diff options
Diffstat (limited to 'src/common/container.c')
-rw-r--r-- | src/common/container.c | 1517 |
1 files changed, 0 insertions, 1517 deletions
diff --git a/src/common/container.c b/src/common/container.c deleted file mode 100644 index ec59dccf62..0000000000 --- a/src/common/container.c +++ /dev/null @@ -1,1517 +0,0 @@ -/* Copyright (c) 2003-2004, Roger Dingledine - * Copyright (c) 2004-2006, Roger Dingledine, Nick Mathewson. - * Copyright (c) 2007-2016, The Tor Project, Inc. */ -/* See LICENSE for licensing information */ - -/** - * \file container.c - * \brief Implements a smartlist (a resizable array) along - * with helper functions to use smartlists. Also includes - * hash table implementations of a string-to-void* map, and of - * a digest-to-void* map. - **/ - -#include "compat.h" -#include "util.h" -#include "torlog.h" -#include "container.h" -#include "crypto.h" - -#include <stdlib.h> -#include <string.h> -#include <assert.h> - -#include "ht.h" - -/** All newly allocated smartlists have this capacity. */ -#define SMARTLIST_DEFAULT_CAPACITY 16 - -/** Allocate and return an empty smartlist. - */ -MOCK_IMPL(smartlist_t *, -smartlist_new,(void)) -{ - smartlist_t *sl = tor_malloc(sizeof(smartlist_t)); - sl->num_used = 0; - sl->capacity = SMARTLIST_DEFAULT_CAPACITY; - sl->list = tor_calloc(sizeof(void *), sl->capacity); - return sl; -} - -/** Deallocate a smartlist. Does not release storage associated with the - * list's elements. - */ -MOCK_IMPL(void, -smartlist_free,(smartlist_t *sl)) -{ - if (!sl) - return; - tor_free(sl->list); - tor_free(sl); -} - -/** Remove all elements from the list. - */ -void -smartlist_clear(smartlist_t *sl) -{ - memset(sl->list, 0, sizeof(void *) * sl->num_used); - sl->num_used = 0; -} - -#if SIZE_MAX < INT_MAX -#error "We don't support systems where size_t is smaller than int." -#endif - -/** Make sure that <b>sl</b> can hold at least <b>size</b> entries. */ -static inline void -smartlist_ensure_capacity(smartlist_t *sl, size_t size) -{ - /* Set MAX_CAPACITY to MIN(INT_MAX, SIZE_MAX / sizeof(void*)) */ -#if (SIZE_MAX/SIZEOF_VOID_P) > INT_MAX -#define MAX_CAPACITY (INT_MAX) -#else -#define MAX_CAPACITY (int)((SIZE_MAX / (sizeof(void*)))) -#endif - - tor_assert(size <= MAX_CAPACITY); - - if (size > (size_t) sl->capacity) { - size_t higher = (size_t) sl->capacity; - if (PREDICT_UNLIKELY(size > MAX_CAPACITY/2)) { - higher = MAX_CAPACITY; - } else { - while (size > higher) - higher *= 2; - } - sl->list = tor_reallocarray(sl->list, sizeof(void *), - ((size_t)higher)); - memset(sl->list + sl->capacity, 0, - sizeof(void *) * (higher - sl->capacity)); - sl->capacity = (int) higher; - } -#undef ASSERT_CAPACITY -#undef MAX_CAPACITY -} - -/** Append element to the end of the list. */ -void -smartlist_add(smartlist_t *sl, void *element) -{ - smartlist_ensure_capacity(sl, ((size_t) sl->num_used)+1); - sl->list[sl->num_used++] = element; -} - -/** Append each element from S2 to the end of S1. */ -void -smartlist_add_all(smartlist_t *s1, const smartlist_t *s2) -{ - size_t new_size = (size_t)s1->num_used + (size_t)s2->num_used; - tor_assert(new_size >= (size_t) s1->num_used); /* check for overflow. */ - smartlist_ensure_capacity(s1, new_size); - memcpy(s1->list + s1->num_used, s2->list, s2->num_used*sizeof(void*)); - tor_assert(new_size <= INT_MAX); /* redundant. */ - s1->num_used = (int) new_size; -} - -/** Remove all elements E from sl such that E==element. Preserve - * the order of any elements before E, but elements after E can be - * rearranged. - */ -void -smartlist_remove(smartlist_t *sl, const void *element) -{ - int i; - if (element == NULL) - return; - for (i=0; i < sl->num_used; i++) - if (sl->list[i] == element) { - sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */ - i--; /* so we process the new i'th element */ - sl->list[sl->num_used] = NULL; - } -} - -/** If <b>sl</b> is nonempty, remove and return the final element. Otherwise, - * return NULL. */ -void * -smartlist_pop_last(smartlist_t *sl) -{ - tor_assert(sl); - if (sl->num_used) { - void *tmp = sl->list[--sl->num_used]; - sl->list[sl->num_used] = NULL; - return tmp; - } else - return NULL; -} - -/** Reverse the order of the items in <b>sl</b>. */ -void -smartlist_reverse(smartlist_t *sl) -{ - int i, j; - void *tmp; - tor_assert(sl); - for (i = 0, j = sl->num_used-1; i < j; ++i, --j) { - tmp = sl->list[i]; - sl->list[i] = sl->list[j]; - sl->list[j] = tmp; - } -} - -/** If there are any strings in sl equal to element, remove and free them. - * Does not preserve order. */ -void -smartlist_string_remove(smartlist_t *sl, const char *element) -{ - int i; - tor_assert(sl); - tor_assert(element); - for (i = 0; i < sl->num_used; ++i) { - if (!strcmp(element, sl->list[i])) { - tor_free(sl->list[i]); - sl->list[i] = sl->list[--sl->num_used]; /* swap with the end */ - i--; /* so we process the new i'th element */ - sl->list[sl->num_used] = NULL; - } - } -} - -/** Return true iff some element E of sl has E==element. - */ -int -smartlist_contains(const smartlist_t *sl, const void *element) -{ - int i; - for (i=0; i < sl->num_used; i++) - if (sl->list[i] == element) - return 1; - return 0; -} - -/** Return true iff <b>sl</b> has some element E such that - * !strcmp(E,<b>element</b>) - */ -int -smartlist_contains_string(const smartlist_t *sl, const char *element) -{ - int i; - if (!sl) return 0; - for (i=0; i < sl->num_used; i++) - if (strcmp((const char*)sl->list[i],element)==0) - return 1; - return 0; -} - -/** If <b>element</b> is equal to an element of <b>sl</b>, return that - * element's index. Otherwise, return -1. */ -int -smartlist_string_pos(const smartlist_t *sl, const char *element) -{ - int i; - if (!sl) return -1; - for (i=0; i < sl->num_used; i++) - if (strcmp((const char*)sl->list[i],element)==0) - return i; - return -1; -} - -/** If <b>element</b> is the same pointer as an element of <b>sl</b>, return - * that element's index. Otherwise, return -1. */ -int -smartlist_pos(const smartlist_t *sl, const void *element) -{ - int i; - if (!sl) return -1; - for (i=0; i < sl->num_used; i++) - if (element == sl->list[i]) - return i; - return -1; -} - -/** Return true iff <b>sl</b> has some element E such that - * !strcasecmp(E,<b>element</b>) - */ -int -smartlist_contains_string_case(const smartlist_t *sl, const char *element) -{ - int i; - if (!sl) return 0; - for (i=0; i < sl->num_used; i++) - if (strcasecmp((const char*)sl->list[i],element)==0) - return 1; - return 0; -} - -/** Return true iff <b>sl</b> has some element E such that E is equal - * to the decimal encoding of <b>num</b>. - */ -int -smartlist_contains_int_as_string(const smartlist_t *sl, int num) -{ - char buf[32]; /* long enough for 64-bit int, and then some. */ - tor_snprintf(buf,sizeof(buf),"%d", num); - return smartlist_contains_string(sl, buf); -} - -/** Return true iff the two lists contain the same strings in the same - * order, or if they are both NULL. */ -int -smartlist_strings_eq(const smartlist_t *sl1, const smartlist_t *sl2) -{ - if (sl1 == NULL) - return sl2 == NULL; - if (sl2 == NULL) - return 0; - if (smartlist_len(sl1) != smartlist_len(sl2)) - return 0; - SMARTLIST_FOREACH(sl1, const char *, cp1, { - const char *cp2 = smartlist_get(sl2, cp1_sl_idx); - if (strcmp(cp1, cp2)) - return 0; - }); - return 1; -} - -/** Return true iff the two lists contain the same int pointer values in - * the same order, or if they are both NULL. */ -int -smartlist_ints_eq(const smartlist_t *sl1, const smartlist_t *sl2) -{ - if (sl1 == NULL) - return sl2 == NULL; - if (sl2 == NULL) - return 0; - if (smartlist_len(sl1) != smartlist_len(sl2)) - return 0; - SMARTLIST_FOREACH(sl1, int *, cp1, { - int *cp2 = smartlist_get(sl2, cp1_sl_idx); - if (*cp1 != *cp2) - return 0; - }); - return 1; -} - -/** Return true iff <b>sl</b> has some element E such that - * tor_memeq(E,<b>element</b>,DIGEST_LEN) - */ -int -smartlist_contains_digest(const smartlist_t *sl, const char *element) -{ - int i; - if (!sl) return 0; - for (i=0; i < sl->num_used; i++) - if (tor_memeq((const char*)sl->list[i],element,DIGEST_LEN)) - return 1; - return 0; -} - -/** Return true iff some element E of sl2 has smartlist_contains(sl1,E). - */ -int -smartlist_overlap(const smartlist_t *sl1, const smartlist_t *sl2) -{ - int i; - for (i=0; i < sl2->num_used; i++) - if (smartlist_contains(sl1, sl2->list[i])) - return 1; - return 0; -} - -/** Remove every element E of sl1 such that !smartlist_contains(sl2,E). - * Does not preserve the order of sl1. - */ -void -smartlist_intersect(smartlist_t *sl1, const smartlist_t *sl2) -{ - int i; - for (i=0; i < sl1->num_used; i++) - if (!smartlist_contains(sl2, sl1->list[i])) { - sl1->list[i] = sl1->list[--sl1->num_used]; /* swap with the end */ - i--; /* so we process the new i'th element */ - sl1->list[sl1->num_used] = NULL; - } -} - -/** Remove every element E of sl1 such that smartlist_contains(sl2,E). - * Does not preserve the order of sl1. - */ -void -smartlist_subtract(smartlist_t *sl1, const smartlist_t *sl2) -{ - int i; - for (i=0; i < sl2->num_used; i++) - smartlist_remove(sl1, sl2->list[i]); -} - -/** Remove the <b>idx</b>th element of sl; if idx is not the last - * element, swap the last element of sl into the <b>idx</b>th space. - */ -void -smartlist_del(smartlist_t *sl, int idx) -{ - tor_assert(sl); - tor_assert(idx>=0); - tor_assert(idx < sl->num_used); - sl->list[idx] = sl->list[--sl->num_used]; - sl->list[sl->num_used] = NULL; -} - -/** Remove the <b>idx</b>th element of sl; if idx is not the last element, - * moving all subsequent elements back one space. Return the old value - * of the <b>idx</b>th element. - */ -void -smartlist_del_keeporder(smartlist_t *sl, int idx) -{ - tor_assert(sl); - tor_assert(idx>=0); - tor_assert(idx < sl->num_used); - --sl->num_used; - if (idx < sl->num_used) - memmove(sl->list+idx, sl->list+idx+1, sizeof(void*)*(sl->num_used-idx)); - sl->list[sl->num_used] = NULL; -} - -/** Insert the value <b>val</b> as the new <b>idx</b>th element of - * <b>sl</b>, moving all items previously at <b>idx</b> or later - * forward one space. - */ -void -smartlist_insert(smartlist_t *sl, int idx, void *val) -{ - tor_assert(sl); - tor_assert(idx>=0); - tor_assert(idx <= sl->num_used); - if (idx == sl->num_used) { - smartlist_add(sl, val); - } else { - smartlist_ensure_capacity(sl, ((size_t) sl->num_used)+1); - /* Move other elements away */ - if (idx < sl->num_used) - memmove(sl->list + idx + 1, sl->list + idx, - sizeof(void*)*(sl->num_used-idx)); - sl->num_used++; - sl->list[idx] = val; - } -} - -/** - * Split a string <b>str</b> along all occurrences of <b>sep</b>, - * appending the (newly allocated) split strings, in order, to - * <b>sl</b>. Return the number of strings added to <b>sl</b>. - * - * If <b>flags</b>&SPLIT_SKIP_SPACE is true, remove initial and - * trailing space from each entry. - * If <b>flags</b>&SPLIT_IGNORE_BLANK is true, remove any entries - * of length 0. - * If <b>flags</b>&SPLIT_STRIP_SPACE is true, strip spaces from each - * split string. - * - * If <b>max</b>\>0, divide the string into no more than <b>max</b> pieces. If - * <b>sep</b> is NULL, split on any sequence of horizontal space. - */ -int -smartlist_split_string(smartlist_t *sl, const char *str, const char *sep, - int flags, int max) -{ - const char *cp, *end, *next; - int n = 0; - - tor_assert(sl); - tor_assert(str); - - cp = str; - while (1) { - if (flags&SPLIT_SKIP_SPACE) { - while (TOR_ISSPACE(*cp)) ++cp; - } - - if (max>0 && n == max-1) { - end = strchr(cp,'\0'); - } else if (sep) { - end = strstr(cp,sep); - if (!end) - end = strchr(cp,'\0'); - } else { - for (end = cp; *end && *end != '\t' && *end != ' '; ++end) - ; - } - - tor_assert(end); - - if (!*end) { - next = NULL; - } else if (sep) { - next = end+strlen(sep); - } else { - next = end+1; - while (*next == '\t' || *next == ' ') - ++next; - } - - if (flags&SPLIT_SKIP_SPACE) { - while (end > cp && TOR_ISSPACE(*(end-1))) - --end; - } - if (end != cp || !(flags&SPLIT_IGNORE_BLANK)) { - char *string = tor_strndup(cp, end-cp); - if (flags&SPLIT_STRIP_SPACE) - tor_strstrip(string, " "); - smartlist_add(sl, string); - ++n; - } - if (!next) - break; - cp = next; - } - - return n; -} - -/** Allocate and return a new string containing the concatenation of - * the elements of <b>sl</b>, in order, separated by <b>join</b>. If - * <b>terminate</b> is true, also terminate the string with <b>join</b>. - * If <b>len_out</b> is not NULL, set <b>len_out</b> to the length of - * the returned string. Requires that every element of <b>sl</b> is - * NUL-terminated string. - */ -char * -smartlist_join_strings(smartlist_t *sl, const char *join, - int terminate, size_t *len_out) -{ - return smartlist_join_strings2(sl,join,strlen(join),terminate,len_out); -} - -/** As smartlist_join_strings, but instead of separating/terminated with a - * NUL-terminated string <b>join</b>, uses the <b>join_len</b>-byte sequence - * at <b>join</b>. (Useful for generating a sequence of NUL-terminated - * strings.) - */ -char * -smartlist_join_strings2(smartlist_t *sl, const char *join, - size_t join_len, int terminate, size_t *len_out) -{ - int i; - size_t n = 0; - char *r = NULL, *dst, *src; - - tor_assert(sl); - tor_assert(join); - - if (terminate) - n = join_len; - - for (i = 0; i < sl->num_used; ++i) { - n += strlen(sl->list[i]); - if (i+1 < sl->num_used) /* avoid double-counting the last one */ - n += join_len; - } - dst = r = tor_malloc(n+1); - for (i = 0; i < sl->num_used; ) { - for (src = sl->list[i]; *src; ) - *dst++ = *src++; - if (++i < sl->num_used) { - memcpy(dst, join, join_len); - dst += join_len; - } - } - if (terminate) { - memcpy(dst, join, join_len); - dst += join_len; - } - *dst = '\0'; - - if (len_out) - *len_out = dst-r; - return r; -} - -/** Sort the members of <b>sl</b> into an order defined by - * the ordering function <b>compare</b>, which returns less then 0 if a - * precedes b, greater than 0 if b precedes a, and 0 if a 'equals' b. - */ -void -smartlist_sort(smartlist_t *sl, int (*compare)(const void **a, const void **b)) -{ - if (!sl->num_used) - return; - qsort(sl->list, sl->num_used, sizeof(void*), - (int (*)(const void *,const void*))compare); -} - -/** Given a smartlist <b>sl</b> sorted with the function <b>compare</b>, - * return the most frequent member in the list. Break ties in favor of - * later elements. If the list is empty, return NULL. If count_out is - * non-null, set it to the count of the most frequent member. - */ -void * -smartlist_get_most_frequent_(const smartlist_t *sl, - int (*compare)(const void **a, const void **b), - int *count_out) -{ - const void *most_frequent = NULL; - int most_frequent_count = 0; - - const void *cur = NULL; - int i, count=0; - - if (!sl->num_used) { - if (count_out) - *count_out = 0; - return NULL; - } - for (i = 0; i < sl->num_used; ++i) { - const void *item = sl->list[i]; - if (cur && 0 == compare(&cur, &item)) { - ++count; - } else { - if (cur && count >= most_frequent_count) { - most_frequent = cur; - most_frequent_count = count; - } - cur = item; - count = 1; - } - } - if (cur && count >= most_frequent_count) { - most_frequent = cur; - most_frequent_count = count; - } - if (count_out) - *count_out = most_frequent_count; - return (void*)most_frequent; -} - -/** Given a sorted smartlist <b>sl</b> and the comparison function used to - * sort it, remove all duplicate members. If free_fn is provided, calls - * free_fn on each duplicate. Otherwise, just removes them. Preserves order. - */ -void -smartlist_uniq(smartlist_t *sl, - int (*compare)(const void **a, const void **b), - void (*free_fn)(void *a)) -{ - int i; - for (i=1; i < sl->num_used; ++i) { - if (compare((const void **)&(sl->list[i-1]), - (const void **)&(sl->list[i])) == 0) { - if (free_fn) - free_fn(sl->list[i]); - smartlist_del_keeporder(sl, i--); - } - } -} - -/** Assuming the members of <b>sl</b> are in order, return a pointer to the - * member that matches <b>key</b>. Ordering and matching are defined by a - * <b>compare</b> function that returns 0 on a match; less than 0 if key is - * less than member, and greater than 0 if key is greater then member. - */ -void * -smartlist_bsearch(smartlist_t *sl, const void *key, - int (*compare)(const void *key, const void **member)) -{ - int found, idx; - idx = smartlist_bsearch_idx(sl, key, compare, &found); - return found ? smartlist_get(sl, idx) : NULL; -} - -/** Assuming the members of <b>sl</b> are in order, return the index of the - * member that matches <b>key</b>. If no member matches, return the index of - * the first member greater than <b>key</b>, or smartlist_len(sl) if no member - * is greater than <b>key</b>. Set <b>found_out</b> to true on a match, to - * false otherwise. Ordering and matching are defined by a <b>compare</b> - * function that returns 0 on a match; less than 0 if key is less than member, - * and greater than 0 if key is greater then member. - */ -int -smartlist_bsearch_idx(const smartlist_t *sl, const void *key, - int (*compare)(const void *key, const void **member), - int *found_out) -{ - int hi, lo, cmp, mid, len, diff; - - tor_assert(sl); - tor_assert(compare); - tor_assert(found_out); - - len = smartlist_len(sl); - - /* Check for the trivial case of a zero-length list */ - if (len == 0) { - *found_out = 0; - /* We already know smartlist_len(sl) is 0 in this case */ - return 0; - } - - /* Okay, we have a real search to do */ - tor_assert(len > 0); - lo = 0; - hi = len - 1; - - /* - * These invariants are always true: - * - * For all i such that 0 <= i < lo, sl[i] < key - * For all i such that hi < i <= len, sl[i] > key - */ - - while (lo <= hi) { - diff = hi - lo; - /* - * We want mid = (lo + hi) / 2, but that could lead to overflow, so - * instead diff = hi - lo (non-negative because of loop condition), and - * then hi = lo + diff, mid = (lo + lo + diff) / 2 = lo + (diff / 2). - */ - mid = lo + (diff / 2); - cmp = compare(key, (const void**) &(sl->list[mid])); - if (cmp == 0) { - /* sl[mid] == key; we found it */ - *found_out = 1; - return mid; - } else if (cmp > 0) { - /* - * key > sl[mid] and an index i such that sl[i] == key must - * have i > mid if it exists. - */ - - /* - * Since lo <= mid <= hi, hi can only decrease on each iteration (by - * being set to mid - 1) and hi is initially len - 1, mid < len should - * always hold, and this is not symmetric with the left end of list - * mid > 0 test below. A key greater than the right end of the list - * should eventually lead to lo == hi == mid == len - 1, and then - * we set lo to len below and fall out to the same exit we hit for - * a key in the middle of the list but not matching. Thus, we just - * assert for consistency here rather than handle a mid == len case. - */ - tor_assert(mid < len); - /* Move lo to the element immediately after sl[mid] */ - lo = mid + 1; - } else { - /* This should always be true in this case */ - tor_assert(cmp < 0); - - /* - * key < sl[mid] and an index i such that sl[i] == key must - * have i < mid if it exists. - */ - - if (mid > 0) { - /* Normal case, move hi to the element immediately before sl[mid] */ - hi = mid - 1; - } else { - /* These should always be true in this case */ - tor_assert(mid == lo); - tor_assert(mid == 0); - /* - * We were at the beginning of the list and concluded that every - * element e compares e > key. - */ - *found_out = 0; - return 0; - } - } - } - - /* - * lo > hi; we have no element matching key but we have elements falling - * on both sides of it. The lo index points to the first element > key. - */ - tor_assert(lo == hi + 1); /* All other cases should have been handled */ - tor_assert(lo >= 0); - tor_assert(lo <= len); - tor_assert(hi >= 0); - tor_assert(hi <= len); - - if (lo < len) { - cmp = compare(key, (const void **) &(sl->list[lo])); - tor_assert(cmp < 0); - } else { - cmp = compare(key, (const void **) &(sl->list[len-1])); - tor_assert(cmp > 0); - } - - *found_out = 0; - return lo; -} - -/** Helper: compare two const char **s. */ -static int -compare_string_ptrs_(const void **_a, const void **_b) -{ - return strcmp((const char*)*_a, (const char*)*_b); -} - -/** Sort a smartlist <b>sl</b> containing strings into lexically ascending - * order. */ -void -smartlist_sort_strings(smartlist_t *sl) -{ - smartlist_sort(sl, compare_string_ptrs_); -} - -/** Return the most frequent string in the sorted list <b>sl</b> */ -const char * -smartlist_get_most_frequent_string(smartlist_t *sl) -{ - return smartlist_get_most_frequent(sl, compare_string_ptrs_); -} - -/** Return the most frequent string in the sorted list <b>sl</b>. - * If <b>count_out</b> is provided, set <b>count_out</b> to the - * number of times that string appears. - */ -const char * -smartlist_get_most_frequent_string_(smartlist_t *sl, int *count_out) -{ - return smartlist_get_most_frequent_(sl, compare_string_ptrs_, count_out); -} - -/** Remove duplicate strings from a sorted list, and free them with tor_free(). - */ -void -smartlist_uniq_strings(smartlist_t *sl) -{ - smartlist_uniq(sl, compare_string_ptrs_, tor_free_); -} - -/** Helper: compare two pointers. */ -static int -compare_ptrs_(const void **_a, const void **_b) -{ - const void *a = *_a, *b = *_b; - if (a<b) - return -1; - else if (a==b) - return 