diff options
Diffstat (limited to 'doc/spec/tor-spec.txt')
-rw-r--r-- | doc/spec/tor-spec.txt | 1004 |
1 files changed, 0 insertions, 1004 deletions
diff --git a/doc/spec/tor-spec.txt b/doc/spec/tor-spec.txt deleted file mode 100644 index 91ad561b8d..0000000000 --- a/doc/spec/tor-spec.txt +++ /dev/null @@ -1,1004 +0,0 @@ - - Tor Protocol Specification - - Roger Dingledine - Nick Mathewson - -Note: This document aims to specify Tor as implemented in 0.2.1.x. Future -versions of Tor may implement improved protocols, and compatibility is not -guaranteed. Compatibility notes are given for versions 0.1.1.15-rc and -later; earlier versions are not compatible with the Tor network as of this -writing. - -This specification is not a design document; most design criteria -are not examined. For more information on why Tor acts as it does, -see tor-design.pdf. - -0. Preliminaries - - The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL - NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and - "OPTIONAL" in this document are to be interpreted as described in - RFC 2119. - -0.1. Notation and encoding - - PK -- a public key. - SK -- a private key. - K -- a key for a symmetric cipher. - - a|b -- concatenation of 'a' and 'b'. - - [A0 B1 C2] -- a three-byte sequence, containing the bytes with - hexadecimal values A0, B1, and C2, in that order. - - All numeric values are encoded in network (big-endian) order. - - H(m) -- a cryptographic hash of m. - -0.2. Security parameters - - Tor uses a stream cipher, a public-key cipher, the Diffie-Hellman - protocol, and a hash function. - - KEY_LEN -- the length of the stream cipher's key, in bytes. - - PK_ENC_LEN -- the length of a public-key encrypted message, in bytes. - PK_PAD_LEN -- the number of bytes added in padding for public-key - encryption, in bytes. (The largest number of bytes that can be encrypted - in a single public-key operation is therefore PK_ENC_LEN-PK_PAD_LEN.) - - DH_LEN -- the number of bytes used to represent a member of the - Diffie-Hellman group. - DH_SEC_LEN -- the number of bytes used in a Diffie-Hellman private key (x). - - HASH_LEN -- the length of the hash function's output, in bytes. - - PAYLOAD_LEN -- The longest allowable cell payload, in bytes. (509) - - CELL_LEN -- The length of a Tor cell, in bytes. - -0.3. Ciphers - - For a stream cipher, we use 128-bit AES in counter mode, with an IV of all - 0 bytes. - - For a public-key cipher, we use RSA with 1024-bit keys and a fixed - exponent of 65537. We use OAEP-MGF1 padding, with SHA-1 as its digest - function. We leave the optional "Label" parameter unset. (For OAEP - padding, see ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf) - - For Diffie-Hellman, we use a generator (g) of 2. For the modulus (p), we - use the 1024-bit safe prime from rfc2409 section 6.2 whose hex - representation is: - - "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" - "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" - "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" - "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" - "49286651ECE65381FFFFFFFFFFFFFFFF" - - As an optimization, implementations SHOULD choose DH private keys (x) of - 320 bits. Implementations that do this MUST never use any DH key more - than once. - [May other implementations reuse their DH keys?? -RD] - [Probably not. Conceivably, you could get away with changing DH keys once - per second, but there are too many oddball attacks for me to be - comfortable that this is safe. -NM] - - For a hash function, we use SHA-1. - - KEY_LEN=16. - DH_LEN=128; DH_SEC_LEN=40. - PK_ENC_LEN=128; PK_PAD_LEN=42. - HASH_LEN=20. - - When we refer to "the hash of a public key", we mean the SHA-1 hash of the - DER encoding of an ASN.1 RSA public key (as specified in PKCS.1). - - All "random" values should be generated with a cryptographically strong - random number generator, unless otherwise noted. - - The "hybrid encryption" of a byte sequence M with a public key PK is - computed as follows: - 1. If M is less than PK_ENC_LEN-PK_PAD_LEN, pad and encrypt M with PK. - 2. Otherwise, generate a KEY_LEN byte random key K. - Let M1 = the first PK_ENC_LEN-PK_PAD_LEN-KEY_LEN bytes of M, - and let M2 = the rest of M. - Pad and encrypt K|M1 with PK. Encrypt M2 with our stream cipher, - using the key K. Concatenate these encrypted values. - [XXX Note that this "hybrid encryption" approach does not prevent - an attacker from adding or removing bytes to the end of M. It also - allows attackers to modify the bytes not covered by the OAEP -- - see Goldberg's PET2006 paper for details. We will add a MAC to this - scheme one day. -RD] - -0.4. Other parameter values - - CELL_LEN=512 - -1. System overview - - Tor is a distributed overlay network designed to anonymize - low-latency TCP-based applications such as web browsing, secure shell, - and instant messaging. Clients choose a path through the network and - build a ``circuit'', in which each node (or ``onion router'' or ``OR'') - in the path knows its predecessor and successor, but no other nodes in - the circuit. Traffic flowing down