp = sl->list[parent];
- sl->list[parent] = sl->list[idx];
- sl->list[idx] = tmp;
- UPDATE_IDX(parent);
- UPDATE_IDX(idx);
- idx = parent;
- } else {
- return;
- }
- }
-}
-
-/** Remove and return the top-priority item from the heap stored in <b>sl</b>,
- * where order is determined by <b>compare</b> and the item's position is
- * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
- * not be empty. */
-void *
-smartlist_pqueue_pop(smartlist_t *sl,
- int (*compare)(const void *a, const void *b),
- int idx_field_offset)
-{
- void *top;
- tor_assert(sl->num_used);
-
- top = sl->list[0];
- *IDXP(top)=-1;
- if (--sl->num_used) {
- sl->list[0] = sl->list[sl->num_used];
- sl->list[sl->num_used] = NULL;
- UPDATE_IDX(0);
- smartlist_heapify(sl, compare, idx_field_offset, 0);
- }
- sl->list[sl->num_used] = NULL;
- return top;
-}
-
-/** Remove the item <b>item</b> from the heap stored in <b>sl</b>,
- * where order is determined by <b>compare</b> and the item's position is
- * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must
- * not be empty. */
-void
-smartlist_pqueue_remove(smartlist_t *sl,
- int (*compare)(const void *a, const void *b),
- int idx_field_offset,
- void *item)
-{
- int idx = IDX_OF_ITEM(item);
- tor_assert(idx >= 0);
- tor_assert(sl->list[idx] == item);
- --sl->num_used;
- *IDXP(item) = -1;
- if (idx == sl->num_used) {
- sl->list[sl->num_used] = NULL;
- return;
- } else {
- sl->list[idx] = sl->list[sl->num_used];
- sl->list[sl->num_used] = NULL;
- UPDATE_IDX(idx);
- smartlist_heapify(sl, compare, idx_field_offset, idx);
- }
-}
-
-/** Assert that the heap property is correctly maintained by the heap stored
- * in <b>sl</b>, where order is determined by <b>compare</b>. */
-void
-smartlist_pqueue_assert_ok(smartlist_t *sl,
- int (*compare)(const void *a, const void *b),
- int idx_field_offset)
-{
- int i;
- for (i = sl->num_used - 1; i >= 0; --i) {
- if (i>0)
- tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0);
- tor_assert(IDX_OF_ITEM(sl->list[i]) == i);
- }
-}
-
-/** Helper: compare two DIGEST_LEN digests. */
-static int
-compare_digests_(const void **_a, const void **_b)
-{
- return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN);
-}
-
-/** Sort the list of DIGEST_LEN-byte digests into ascending order. */
-void
-smartlist_sort_digests(smartlist_t *sl)
-{
- smartlist_sort(sl, compare_digests_);
-}
-
-/** Remove duplicate digests from a sorted list, and free them with tor_free().
- */
-void
-smartlist_uniq_digests(smartlist_t *sl)
-{
- smartlist_uniq(sl, compare_digests_, tor_free_);
-}
-
-/** Helper: compare two DIGEST256_LEN digests. */
-static int
-compare_digests256_(const void **_a, const void **_b)
-{
- return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN);
-}
-
-/** Sort the list of DIGEST256_LEN-byte digests into ascending order. */
-void
-smartlist_sort_digests256(smartlist_t *sl)
-{
- smartlist_sort(sl, compare_digests256_);
-}
-
-/** Return the most frequent member of the sorted list of DIGEST256_LEN
- * digests in <b>sl</b> */
-const uint8_t *
-smartlist_get_most_frequent_digest256(smartlist_t *sl)
-{
- return smartlist_get_most_frequent(sl, compare_digests256_);
-}
-
-/** Remove duplicate 256-bit digests from a sorted list, and free them with
- * tor_free().