0; - else - return 1; -} - -/** Sort <b>sl</b> in ascending order of the pointers it contains. */ -void -smartlist_sort_pointers(smartlist_t *sl) -{ - smartlist_sort(sl, compare_ptrs_); -} - -/* Heap-based priority queue implementation for O(lg N) insert and remove. - * Recall that the heap property is that, for every index I, h[I] < - * H[LEFT_CHILD[I]] and h[I] < H[RIGHT_CHILD[I]]. - * - * For us to remove items other than the topmost item, each item must store - * its own index within the heap. When calling the pqueue functions, tell - * them about the offset of the field that stores the index within the item. - * - * Example: - * - * typedef struct timer_t { - * struct timeval tv; - * int heap_index; - * } timer_t; - * - * static int compare(const void *p1, const void *p2) { - * const timer_t *t1 = p1, *t2 = p2; - * if (t1->tv.tv_sec < t2->tv.tv_sec) { - * return -1; - * } else if (t1->tv.tv_sec > t2->tv.tv_sec) { - * return 1; - * } else { - * return t1->tv.tv_usec - t2->tv_usec; - * } - * } - * - * void timer_heap_insert(smartlist_t *heap, timer_t *timer) { - * smartlist_pqueue_add(heap, compare, STRUCT_OFFSET(timer_t, heap_index), - * timer); - * } - * - * void timer_heap_pop(smartlist_t *heap) { - * return smartlist_pqueue_pop(heap, compare, - * STRUCT_OFFSET(timer_t, heap_index)); - * } - */ - -/** @{ */ -/** Functions to manipulate heap indices to find a node's parent and children. - * - * For a 1-indexed array, we would use LEFT_CHILD[x] = 2*x and RIGHT_CHILD[x] - * = 2*x + 1. But this is C, so we have to adjust a little. */ - -/* MAX_PARENT_IDX is the largest IDX in the smartlist which might have - * children whose indices fit inside an int. - * LEFT_CHILD(MAX_PARENT_IDX) == INT_MAX-2; - * RIGHT_CHILD(MAX_PARENT_IDX) == INT_MAX-1; - * LEFT_CHILD(MAX_PARENT_IDX + 1) == INT_MAX // impossible, see max list size. - */ -#define MAX_PARENT_IDX ((INT_MAX - 2) / 2) -/* If this is true, then i is small enough to potentially have children - * in the smartlist, and it is save to use LEFT_CHILD/RIGHT_CHILD on it. */ -#define IDX_MAY_HAVE_CHILDREN(i) ((i) <= MAX_PARENT_IDX) -#define LEFT_CHILD(i) ( 2*(i) + 1 ) -#define RIGHT_CHILD(i) ( 2*(i) + 2 ) -#define PARENT(i) ( ((i)-1) / 2 ) -/** }@ */ - -/** @{ */ -/** Helper macros for heaps: Given a local variable <b>idx_field_offset</b> - * set to the offset of an integer index within the heap element structure, - * IDX_OF_ITEM(p) gives you the index of p, and IDXP(p) gives you a pointer to - * where p's index is stored. Given additionally a local smartlist <b>sl</b>, - * UPDATE_IDX(i) sets the index of the element at <b>i</b> to the correct - * value (that is, to <b>i</b>). - */ -#define IDXP(p) ((int*)STRUCT_VAR_P(p, idx_field_offset)) - -#define UPDATE_IDX(i) do { \ - void *updated = sl->list[i]; \ - *IDXP(updated) = i; \ - } while (0) - -#define IDX_OF_ITEM(p) (*IDXP(p)) -/** @} */ - -/** Helper. <b>sl</b> may have at most one violation of the heap property: - * the item at <b>idx</b> may be greater than one or both of its children. - * Restore the heap property. */ -static inline void -smartlist_heapify(smartlist_t *sl, - int (*compare)(const void *a, const void *b), - int idx_field_offset, - int idx) -{ - while (1) { - if (! IDX_MAY_HAVE_CHILDREN(idx)) { - /* idx is so large that it cannot have any children, since doing so - * would mean the smartlist was over-capacity. Therefore it cannot - * violate the heap property by being greater than a child (since it - * doesn't have any). */ - return; - } - - int left_idx = LEFT_CHILD(idx); - int best_idx; - - if (left_idx >= sl->num_used) - return; - if (compare(sl->list[idx],sl->list[left_idx]) < 0) - best_idx = idx; - else - best_idx = left_idx; - if (left_idx+1 < sl->num_used && - compare(sl->list[left_idx+1],sl->list[best_idx]) < 0) - best_idx = left_idx + 1; - - if (best_idx == idx) { - return; - } else { - void *tmp = sl->list[idx]; - sl->list[idx] = sl->list[best_idx]; - sl->list[best_idx] = tmp; - UPDATE_IDX(idx); - UPDATE_IDX(best_idx); - - idx = best_idx; - } - } -} - -/** Insert <b>item</b> into the heap stored in <b>sl</b>, where order is - * determined by <b>compare</b> and the offset of the item in the heap is - * stored in an int-typed field at position <b>idx_field_offset</b> within - * item. - */ -void -smartlist_pqueue_add(smartlist_t *sl, - int (*compare)(const void *a, const void *b), - int idx_field_offset, - void *item) -{ - int idx; - smartlist_add(sl,item); - UPDATE_IDX(sl->num_used-1); - - for (idx = sl->num_used - 1; idx; ) { - int parent = PARENT(idx); - if (compare(sl->list[idx], sl->list[parent]) < 0) { - void *tmp = sl->list[parent]; - sl->list[parent] = sl->list[idx]; - sl->list[idx] = tmp; - UPDATE_IDX(parent); - UPDATE_IDX(idx); - idx = parent; - } else { - return; - } - } -} - -/** Remove and return the top-priority item from the heap stored in <b>sl</b>, - * where order is determined by <b>compare</b> and the item's position is - * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must - * not be empty. */ -void * -smartlist_pqueue_pop(smartlist_t *sl, - int (*compare)(const void *a, const void *b), - int idx_field_offset) -{ - void *top; - tor_assert(sl->num_used); - - top = sl->list[0]; - *IDXP(top)=-1; - if (--sl->num_used) { - sl->list[0] = sl->list[sl->num_used]; - sl->list[sl->num_used] = NULL; - UPDATE_IDX(0); - smartlist_heapify(sl, compare, idx_field_offset, 0); - } - sl->list[sl->num_used] = NULL; - return top; -} - -/** Remove the item <b>item</b> from the heap stored in <b>sl</b>, - * where order is determined by <b>compare</b> and the item's position is - * stored at position <b>idx_field_offset</b> within the item. <b>sl</b> must - * not be empty. */ -void -smartlist_pqueue_remove(smartlist_t *sl, - int (*compare)(const void *a, const void *b), - int idx_field_offset, - void *item) -{ - int idx = IDX_OF_ITEM(item); - tor_assert(idx >= 0); - tor_assert(sl->list[idx] == item); - --sl->num_used; - *IDXP(item) = -1; - if (idx == sl->num_used) { - sl->list[sl->num_used] = NULL; - return; - } else { - sl->list[idx] = sl->list[sl->num_used]; - sl->list[sl->num_used] = NULL; - UPDATE_IDX(idx); - smartlist_heapify(sl, compare, idx_field_offset, idx); - } -} - -/** Assert that the heap property is correctly maintained by the heap stored - * in <b>sl</b>, where order is determined by <b>compare</b>. */ -void -smartlist_pqueue_assert_ok(smartlist_t *sl, - int (*compare)(const void *a, const void *b), - int idx_field_offset) -{ - int i; - for (i = sl->num_used - 1; i >= 0; --i) { - if (i>0) - tor_assert(compare(sl->list[PARENT(i)], sl->list[i]) <= 0); - tor_assert(IDX_OF_ITEM(sl->list[i]) == i); - } -} - -/** Helper: compare two DIGEST_LEN digests. */ -static int -compare_digests_(const void **_a, const void **_b) -{ - return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST_LEN); -} - -/** Sort the list of DIGEST_LEN-byte digests into ascending order. */ -void -smartlist_sort_digests(smartlist_t *sl) -{ - smartlist_sort(sl, compare_digests_); -} - -/** Remove duplicate digests from a sorted list, and free them with tor_free(). - */ -void -smartlist_uniq_digests(smartlist_t *sl) -{ - smartlist_uniq(sl, compare_digests_, tor_free_); -} - -/** Helper: compare two DIGEST256_LEN digests. */ -static int -compare_digests256_(const void **_a, const void **_b) -{ - return tor_memcmp((const char*)*_a, (const char*)*_b, DIGEST256_LEN); -} - -/** Sort the list of DIGEST256_LEN-byte digests into ascending order. */ -void -smartlist_sort_digests256(smartlist_t *sl) -{ - smartlist_sort(sl, compare_digests256_); -} - -/** Return the most frequent member of the sorted list of DIGEST256_LEN - * digests in <b>sl</b> */ -const uint8_t * -smartlist_get_most_frequent_digest256(smartlist_t *sl) -{ - return smartlist_get_most_frequent(sl, compare_digests256_); -} - -/** Remove duplicate 256-bit digests from a sorted list, and free them with - * tor_free(). - */ -void -smartlist_uniq_digests256(smartlist_t *sl) -{ - smartlist_uniq(sl, compare_digests256_, tor_free_); -} - -/** Helper: Declare an entry type and a map type to implement a mapping using - * ht.h. The map type will be called <b>maptype</b>. The key part of each - * entry is declared using the C declaration <b>keydecl</b>. All functions - * and types associated with the map get prefixed with <b>prefix</b> */ -#define DEFINE_MAP_STRUCTS(maptype, keydecl, prefix) \ - typedef struct prefix ## entry_t { \ - HT_ENTRY(prefix ## entry_t) node; \ - void *val; \ - keydecl; \ - } prefix ## entry_t; \ - struct maptype { \ - HT_HEAD(prefix ## impl, prefix ## entry_t) head; \ - } - -DEFINE_MAP_STRUCTS(strmap_t, char *key, strmap_); -DEFINE_MAP_STRUCTS(digestmap_t, char key[DIGEST_LEN], digestmap_); -DEFINE_MAP_STRUCTS(digest256map_t, uint8_t key[DIGEST256_LEN], digest256map_); - -/** Helper: compare strmap_entry_t objects by key value. */ -static inline int -strmap_entries_eq(const strmap_entry_t *a, const strmap_entry_t *b) -{ - return !strcmp(a->key, b->key); -} - -/** Helper: return a hash value for a strmap_entry_t. */ -static inline unsigned int -strmap_entry_hash(const strmap_entry_t *a) -{ - return (unsigned) siphash24g(a->key, strlen(a->key)); -} - -/** Helper: compare digestmap_entry_t objects by key value. */ -static inline int -digestmap_entries_eq(const digestmap_entry_t *a, const digestmap_entry_t *b) -{ - return tor_memeq(a->key, b->key, DIGEST_LEN); -} - -/** Helper: return a hash value for a digest_map_t. */ -static inline unsigned int -digestmap_entry_hash(const digestmap_entry_t *a) -{ - return (unsigned) siphash24g(a->key, DIGEST_LEN); -} - -/** Helper: compare digestmap_entry_t objects by key value. */ -static inline int -digest256map_entries_eq(const digest256map_entry_t *a, - const digest256map_entry_t *b) -{ - return tor_memeq(a->key, b->key, DIGEST256_LEN); -} - -/** Helper: return a hash value for a digest_map_t. */ -static inline unsigned int -digest256map_entry_hash(const digest256map_entry_t *a) -{ - return (unsigned) siphash24g(a->key, DIGEST256_LEN); -} - -HT_PROTOTYPE(strmap_impl, strmap_entry_t, node, strmap_entry_hash, - strmap_entries_eq) -HT_GENERATE2(strmap_impl, strmap_entry_t, node, strmap_entry_hash, - strmap_entries_eq, 0.6, tor_reallocarray_, tor_free_) - -HT_PROTOTYPE(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash, - digestmap_entries_eq) -HT_GENERATE2(digestmap_impl, digestmap_entry_t, node, digestmap_entry_hash, - digestmap_entries_eq, 0.6, tor_reallocarray_, tor_free_) - -HT_PROTOTYPE(digest256map_impl, digest256map_entry_t, node, - digest256map_entry_hash, - digest256map_entries_eq) -HT_GENERATE2(digest256map_impl, digest256map_entry_t, node, - digest256map_entry_hash, - digest256map_entries_eq, 