the circuit is sent in fixed-size - ``cells'', which are unwrapped by a symmetric key at each node (like - the layers of an onion) and relayed downstream. - -1.1. Keys and names - - Every Tor server has multiple public/private keypairs: - - - A long-term signing-only "Identity key" used to sign documents and - certificates, and used to establish server identity. - - A medium-term "Onion key" used to decrypt onion skins when accepting - circuit extend attempts. (See 5.1.) Old keys MUST be accepted for at - least one week after they are no longer advertised. Because of this, - servers MUST retain old keys for a while after they're rotated. - - A short-term "Connection key" used to negotiate TLS connections. - Tor implementations MAY rotate this key as often as they like, and - SHOULD rotate this key at least once a day. - - Tor servers are also identified by "nicknames"; these are specified in - dir-spec.txt. - -2. Connections - - Connections between two Tor servers, or between a client and a server, - use TLS/SSLv3 for link authentication and encryption. All - implementations MUST support the SSLv3 ciphersuite - "SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA", and SHOULD support the TLS - ciphersuite "TLS_DHE_RSA_WITH_AES_128_CBC_SHA" if it is available. - - There are three acceptable ways to perform a TLS handshake when - connecting to a Tor server: "certificates up-front", "renegotiation", and - "backwards-compatible renegotiation". ("Backwards-compatible - renegotiation" is, as the name implies, compatible with both other - handshake types.) - - Before Tor 0.2.0.21, only "certificates up-front" was supported. In Tor - 0.2.0.21 or later, "backwards-compatible renegotiation" is used. - - In "certificates up-front", the connection initiator always sends a - two-certificate chain, consisting of an X.509 certificate using a - short-term connection public key and a second, self- signed X.509 - certificate containing its identity key. The other party sends a similar - certificate chain. The initiator's ClientHello MUST NOT include any - ciphersuites other than: - TLS_DHE_RSA_WITH_AES_256_CBC_SHA - TLS_DHE_RSA_WITH_AES_128_CBC_SHA - SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA - SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA - - In "renegotiation", the connection initiator sends no certificates, and - the responder sends a single connection certificate. Once the TLS - handshake is complete, the initiator renegotiates the handshake, with each - party sending a two-certificate chain as in "certificates up-front". - The initiator's ClientHello MUST include at least one ciphersuite not in - the list above. The responder SHOULD NOT select any ciphersuite besides - those in the list above. - [The above "should not" is because some of the ciphers that - clients list may be fake.] - - In "backwards-compatible renegotiation", the connection initiator's - ClientHello MUST include at least one ciphersuite other than those listed - above. The connection responder examines the initiator's ciphersuite list - to see whether it includes any ciphers other than those included in the - list above. If extra ciphers are included, the responder proceeds as in - "renegotiation": it sends a single certificate and does not request - client certificates. Otherwise (in the case that no extra ciphersuites - are included in the ClientHello) the responder proceeds as in - "certificates up-front": it requests client certificates, and sends a - two-certificate chain. In either case, once the responder has sent its - certificate or certificates, the initiator counts them. If two - certificates have been sent, it proceeds as in "certificates up-front"; - otherwise, it proceeds as in "renegotiation". - - All new implementations of the Tor server protocol MUST support - "backwards-compatible renegotiation"; clients SHOULD do this too. If - this is not possible, new client implementations MUST support both - "renegotiation" and "certificates up-front" and use the router's - published link protocols list (see dir-spec.txt on the "protocols" entry) - to decide which to use. - - In all of the above handshake variants, certificates sent in the clear - SHOULD NOT include any strings to identify the host as a Tor server. In - the "renegotiation" and "backwards-compatible renegotiation" steps, the - initiator SHOULD choose a list of ciphersuites and TLS extensions - to mimic one used by a popular web browser. - - Responders MUST NOT select any TLS ciphersuite that lacks ephemeral keys, - or whose symmetric keys are less then KEY_LEN bits, or whose digests are - less than HASH_LEN bits. Responders SHOULD NOT select any SSLv3 - ciphersuite other than those listed above. - - Even though the connection protocol is identical, we will think of the - initiator as either an onion router (OR) if it is willing to relay - traffic for other Tor users, or an onion proxy (OP) if it only handles - local requests. Onion proxies SHOULD NOT provide long-term-trackable - identifiers in their handshakes. - - In all handshake variants, once all certificates are exchanged, all - parties receiving certificates must confirm that the identity key is as - expected. (When initiating a connection, the expected identity key is - the one given in the directory; when creating a connection because of an - EXTEND cell, the expected identity key is the one given in the cell.) If - the key is not as expected, the party must close the connection. - - When connecting to an OR, all parties SHOULD reject the connection if that - OR has a malformed or missing certificate. When accepting an incoming - connection, an OR SHOULD NOT reject incoming connections from parties with - malformed or missing certificates. (However, an OR should not believe - that an incoming connection is from another OR unless the certificates - are present and well-formed.) - - [Before version 0.1.2.8-rc, ORs rejected incoming connections from ORs and - OPs alike if their certificates were missing or malformed.] - - Once a TLS connection is established, the two sides send cells - (specified below) to one another. Cells are sent serially. All - cells are CELL_LEN bytes long. Cells may be sent embedded in TLS - records of any size or divided across TLS records, but the framing - of TLS records MUST NOT leak information about the type or contents - of the cells. - - TLS connections are not permanent. Either side MAY close a connection - if there are no circuits running over it and an amount of time - (KeepalivePeriod, defaults to 5 minutes) has passed since the last time - any traffic was transmitted over the TLS connection. Clients SHOULD - also hold a TLS connection with no circuits open, if it is likely that a - circuit will be built soon using that connection. - - (As an exception, directory servers may try to stay connected to all of - the ORs -- though this will be phased out for the Tor 0.1.2.x release.) - - To avoid being trivially distinguished from servers, client-only Tor - instances are encouraged but not required to use a two-certificate chain - as well. Clients SHOULD NOT keep using the same certificates when - their IP address changes. Clients MAY send no certificates at all. - -3. Cell Packet format - - The basic unit of communication for onion routers and onion - proxies is a fixed-width "cell". - - On a version 1 connection, each cell contains the following - fields: - - CircID [2 bytes] - Command [1 byte] - Payload (padded with 0 bytes) [PAYLOAD_LEN bytes] - - On a version 2 connection, all cells are as in version 1 connections, - except for the initial VERSIONS cell, whose format is: - - Circuit [2 octets; set to 0] - Command [1 octet; set to 7 for VERSIONS] - Length [2 octets; big-endian integer] - Payload [Length bytes] - - The CircID field determines which circuit, if any, the cell is - associated with. - - The 'Command' field holds one of the following values: - 0 -- PADDING (Padding) (See Sec 7.2) - 1 -- CREATE (Create a circuit) (See Sec 5.1) - 2 -- CREATED (Acknowledge create) (See Sec 5.1) - 3 -- RELAY (End-to-end data) (See Sec 5.5 and 6) - 4 -- DESTROY (Stop using a circuit) (See Sec 5.4) - 5 -- CREATE_FAST (Create a circuit, no PK) (See Sec 5.1) - 6 -- CREATED_FAST (Circuit created, no PK) (See Sec 5.1) - 7 -- VERSIONS (Negotiate proto version) (See Sec 4) - 8 -- NETINFO (Time and address info) (See Sec 4) - 9 -- RELAY_EARLY (End-to-end data; limited)(See Sec 5.6) - - The interpretation of 'Payload' depends on the type of the cell. - PADDING: Payload is unused. - CREATE: Payload contains the handshake challenge. - CREATED: Payload contains the handshake response. - RELAY: Payload contains the relay header and relay body. - DESTROY: Payload contains a reason for closing the circuit. - (see 5.4) - Upon receiving any other value for the command field, an OR must - drop the cell. Since more cell types may be added in the future, ORs - should generally not warn when encountering unrecognized commands. - - The payload is padded with 0 bytes. - - PADDING cells are currently used to implement connection keepalive. - If there is no other traffic, ORs and OPs send one another a PADDING - cell every few minutes. - - CREATE, CREATED, and DESTROY cells are used to manage circuits; - see section 5 below. - - RELAY cells are used to send commands and data along a circuit; see - section 6 below. - - VERSIONS and NETINFO cells are used to set up connections. See section 4 - below. - -4. Negotiating and initializing connections - -4.1. Negotiating versions with VERSIONS cells - - There are multiple instances of the Tor link connection protocol. Any - connection negotiated using the "certificates up front" handshake (see - section 2 above) is "version 1". In any connection where both parties - have behaved as in the "renegotiation" handshake, the link protocol - version is 2 or higher. - - To determine the version, in any connection where the "renegotiation" - handshake was used (that is, where the server sent only one certificate - at first and where the client did not send any certificates until - renegotiation), both parties MUST send a VERSIONS cell immediately after - the renegotiation is finished, before any other cells are sent. Parties - MUST NOT send any other cells on a connection until they have received a - VERSIONS cell. - - The payload in a VERSIONS cell is a series of big-endian two-byte - integers. Both parties MUST select as the link protocol version the - highest number contained both in the VERSIONS cell they sent and in the - versions cell they received. If they have no such version in common, - they cannot communicate and MUST close the connection. - - Since the version 1 link protocol does not use the "renegotiation" - handshake, implementations MUST NOT list version 1 in their VERSIONS - cell. - -4.2. NETINFO cells - - If version 2 or higher is negotiated, each party sends the other a - NETINFO cell. The cell's payload is: - - Timestamp [4 bytes] - Other OR's address [variable] - Number of addresses [1 byte] - This OR's addresses [variable] - - The address format is a type/length/value sequence as given in section - 6.4 below. The timestamp is a big-endian unsigned integer number of - seconds since the Unix epoch. - - Implementations MAY use the timestamp value to help decide if their - clocks are skewed. Initiators MAY use "other OR's address" to help - learn which address their connections are originating from, if they do - not know it. Initiators SHOULD use "this OR's address" to make sure - that they have connected to another OR at its canonical address. - - [As of 0.2.0.23-rc, implementations use none of the above values.] - - -5. Circuit management - -5.1. CREATE and CREATED cells - - Users set up circuits incrementally, one hop at a time. To create a - new circuit, OPs send a CREATE cell to the first node, with the - first half of the DH handshake; that node responds with a CREATED - cell with the second half of the DH handshake plus the first 20 bytes - of derivative key data (see section 5.2). To extend a circuit past - the first hop, the OP sends an EXTEND relay cell (see section 5) - which instructs the last node in the circuit to send a CREATE cell - to extend the circuit. - - The payload for a CREATE cell is an 'onion skin', which consists - of the first step of the DH handshake data (also known as g^x). - This value is hybrid-encrypted (see 0.3) to Bob's onion key, giving - an onion-skin of: - PK-encrypted: - Padding [PK_PAD_LEN bytes] - Symmetric key [KEY_LEN bytes] - First part of g^x [PK_ENC_LEN-PK_PAD_LEN-KEY_LEN bytes] - Symmetrically encrypted: - Second part of g^x [DH_LEN-(PK_ENC_LEN-PK_PAD_LEN-KEY_LEN) - bytes] - - The relay payload for an EXTEND relay cell consists of: - Address [4 bytes] - Port [2 bytes] - Onion skin [DH_LEN+KEY_LEN+PK_PAD_LEN bytes] - Identity fingerprint [HASH_LEN bytes] - - The port and address field denote the IPv4 address and port of the next - onion router in the circuit; the public key hash is the hash of the PKCS#1 - ASN1 encoding of the next onion router's identity (signing) key. (See 0.3 - above.) Including this hash allows the extending OR verify that it is - indeed connected to the correct target OR, and prevents certain - man-in-the-middle attacks. - - The payload for a CREATED cell, or the relay payload for an - EXTENDED cell, contains: - DH data (g^y) [DH_LEN bytes] - Derivative key data (KH) [HASH_LEN bytes] <see 5.2 below> - - The CircID for a CREATE cell is an arbitrarily chosen 2-byte integer, - selected by the node (OP or OR) that sends the CREATE cell. To prevent - CircID collisions, when one node sends a CREATE cell to another, it chooses - from only one half of the possible values based on the ORs' public - identity keys: if the sending node has a lower key, it chooses a CircID with - an MSB of 0; otherwise, it chooses a CircID with an MSB of 1. - - (An OP with no public key MAY choose any CircID it wishes, since an OP - never needs to process a CREATE cell.) - - Public keys are compared numerically by modulus. - - As usual with DH, x and y MUST be generated randomly. - -5.1.1. CREATE_FAST/CREATED_FAST cells - - When initializing the first hop of a circuit, the OP has already - established the OR's identity and negotiated a secret key using TLS. - Because of this, it is not always necessary for the OP to perform the - public key operations to create a circuit. In this case, the - OP MAY send a CREATE_FAST cell instead of a CREATE cell for the first - hop only. The OR responds with a CREATED_FAST cell, and the circuit is - created. - - A CREATE_FAST cell contains: - - Key material (X) [HASH_LEN bytes] - - A CREATED_FAST cell contains: - - Key material (Y) [HASH_LEN bytes] - Derivative key data [HASH_LEN bytes] (See 5.2 below) - - The values of X and Y must be generated randomly. - - If an OR sees a circuit created with CREATE_FAST, the OR is sure to be the - first hop of a circuit. ORs SHOULD reject attempts to create streams with - RELAY_BEGIN exiting the circuit at the first hop: letting Tor be used as a - single hop proxy makes exit nodes a more attractive target for compromise. - -5.2. Setting circuit keys - - Once the handshake between the OP and an OR is completed, both can - now calculate g^xy with ordinary DH. Before computing g^xy, both client - and server MUST verify that