- */
-void
-smartlist_uniq_digests256(smartlist_t *sl)
-{
- smartlist_uniq(sl, compare_digests256_, tor_free_);
-}
-
-/** Helper: Declare an entry type and a map type to implement a mapping using
- * ht.h. The map type will be called <b>maptype</b>. The key part of each
- * entry is declared using the C declaration <b>keydecl</b>. All functions
- * and types associated with the map get prefixed with <b>prefix</b> */
-#define DEFINE_MAP_STRUCTS(maptype, keydecl, prefix) \
- typedef struct prefix ## entry_t { \
- HT_ENTRY(prefix ## entry_t) node; \
- void *val; \
- keydecl; \
- } prefix ## entry_t; \
- struct maptype { \
- HT_HEAD(prefix ## impl, prefix ## entry_t) head; \
- }
-
-DEFINE_MAP_STRUCTS(strmap_t, char *key, strmap_);
-DEFINE_MAP_STRUCTS(digestmap_t, char key[DIGEST_LEN], digestmap_);
-DEFINE_MAP_STRUCTS(digest256map_t, uint8_t key[DIGEST256_LEN], digest256map_);
-
-/** Helper: compare strmap_entry_t objects by key value. */
-static inline int
-strmap_entries_eq(const strmap_entry_t *a, const strmap_entry_t *b)
-{
- return !strcmp(a->key, b->key);
-}
-
-/** Helper: return a hash value for a strmap_entry_t. */
-static inline unsigned int
-strmap_entry_hash(const strmap_entry_t *a)
-{
- return (unsigned) siphash24g(a->key, strlen(a->key));
-}
-
-/** Helper: compare digestmap_entry_t objects by key value. */
-static inline int
-digestmap_entries_eq(const digestmap_entry_t *a, const digestmap_entry_t *b)
-{
- return tor_memeq(a->key, b->key, DIGEST_LEN);
-}
-
-/** Helper: return a hash value for a digest_map_t. */
-static inline unsigned int
-digestmap_entry_hash(const digestmap_entry_t *a)
-{
- return (unsigned) siphash24g(a->key, DIGEST_LEN);
-}
-
-/** Helper: compare digestmap_entry_t objects by key value. */
-static inline int
-digest256map_entries_eq(const digest256map_entry_t *a,
- const digest256map_entry_t *b)
-{
- return tor_memeq(a->key, b->key, DIGEST256_LEN);
-}
-
-/** Helper: return a hash value for a digest_map_t. */
-static inline unsigned int
-digest256map_entry_hash(const digest256map_entry_t *a)
-{
- return (unsigned) siphash24g(a->key, DIGEST256_LEN);
-}
-
-HT_PROTOTYPE(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
- strmap_entries_eq)
-HT_GENERATE2(strmap_impl, strmap_entry_t, node, strmap_entry_hash,
- strmap_entries_eq, 0.6, tor_reallocarray_, tor_free_)
-
-HT_PROTOTYPE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
- digestmap_entries_eq)
-HT_GENERATE2(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash,
- digestmap_entries_eq, 0.6, tor_reallocarray_, tor_free_)
-
-HT_PROTOTYPE(digest256map_impl, digest256map_entry_t, node,
- digest256map_entry_hash,
- digest256map_entries_eq)
-HT_GENERATE2(digest256map_impl, digest256map_entry_t, node,
- digest256map_entry_hash,
- digest256map_entries_eq, 0.6, tor_reallocarray_, tor_free_)
-
-static inline void
-strmap_entry_free(strmap_entry_t *ent)
-{
- tor_free(ent->key);
- tor_free(ent);
-}
-static inline void
-digestmap_entry_free(digestmap_entry_t *ent)
-{
- tor_free(ent);
-}
-static inline void
-digest256map_entry_free(digest256map_entry_t *ent)
-{
- tor_free(ent);
-}
-
-static inline void
-strmap_assign_tmp_key(strmap_entry_t *ent, const char *key)
-{
- ent->key = (char*)key;
-}
-static inline void
-digestmap_assign_tmp_key(digestmap_entry_t *ent, const char *key)
-{
- memcpy(ent->key, key, DIGEST_LEN);
-}
-static inline void
-digest256map_assign_tmp_key(digest256map_entry_t *ent, const uint8_t *key)
-{
- memcpy(ent->key, key, DIGEST256_LEN);
-}
-static inline void
-strmap_assign_key(strmap_entry_t *ent, const char *key)
-{
- ent->key = tor_strdup(key);
-}
-static inline void
-digestmap_assign_key(digestmap_entry_t *ent, const char *key)
-{
- memcpy(ent->key, key, DIGEST_LEN);
-}
-static inline void
-digest256map_assign_key(digest256map_entry_t *ent, const uint8_t *key)
-{
- memcpy(ent->key, key, DIGEST256_LEN);
-}
-
-/**
- * Macro: implement all the functions for a map that are declared in
- * container.h by the DECLARE_MAP_FNS() macro. You must additionally define a
- * prefix_entry_free_() function to free entries (and their keys), a
- * prefix_assign_tmp_key() function to temporarily set a stack-allocated
- * entry to hold a key, and a prefix_assign_key() function to set a
- * heap-allocated entry to hold a key.