0.6, tor_reallocarray_, tor_free_) - -static inline void -strmap_entry_free(strmap_entry_t *ent) -{ - tor_free(ent->key); - tor_free(ent); -} -static inline void -digestmap_entry_free(digestmap_entry_t *ent) -{ - tor_free(ent); -} -static inline void -digest256map_entry_free(digest256map_entry_t *ent) -{ - tor_free(ent); -} - -static inline void -strmap_assign_tmp_key(strmap_entry_t *ent, const char *key) -{ - ent->key = (char*)key; -} -static inline void -digestmap_assign_tmp_key(digestmap_entry_t *ent, const char *key) -{ - memcpy(ent->key, key, DIGEST_LEN); -} -static inline void -digest256map_assign_tmp_key(digest256map_entry_t *ent, const uint8_t *key) -{ - memcpy(ent->key, key, DIGEST256_LEN); -} -static inline void -strmap_assign_key(strmap_entry_t *ent, const char *key) -{ - ent->key = tor_strdup(key); -} -static inline void -digestmap_assign_key(digestmap_entry_t *ent, const char *key) -{ - memcpy(ent->key, key, DIGEST_LEN); -} -static inline void -digest256map_assign_key(digest256map_entry_t *ent, const uint8_t *key) -{ - memcpy(ent->key, key, DIGEST256_LEN); -} - -/** - * Macro: implement all the functions for a map that are declared in - * container.h by the DECLARE_MAP_FNS() macro. You must additionally define a - * prefix_entry_free_() function to free entries (and their keys), a - * prefix_assign_tmp_key() function to temporarily set a stack-allocated - * entry to hold a key, and a prefix_assign_key() function to set a - * heap-allocated entry to hold a key. - */ -#define IMPLEMENT_MAP_FNS(maptype, keytype, prefix) \ - /** Create and return a new empty map. */ \ - MOCK_IMPL(maptype *, \ - prefix##_new,(void)) \ - { \ - maptype *result; \ - result = tor_malloc(sizeof(maptype)); \ - HT_INIT(prefix##_impl, &result->head); \ - return result; \ - } \ - \ - /** Return the item from <b>map</b> whose key matches <b>key</b>, or \ - * NULL if no such value exists. */ \ - void * \ - prefix##_get(const maptype *map, const keytype key) \ - { \ - prefix ##_entry_t *resolve; \ - prefix ##_entry_t search; \ - tor_assert(map); \ - tor_assert(key); \ - prefix ##_assign_tmp_key(&search, key); \ - resolve = HT_FIND(prefix ##_impl, &map->head, &search); \ - if (resolve) { \ - return resolve->val; \ - } else { \ - return NULL; \ - } \ - } \ - \ - /** Add an entry to <b>map</b> mapping <b>key</b> to <b>val</b>; \ - * return the previous value, or NULL if no such value existed. */ \ - void * \ - prefix##_set(maptype *map, const keytype key, void *val) \ - { \ - prefix##_entry_t search; \ - void *oldval; \ - tor_assert(map); \ - tor_assert(key); \ - tor_assert(val); \ - prefix##_assign_tmp_key(&search, key); \ - /* We a lot of our time in this function, so the code below is */ \ - /* meant to optimize the check/alloc/set cycle by avoiding the two */\ - /* trips to the hash table that we would do in the unoptimized */ \ - /* version of this code. (Each of HT_INSERT and HT_FIND calls */ \ - /* HT_SET_HASH and HT_FIND_P.) */ \ - HT_FIND_OR_INSERT_(prefix##_impl, node, prefix##_entry_hash, \ - &(map->head), \ - prefix##_entry_t, &search, ptr, \ - { \ - /* we found an entry. */ \ - oldval = (*ptr)->val; \ - (*ptr)->val = val; \ - return oldval; \ - }, \ - { \ - /* We didn't find the entry. */ \ - prefix##_entry_t *newent = \ - tor_malloc_zero(sizeof(prefix##_entry_t)); \ - prefix##_assign_key(newent, key); \ - newent->val = val; \ - HT_FOI_INSERT_(node, &(map->head), \ - &search, newent, ptr); \ - return NULL; \ - }); \ - } \ - \ - /** Remove the value currently associated with <b>key</b> from the map. \ - * Return the value if one was set, or NULL if there was no entry for \ - * <b>key</b>. \ - * \ - * Note: you must free any storage associated with the returned value. \ - */ \ - void * \ - prefix##_remove(maptype *map, const keytype key) \ - { \ - prefix##_entry_t *resolve; \ - prefix##_entry_t search; \ - void *oldval; \ - tor_assert(map); \ - tor_assert(key); \ - prefix##_assign_tmp_key(&search, key); \ - resolve = HT_REMOVE(prefix##_impl, &map->head, &search); \ - if (resolve) { \ - oldval = resolve->val; \ - prefix##_entry_free(resolve); \ - return oldval; \ - } else { \ - return NULL; \ - } \ - } \ - \ - /** Return the number of elements in <b>map</b>. */ \ - int \ - prefix##_size(const maptype *map) \ - { \ - return HT_SIZE(&map->head); \ - } \ - \ - /** Return true iff <b>map</b> has no entries. */ \ - int \ - prefix##_isempty(const maptype *map) \ - { \ - return HT_EMPTY(&map->head); \ - } \ - \ - /** Assert that <b>map</b> is not corrupt. */ \ - void \ - prefix##_assert_ok(const maptype *map) \ - { \ - tor_assert(!prefix##_impl_HT_REP_IS_BAD_(&map->head)); \ - } \ - \ - /** Remove all entries from <b>map</b>, and deallocate storage for \ - * those entries. If free_val is provided, invoked it every value in \ - * <b>map</b>. */ \ - MOCK_IMPL(void, \ - prefix##_free, (maptype *map, void (*free_val)(void*))) \ - { \ - prefix##_entry_t **ent, **next, *this; \ - if (!map) \ - return; \ - for (ent = HT_START(prefix##_impl, &map->head); ent != NULL; \ - ent = next) { \ - this = *ent; \ - next = HT_NEXT_RMV(prefix##_impl, &map->head, ent); \ - if (free_val) \ - free_val(this->val); \ - prefix##_entry_free(this); \ - } \ - tor_assert(HT_EMPTY(&map->head)); \ - HT_CLEAR(prefix##_impl, &map->head); \ - tor_free(map); \ - } \ - \ - /** return an <b>iterator</b> pointer to the front of a map. \ - * \ - * Iterator example: \ - * \ - * \code \ - * // uppercase values in "map", removing empty values. \ - * \ - * strmap_iter_t *iter; \ - * const char *key; \ - * void *val; \ - * char *cp; \ - * \ - * for (iter = strmap_iter_init(map); !strmap_iter_done(iter); ) { \ - * strmap_iter_get(iter, &key, &val); \ - * cp = (char*)val; \ - * if (!