the received g^x or g^y value is not degenerate; - that is, it must be strictly greater than 1 and strictly less than p-1 - where p is the DH modulus. Implementations MUST NOT complete a handshake - with degenerate keys. Implementations MUST NOT discard other "weak" - g^x values. - - (Discarding degenerate keys is critical for security; if bad keys - are not discarded, an attacker can substitute the server's CREATED - cell's g^y with 0 or 1, thus creating a known g^xy and impersonating - the server. Discarding other keys may allow attacks to learn bits of - the private key.) - - If CREATE or EXTEND is used to extend a circuit, the client and server - base their key material on K0=g^xy, represented as a big-endian unsigned - integer. - - If CREATE_FAST is used, the client and server base their key material on - K0=X|Y. - - From the base key material K0, they compute KEY_LEN*2+HASH_LEN*3 bytes of - derivative key data as - K = H(K0 | [00]) | H(K0 | [01]) | H(K0 | [02]) | ... - - The first HASH_LEN bytes of K form KH; the next HASH_LEN form the forward - digest Df; the next HASH_LEN 41-60 form the backward digest Db; the next - KEY_LEN 61-76 form Kf, and the final KEY_LEN form Kb. Excess bytes from K - are discarded. - - KH is used in the handshake response to demonstrate knowledge of the - computed shared key. Df is used to seed the integrity-checking hash - for the stream of data going from the OP to the OR, and Db seeds the - integrity-checking hash for the data stream from the OR to the OP. Kf - is used to encrypt the stream of data going from the OP to the OR, and - Kb is used to encrypt the stream of data going from the OR to the OP. - -5.3. Creating circuits - - When creating a circuit through the network, the circuit creator - (OP) performs the following steps: - - 1. Choose an onion router as an exit node (R_N), such that the onion - router's exit policy includes at least one pending stream that - needs a circuit (if there are any). - - 2. Choose a chain of (N-1) onion routers - (R_1...R_N-1) to constitute the path, such that no router - appears in the path twice. - - 3. If not already connected to the first router in the chain, - open a new connection to that router. - - 4. Choose a circID not already in use on the connection with the - first router in the chain; send a CREATE cell along the - connection, to be received by the first onion router. - - 5. Wait until a CREATED cell is received; finish the handshake - and extract the forward key Kf_1 and the backward key Kb_1. - - 6. For each subsequent onion router R (R_2 through R_N), extend - the circuit to R. - - To extend the circuit by a single onion router R_M, the OP performs - these steps: - - 1. Create an onion skin, encrypted to R_M's public onion key. - - 2. Send the onion skin in a relay EXTEND cell along - the circuit (see section 5). - - 3. When a relay EXTENDED cell is received, verify KH, and - calculate the shared keys. The circuit is now extended. - - When an onion router receives an EXTEND relay cell, it sends a CREATE - cell to the next onion router, with the enclosed onion skin as its - payload. As special cases, if the extend cell includes a digest of - all zeroes, or asks to extend back to the relay that sent the extend - cell, the circuit will fail and be torn down. The initiating onion - router chooses some circID not yet used on the connection between the - two onion routers. (But see section 5.1. above, concerning choosing - circIDs based on lexicographic order of nicknames.) - - When an onion router receives a CREATE cell, if it already has a - circuit on the given connection with the given circID, it drops the - cell. Otherwise, after receiving the CREATE cell, it completes the - DH handshake, and replies with a CREATED cell. Upon receiving a - CREATED cell, an onion router packs it payload into an EXTENDED relay - cell (see section 5), and sends that cell up the circuit. Upon - receiving the EXTENDED relay cell, the OP can retrieve g^y. - - (As an optimization, OR implementations may delay processing onions - until a break in traffic allows time to do so without harming - network latency too greatly.) - -5.3.1. Canonical connections - - It is possible for an attacker to launch a man-in-the-middle attack - against a connection by telling OR Alice to extend to OR Bob at some - address X controlled by the attacker. The attacker cannot read the - encrypted traffic, but the attacker is now in a position to count all - bytes sent between Alice and Bob (assuming Alice was not already - connected to Bob.) - - To prevent this, when an OR we gets an extend request, it SHOULD use an - existing OR connection if the ID matches, and ANY of the following - conditions hold: - - The IP matches the requested IP. - - The OR knows that the IP of the connection it's using is canonical - because it was listed in the NETINFO cell. - - The OR knows that the IP of the connection it's using is canonical - because it was listed in the server descriptor. - - [This is not implemented in Tor 0.2.0.23-rc.] - -5.4. Tearing down circuits - - Circuits are torn down when an unrecoverable