- */
-#define IMPLEMENT_MAP_FNS(maptype, keytype, prefix) \
- /** Create and return a new empty map. */ \
- MOCK_IMPL(maptype *, \
- prefix##_new,(void)) \
- { \
- maptype *result; \
- result = tor_malloc(sizeof(maptype)); \
- HT_INIT(prefix##_impl, &result->head); \
- return result; \
- } \
- \
- /** Return the item from <b>map</b> whose key matches <b>key</b>, or \
- * NULL if no such value exists. */ \
- void * \
- prefix##_get(const maptype *map, const keytype key) \
- { \
- prefix ##_entry_t *resolve; \
- prefix ##_entry_t search; \
- tor_assert(map); \
- tor_assert(key); \
- prefix ##_assign_tmp_key(&search, key); \
- resolve = HT_FIND(prefix ##_impl, &map->head, &search); \
- if (resolve) { \
- return resolve->val; \
- } else { \
- return NULL; \
- } \
- } \
- \
- /** Add an entry to <b>map</b> mapping <b>key</b> to <b>val</b>; \
- * return the previous value, or NULL if no such value existed. */ \
- void * \
- prefix##_set(maptype *map, const keytype key, void *val) \
- { \
- prefix##_entry_t search; \
- void *oldval; \
- tor_assert(map); \
- tor_assert(key); \
- tor_assert(val); \
- prefix##_assign_tmp_key(&search, key); \
- /* We a lot of our time in this function, so the code below is */ \
- /* meant to optimize the check/alloc/set cycle by avoiding the two */\
- /* trips to the hash table that we would do in the unoptimized */ \
- /* version of this code. (Each of HT_INSERT and HT_FIND calls */ \
- /* HT_SET_HASH and HT_FIND_P.) */ \
- HT_FIND_OR_INSERT_(prefix##_impl, node, prefix##_entry_hash, \
- &(map->head), \
- prefix##_entry_t, &search, ptr, \
- { \
- /* we found an entry. */ \
- oldval = (*ptr)->val; \
- (*ptr)->val = val; \
- return oldval; \
- }, \
- { \
- /* We didn't find the entry. */ \
- prefix##_entry_t *newent = \
- tor_malloc_zero(sizeof(prefix##_entry_t)); \
- prefix##_assign_key(newent, key); \
- newent->val = val; \
- HT_FOI_INSERT_(node, &(map->head), \
- &search, newent, ptr); \
- return NULL; \
- }); \
- } \
- \
- /** Remove the value currently associated with <b>key</b> from the map. \
- * Return the value if one was set, or NULL if there was no entry for \
- * <b>key</b>. \
- * \
- * Note: you must free any storage associated with the returned value. \
- */ \
- void * \
- prefix##_remove(maptype *map, const keytype key) \
- { \
- prefix##_entry_t *resolve; \
- prefix##_entry_t search; \
- void *oldval; \
- tor_assert(map); \
- tor_assert(key); \
- prefix##_assign_tmp_key(&search, key); \
- resolve = HT_REMOVE(prefix##_impl, &map->head, &search); \
- if (resolve) { \
- oldval = resolve->val; \
- prefix##_entry_free(resolve); \
- return oldval; \
- } else { \
- return NULL; \
- } \
- } \
- \
- /** Return the number of elements in <b>map</b>. */ \
- int \
- prefix##_size(const maptype *map) \
- { \
- return HT_SIZE(&map->head); \
- } \
- \
- /** Return true iff <b>map</b> has no entries. */ \
- int \
- prefix##_isempty(const maptype *map) \
- { \
- return HT_EMPTY(&map->head); \
- } \
- \
- /** Assert that <b>map</b> is not corrupt. */ \