*cp) { \ - * iter = strmap_iter_next_rmv(map,iter); \ - * free(val); \ - * } else { \ - * for (;*cp;cp++) *cp = TOR_TOUPPER(*cp); \ - */ \ - prefix##_iter_t * \ - prefix##_iter_init(maptype *map) \ - { \ - tor_assert(map); \ - return HT_START(prefix##_impl, &map->head); \ - } \ - \ - /** Advance <b>iter</b> a single step to the next entry, and return \ - * its new value. */ \ - prefix##_iter_t * \ - prefix##_iter_next(maptype *map, prefix##_iter_t *iter) \ - { \ - tor_assert(map); \ - tor_assert(iter); \ - return HT_NEXT(prefix##_impl, &map->head, iter); \ - } \ - /** Advance <b>iter</b> a single step to the next entry, removing the \ - * current entry, and return its new value. */ \ - prefix##_iter_t * \ - prefix##_iter_next_rmv(maptype *map, prefix##_iter_t *iter) \ - { \ - prefix##_entry_t *rmv; \ - tor_assert(map); \ - tor_assert(iter); \ - tor_assert(*iter); \ - rmv = *iter; \ - iter = HT_NEXT_RMV(prefix##_impl, &map->head, iter); \ - prefix##_entry_free(rmv); \ - return iter; \ - } \ - /** Set *<b>keyp</b> and *<b>valp</b> to the current entry pointed \ - * to by iter. */ \ - void \ - prefix##_iter_get(prefix##_iter_t *iter, const keytype *keyp, \ - void **valp) \ - { \ - tor_assert(iter); \ - tor_assert(*iter); \ - tor_assert(keyp); \ - tor_assert(valp); \ - *keyp = (*iter)->key; \ - *valp = (*iter)->val; \ - } \ - /** Return true iff <b>iter</b> has advanced past the last entry of \ - * <b>map</b>. */ \ - int \ - prefix##_iter_done(prefix##_iter_t *iter) \ - { \ - return iter == NULL; \ - } - -IMPLEMENT_MAP_FNS(strmap_t, char *, strmap) -IMPLEMENT_MAP_FNS(digestmap_t, char *, digestmap) -IMPLEMENT_MAP_FNS(digest256map_t, uint8_t *, digest256map) - -/** Same as strmap_set, but first converts <b>key</b> to lowercase. */ -void * -strmap_set_lc(strmap_t *map, const char *key, void *val) -{ - /* We could be a little faster by using strcasecmp instead, and a separate - * type, but I don't think it matters. */ - void *v; - char *lc_key = tor_strdup(key); - tor_strlower(lc_key); - v = strmap_set(map,lc_key,val); - tor_free(lc_key); - return v; -} - -/** Same as strmap_get, but first converts <b>key</b> to lowercase. */ -void * -strmap_get_lc(const strmap_t *map, const char *key) -{ - void *v; - char *lc_key = tor_strdup(key); - tor_strlower(lc_key); - v = strmap_get(map,lc_key); - tor_free(lc_key); - return v; -} - -/** Same as strmap_remove, but first converts <b>key</b> to lowercase */ -void * -strmap_remove_lc(strmap_t *map, const char *key) -{ - void *v; - char *lc_key = tor_strdup(key); - tor_strlower(lc_key); - v = strmap_remove(map,lc_key); - tor_free(lc_key); - return v; -} - -/** Declare a function called <b>funcname</b> that acts as a find_nth_FOO - * function for an array of type <b>elt_t</b>*. - * - * NOTE: The implementation kind of sucks: It's O(n log n), whereas finding - * the kth element of an n-element list can be done in O(n). Then again, this - * implementation is not in critical path, and it is obviously correct. */ -#define IMPLEMENT_ORDER_FUNC(funcname, elt_t) \ - static int \ - _cmp_ ## elt_t(const void *_a, const void *_b) \ - { \ - const elt_t *a = _a, *b = _b; \ - if (*a<*b) \ - return -1; \ - else if (*a>*b) \ - return 1; \ - else \ - return 0; \ - } \ - elt_t \ - funcname(elt_t *array, int n_elements, int nth) \ - { \ - tor_assert(nth >= 0); \ - tor_assert(nth < n_elements); \ - qsort(array, n_elements, sizeof(elt_t), _cmp_ ##elt_t); \ - return array[nth]; \ - } - -IMPLEMENT_ORDER_FUNC(find_nth_int, int) -IMPLEMENT_ORDER_FUNC(find_nth_time, time_t) -IMPLEMENT_ORDER_FUNC(find_nth_double, double) -IMPLEMENT_ORDER_FUNC(find_nth_uint32, uint32_t) -IMPLEMENT_ORDER_FUNC(find_nth_int32, int32_t) -IMPLEMENT_ORDER_FUNC(find_nth_long, long) - -/** Return a newly allocated digestset_t, optimized to hold a total of - * <b>max_elements</b> digests with a reasonably low false positive weight. */ -digestset_t * -digestset_new(int max_elements) -{ - /* The probability of false positives is about P=(1 - exp(-kn/m))^k, where k - * is the number of hash functions per entry, m is the bits in the array, - * and n is the number of elements inserted. For us, k==4, n<=max_elements, - * and m==n_bits= approximately max_elements*32. This gives - * P<(1-exp(-4*n/(32*n)))^4 == (1-exp(1/-8))^4 == .00019 - * - * It would be more optimal in space vs false positives to get this false - * positive rate by going for k==13, and m==18.5n, but we also want to - * conserve CPU, and k==13 is pretty big. - */ - int n_bits = 1u << (tor_log2(max_elements)+5); - digestset_t *r = tor_malloc(sizeof(digestset_t)); - r->mask = n_bits - 1; - r->ba = bitarray_init_zero(n_bits); - return r; -} - -/** Free all storage held in <b>set</b>. */ -void -digestset_free(digestset_t *set) -{ - if (!set) - return; - bitarray_free(set->ba); - tor_free(set); -} - |