error occurs along - the circuit, or when all streams on a circuit are closed and the - circuit's intended lifetime is over. Circuits may be torn down - either completely or hop-by-hop. - - To tear down a circuit completely, an OR or OP sends a DESTROY - cell to the adjacent nodes on that circuit, using the appropriate - direction's circID. - - Upon receiving an outgoing DESTROY cell, an OR frees resources - associated with the corresponding circuit. If it's not the end of - the circuit, it sends a DESTROY cell for that circuit to the next OR - in the circuit. If the node is the end of the circuit, then it tears - down any associated edge connections (see section 6.1). - - After a DESTROY cell has been processed, an OR ignores all data or - destroy cells for the corresponding circuit. - - To tear down part of a circuit, the OP may send a RELAY_TRUNCATE cell - signaling a given OR (Stream ID zero). That OR sends a DESTROY - cell to the next node in the circuit, and replies to the OP with a - RELAY_TRUNCATED cell. - - [Note: If an OR receives a TRUNCATE cell and it has any RELAY cells - still queued on the circuit for the next node it will drop them - without sending them. This is not considered conformant behavior, - but it probably won't get fixed until a later version of Tor. Thus, - clients SHOULD NOT send a TRUNCATE cell to a node running any current - version of Tor if a) they have sent relay cells through that node, - and b) they aren't sure whether those cells have been sent on yes.] - - When an unrecoverable error occurs along one connection in a - circuit, the nodes on either side of the connection should, if they - are able, act as follows: the node closer to the OP should send a - RELAY_TRUNCATED cell towards the OP; the node farther from the OP - should send a DESTROY cell down the circuit. - - The payload of a RELAY_TRUNCATED or DESTROY cell contains a single octet, - describing why the circuit is being closed or truncated. When sending a - TRUNCATED or DESTROY cell because of another TRUNCATED or DESTROY cell, - the error code should be propagated. The origin of a circuit always sets - this error code to 0, to avoid leaking its version. - - The error codes are: - 0 -- NONE (No reason given.) - 1 -- PROTOCOL (Tor protocol violation.) - 2 -- INTERNAL (Internal error.) - 3 -- REQUESTED (A client sent a TRUNCATE command.) - 4 -- HIBERNATING (Not currently operating; trying to save bandwidth.) - 5 -- RESOURCELIMIT (Out of memory, sockets, or circuit IDs.) - 6 -- CONNECTFAILED (Unable to reach server.) - 7 -- OR_IDENTITY (Connected to server, but its OR identity was not - as expected.) - 8 -- OR_CONN_CLOSED (The OR connection that was carrying this circuit - died.) - 9 -- FINISHED (The circuit has expired for being dirty or old.) - 10 -- TIMEOUT (Circuit construction took too long) - 11 -- DESTROYED (The circuit was destroyed w/o client TRUNCATE) - 12 -- NOSUCHSERVICE (Request for unknown hidden service) - -5.5. Routing relay cells - - When an OR receives a RELAY or RELAY_EARLY cell, it checks the cell's - circID and determines whether it has a corresponding circuit along that - connection. If not, the OR drops the cell. - - Otherwise, if the OR is not at the OP edge of the circuit (that is, - either an 'exit node' or a non-edge node), it de/encrypts the payload - with the stream cipher, as follows: - 'Forward' relay cell (same direction as CREATE): - Use Kf as key; decrypt. - 'Back' relay cell (opposite direction from CREATE): - Use Kb as key; encrypt. - Note that in counter mode, decrypt and encrypt are the same operation. - - The OR then decides whether it recognizes the relay cell, by - inspecting the payload as described in section 6.1 below. If the OR - recognizes the cell, it processes the contents of the relay cell. - Otherwise, it passes the decrypted relay cell along the circuit if - the circuit continues. If the OR at the end of the circuit - encounters an unrecognized relay cell, an error has occurred: the OR - sends a DESTROY cell to tear down the circuit. - - When a relay cell arrives at an OP, the OP decrypts the payload - with the stream cipher as follows: - OP receives data cell: - For I=N...1, - Decrypt with Kb_I. If the payload is recognized (see - section 6..1), then stop and process the payload. - - For more information, see section 6 below. - -5.6. Handling relay_early cells - - A RELAY_EARLY cell is designed to limit the length any circuit can reach. - When an OR receives a RELAY_EARLY cell, and the next node in the circuit - is speaking v2 of the link protocol or later, the OR relays the cell as a - RELAY_EARLY cell. Otherwise, it relays it as a RELAY cell. - - If a node ever receives more than 8 RELAY_EARLY cells on a given - outbound circuit, it SHOULD close the circuit. (For historical reasons, - we don't limit the number of inbound RELAY_EARLY cells; they should - be harmless anyway because clients won't accept extend requests. See - bug 1038.) - - When speaking v2 of the link protocol or later, clients MUST only send - EXTEND cells inside RELAY_EARLY cells. Clients SHOULD send the first ~8 - RELAY