- void \
- prefix##_assert_ok(const maptype *map) \
- { \
- tor_assert(!prefix##_impl_HT_REP_IS_BAD_(&map->head)); \
- } \
- \
- /** Remove all entries from <b>map</b>, and deallocate storage for \
- * those entries. If free_val is provided, invoked it every value in \
- * <b>map</b>. */ \
- MOCK_IMPL(void, \
- prefix##_free, (maptype *map, void (*free_val)(void*))) \
- { \
- prefix##_entry_t **ent, **next, *this; \
- if (!map) \
- return; \
- for (ent = HT_START(prefix##_impl, &map->head); ent != NULL; \
- ent = next) { \
- this = *ent; \
- next = HT_NEXT_RMV(prefix##_impl, &map->head, ent); \
- if (free_val) \
- free_val(this->val); \
- prefix##_entry_free(this); \
- } \
- tor_assert(HT_EMPTY(&map->head)); \
- HT_CLEAR(prefix##_impl, &map->head); \
- tor_free(map); \
- } \
- \
- /** return an <b>iterator</b> pointer to the front of a map. \
- * \
- * Iterator example: \
- * \
- * \code \
- * // uppercase values in "map", removing empty values. \
- * \
- * strmap_iter_t *iter; \
- * const char *key; \
- * void *val; \
- * char *cp; \
- * \
- * for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) { \
- * strmap_iter_get(iter, &key, &val); \
- * cp = (char*)val; \
- * if (!*cp) { \
- * iter = strmap_iter_next_rmv(map,iter); \
- * free(val); \
- * } else { \
- * for (;*cp;cp++) *cp = TOR_TOUPPER(*cp); \
- */ \
- prefix##_iter_t * \
- prefix##_iter_init(maptype *map) \
- { \
- tor_assert(map); \
- return HT_START(prefix##_impl, &map->head); \
- } \
- \
- /** Advance <b>iter</b> a single step to the next entry, and return \
- * its new value. */ \
- prefix##_iter_t * \
- prefix##_iter_next(maptype *map, prefix##_iter_t *iter) \
- { \
- tor_assert(map); \
- tor_assert(iter); \
- return HT_NEXT(prefix##_impl, &map->head, iter); \
- } \
- /** Advance <b>iter</b> a single step to the next entry, removing the \
- * current entry, and return its new value. */ \
- prefix##_iter_t * \
- prefix##_iter_next_rmv(maptype *map, prefix##_iter_t *iter) \
- { \
- prefix##_entry_t *rmv; \
- tor_assert(map); \
- tor_assert(iter); \
- tor_assert(*iter); \
- rmv = *iter; \
- iter = HT_NEXT_RMV(prefix##_impl, &map->head, iter); \
- prefix##_entry_free(rmv); \
- return iter; \
- } \
- /** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed \
- * to by iter. */ \
- void \
- prefix##_iter_get(prefix##_iter_t *iter, const keytype *keyp, \
- void **valp) \
- { \
- tor_assert(iter); \
- tor_assert(*iter); \
- tor_assert(keyp); \
- tor_assert(valp); \
- *keyp = (*iter)->key; \
- *valp = (*iter)->val; \
- } \
- /** Return true iff <b>iter</b> has advanced past the last entry of \
- * <b>map</b>. */ \
- int \
- prefix##_iter_done(prefix##_iter_t *iter) \
- { \
- return iter == NULL; \
- }
-
-IMPLEMENT_MAP_FNS(strmap_t, char *, strmap)
-IMPLEMENT_MAP_FNS(digestmap_t, char *, digestmap)
-IMPLEMENT_MAP_FNS(digest256map_t, uint8_t *, digest256map)
-
-/** Same as strmap_set, but first converts <b>key</b> to lowercase. */
-void *
-strmap_set_lc(strmap_t *map, const char *key, void *val)