cells that are not targeted at the first hop of any circuit as - RELAY_EARLY cells too, in order to partially conceal the circuit length. - - [In a future version of Tor, servers will reject any EXTEND cell not - received in a RELAY_EARLY cell. See proposal 110.] - -6. Application connections and stream management - -6.1. Relay cells - - Within a circuit, the OP and the exit node use the contents of - RELAY packets to tunnel end-to-end commands and TCP connections - ("Streams") across circuits. End-to-end commands can be initiated - by either edge; streams are initiated by the OP. - - The payload of each unencrypted RELAY cell consists of: - Relay command [1 byte] - 'Recognized' [2 bytes] - StreamID [2 bytes] - Digest [4 bytes] - Length [2 bytes] - Data [CELL_LEN-14 bytes] - - The relay commands are: - 1 -- RELAY_BEGIN [forward] - 2 -- RELAY_DATA [forward or backward] - 3 -- RELAY_END [forward or backward] - 4 -- RELAY_CONNECTED [backward] - 5 -- RELAY_SENDME [forward or backward] [sometimes control] - 6 -- RELAY_EXTEND [forward] [control] - 7 -- RELAY_EXTENDED [backward] [control] - 8 -- RELAY_TRUNCATE [forward] [control] - 9 -- RELAY_TRUNCATED [backward] [control] - 10 -- RELAY_DROP [forward or backward] [control] - 11 -- RELAY_RESOLVE [forward] - 12 -- RELAY_RESOLVED [backward] - 13 -- RELAY_BEGIN_DIR [forward] - - 32..40 -- Used for hidden services; see rend-spec.txt. - - Commands labelled as "forward" must only be sent by the originator - of the circuit. Commands labelled as "backward" must only be sent by - other nodes in the circuit back to the originator. Commands marked - as either can be sent either by the originator or other nodes. - - The 'recognized' field in any unencrypted relay payload is always set - to zero; the 'digest' field is computed as the first four bytes of - the running digest of all the bytes that have been destined for - this hop of the circuit or originated from this hop of the circuit, - seeded from Df or Db respectively (obtained in section 5.2 above), - and including this RELAY cell's entire payload (taken with the digest - field set to zero). - - When the 'recognized' field of a RELAY cell is zero, and the digest - is correct, the cell is considered "recognized" for the purposes of - decryption (see section 5.5 above). - - (The digest does not include any bytes from relay cells that do - not start or end at this hop of the circuit. That is, it does not - include forwarded data. Therefore if 'recognized' is zero but the - digest does not match, the running digest at that node should - not be updated, and the cell should be forwarded on.) - - All RELAY cells pertaining to the same tunneled stream have the - same stream ID. StreamIDs are chosen arbitrarily by the OP. RELAY - cells that affect the entire circuit rather than a particular - stream use a StreamID of zero -- they are marked in the table above - as "[control]" style cells. (Sendme cells are marked as "sometimes - control" because they can take include a StreamID or not depending - on their purpose -- see Section 7.) - - The 'Length' field of a relay cell contains the number of bytes in - the relay payload which contain real payload data. The remainder of - the payload is padded with NUL bytes. - - If the RELAY cell is recognized but the relay command is not - understood, the cell must be dropped and ignored. Its contents - still count with respect to the digests, though. - -6.2. Opening streams and transferring data - - To open a new anonymized TCP connection, the OP chooses an open - circuit to an exit that may be able to connect to the destination - address, selects an arbitrary StreamID not yet used on that circuit, - and constructs a RELAY_BEGIN cell with a payload encoding the address - and port of the destination host. The payload format is: - - ADDRESS | ':' | PORT | [00] - - where ADDRESS can be a DNS hostname, or an IPv4 address in - dotted-quad format, or an IPv6 address surrounded by square brackets; - and where PORT is a decimal integer between 1 and 65535, inclusive. - - [What is the [00] for? -NM] - [It's so the payload is easy to parse out with string funcs -RD] - - Upon receiving this cell, the exit node resolves the address as - necessary, and opens a new TCP connection to the target port. If the - address cannot be resolved, or a connection can't be established, the - exit node replies with a RELAY_END cell. (See 6.4 below.) - Otherwise, the exit node replies with a RELAY_CONNECTED cell, whose - payload is in one of the following formats: - The IPv4 address to which the connection was made [4 octets] - A number of seconds (TTL) for which the address may be cached [4 octets] - or - Four zero-valued octets [4 octets] - An address type (6) [1 octet] - The IPv6 address to which the connection was made [16 octets] - A number of seconds (TTL) for which the address may be cached [4 octets] - [XXXX No version of Tor currently generates the IPv6 format.] - - [Tor servers before 0.1.2.0 set the TTL field to a fixed value. Later - versions set the TTL to the last value seen from a DNS server, and expire - their own cached entries