-{
- /* We could be a little faster by using strcasecmp instead, and a separate
- * type, but I don't think it matters. */
- void *v;
- char *lc_key = tor_strdup(key);
- tor_strlower(lc_key);
- v = strmap_set(map,lc_key,val);
- tor_free(lc_key);
- return v;
-}
-
-/** Same as strmap_get, but first converts <b>key</b> to lowercase. */
-void *
-strmap_get_lc(const strmap_t *map, const char *key)
-{
- void *v;
- char *lc_key = tor_strdup(key);
- tor_strlower(lc_key);
- v = strmap_get(map,lc_key);
- tor_free(lc_key);
- return v;
-}
-
-/** Same as strmap_remove, but first converts <b>key</b> to lowercase */
-void *
-strmap_remove_lc(strmap_t *map, const char *key)
-{
- void *v;
- char *lc_key = tor_strdup(key);
- tor_strlower(lc_key);
- v = strmap_remove(map,lc_key);
- tor_free(lc_key);
- return v;
-}
-
-/** Declare a function called <b>funcname</b> that acts as a find_nth_FOO
- * function for an array of type <b>elt_t</b>*.
- *
- * NOTE: The implementation kind of sucks: It's O(n log n), whereas finding
- * the kth element of an n-element list can be done in O(n). Then again, this
- * implementation is not in critical path, and it is obviously correct. */
-#define IMPLEMENT_ORDER_FUNC(funcname, elt_t) \
- static int \
- _cmp_ ## elt_t(const void *_a, const void *_b) \
- { \
- const elt_t *a = _a, *b = _b; \
- if (*a<*b) \
- return -1; \
- else if (*a>*b) \
- return 1; \
- else \
- return 0; \
- } \
- elt_t \
- funcname(elt_t *array, int n_elements, int nth) \
- { \
- tor_assert(nth >= 0); \
- tor_assert(nth < n_elements); \
- qsort(array, n_elements, sizeof(elt_t), _cmp_ ##elt_t); \
- return array[nth]; \
- }
-
-IMPLEMENT_ORDER_FUNC(find_nth_int, int)
-IMPLEMENT_ORDER_FUNC(find_nth_time, time_t)
-IMPLEMENT_ORDER_FUNC(find_nth_double, double)
-IMPLEMENT_ORDER_FUNC(find_nth_uint32, uint32_t)
-IMPLEMENT_ORDER_FUNC(find_nth_int32, int32_t)
-IMPLEMENT_ORDER_FUNC(find_nth_long, long)
-
-/** Return a newly allocated digestset_t, optimized to hold a total of
- * <b>max_elements</b> digests with a reasonably low false positive weight. */
-digestset_t *
-digestset_new(int max_elements)
-{
- /* The probability of false positives is about P=(1 - exp(-kn/m))^k, where k
- * is the number of hash functions per entry, m is the bits in the array,
- * and n is the number of elements inserted. For us, k==4, n<=max_elements,
- * and m==n_bits= approximately max_elements*32. This gives
- * P<(1-exp(-4*n/(32*n)))^4 == (1-exp(1/-8))^4 == .00019
- *
- * It would be more optimal in space vs false positives to get this false
- * positive rate by going for k==13, and m==18.5n, but we also want to
- * conserve CPU, and k==13 is pretty big.
- */
- int n_bits = 1u << (tor_log2(max_elements)+5);
- digestset_t *r = tor_malloc(sizeof(digestset_t));
- r->mask = n_bits - 1;
- r->ba = bitarray_init_zero(n_bits);
- return r;
-}
-
-/** Free all storage held in <b>set</b>. */
-void
-digestset_free(digestset_t *set)
-{
- if (!set)
- return;
- bitarray_free(set->ba);
- tor_free(set);
-}
-