after a fixed interval. This prevents certain - attacks.] - - The OP waits for a RELAY_CONNECTED cell before sending any data. - Once a connection has been established, the OP and exit node - package stream data in RELAY_DATA cells, and upon receiving such - cells, echo their contents to the corresponding TCP stream. - RELAY_DATA cells sent to unrecognized streams are dropped. - - Relay RELAY_DROP cells are long-range dummies; upon receiving such - a cell, the OR or OP must drop it. - -6.2.1. Opening a directory stream - - If a Tor server is a directory server, it should respond to a - RELAY_BEGIN_DIR cell as if it had received a BEGIN cell requesting a - connection to its directory port. RELAY_BEGIN_DIR cells ignore exit - policy, since the stream is local to the Tor process. - - If the Tor server is not running a directory service, it should respond - with a REASON_NOTDIRECTORY RELAY_END cell. - - Clients MUST generate an all-zero payload for RELAY_BEGIN_DIR cells, - and servers MUST ignore the payload. - - [RELAY_BEGIN_DIR was not supported before Tor 0.1.2.2-alpha; clients - SHOULD NOT send it to routers running earlier versions of Tor.] - -6.3. Closing streams - - When an anonymized TCP connection is closed, or an edge node - encounters error on any stream, it sends a 'RELAY_END' cell along the - circuit (if possible) and closes the TCP connection immediately. If - an edge node receives a 'RELAY_END' cell for any stream, it closes - the TCP connection completely, and sends nothing more along the - circuit for that stream. - - The payload of a RELAY_END cell begins with a single 'reason' byte to - describe why the stream is closing, plus optional data (depending on - the reason.) The values are: - - 1 -- REASON_MISC (catch-all for unlisted reasons) - 2 -- REASON_RESOLVEFAILED (couldn't look up hostname) - 3 -- REASON_CONNECTREFUSED (remote host refused connection) [*] - 4 -- REASON_EXITPOLICY (OR refuses to connect to host or port) - 5 -- REASON_DESTROY (Circuit is being destroyed) - 6 -- REASON_DONE (Anonymized TCP connection was closed) - 7 -- REASON_TIMEOUT (Connection timed out, or OR timed out - while connecting) - 8 -- REASON_NOROUTE (Routing error while attempting to - contact destination) - 9 -- REASON_HIBERNATING (OR is temporarily hibernating) - 10 -- REASON_INTERNAL (Internal error at the OR) - 11 -- REASON_RESOURCELIMIT (OR has no resources to fulfill request) - 12 -- REASON_CONNRESET (Connection was unexpectedly reset) - 13 -- REASON_TORPROTOCOL (Sent when closing connection because of - Tor protocol violations.) - 14 -- REASON_NOTDIRECTORY (Client sent RELAY_BEGIN_DIR to a - non-directory server.) - - (With REASON_EXITPOLICY, the 4-byte IPv4 address or 16-byte IPv6 address - forms the optional data, along with a 4-byte TTL; no other reason - currently has extra data.) - - OPs and ORs MUST accept reasons not on the above list, since future - versions of Tor may provide more fine-grained reasons. - - Tors SHOULD NOT send any reason except REASON_MISC for a stream that they - have originated. - - [*] Older versions of Tor also send this reason when connections are - reset. - - --- [The rest of this section describes unimplemented functionality.] - - Because TCP connections can be half-open, we follow an equivalent - to TCP's FIN/FIN-ACK/ACK protocol to close streams. - - An exit connection can have a TCP stream in one of three states: - 'OPEN', 'DONE_PACKAGING', and 'DONE_DELIVERING'. For the purposes - of modeling transitions, we treat 'CLOSED' as a fourth state, - although connections in this state are not, in fact, tracked by the - onion router. - - A stream begins in the 'OPEN' state. Upon receiving a 'FIN' from - the corresponding TCP connection, the edge node sends a 'RELAY_FIN' - cell along the circuit and changes its state to 'DONE_PACKAGING'. - Upon receiving a 'RELAY_FIN' cell, an edge node sends a 'FIN' to - the corresponding TCP connection (e.g., by calling - shutdown(SHUT_WR)) and changing its state to 'DONE_DELIVERING'. - - When a stream in already in 'DONE_DELIVERING' receives a 'FIN', it - also sends a 'RELAY_FIN' along the circuit, and changes its state - to 'CLOSED'. When a stream already in 'DONE_PACKAGING' receives a - 'RELAY_FIN' cell, it sends a 'FIN' and changes its state to - 'CLOSED'. - - If an edge node encounters an error on any stream, it sends a - 'RELAY_END' cell (if possible) and closes the stream immediately. - -6.4. Remote hostname lookup - - To find the address associated with a hostname, the OP sends a - RELAY_RESOLVE cell containing the hostname to be resolved with a NUL - terminating byte. (For a reverse lookup, the OP sends a RELAY_RESOLVE - cell containing an in-addr.arpa address.) The OR replies with a - RELAY_RESOLVED cell containing a status byte, and any number of - answers. Each answer is of the form: - Type (1 octet) - Length (1 octet) - Value (variable-width) - TTL (4 octets) - "Length" is the length of the Value field. - "Type" is one of: - 0x00 -- Hostname - 0x04 -- IPv4 address - 0x06 -- IPv6 address - 0xF0 -- Error, transient - 0xF1 -- Error, nontransient - - If any answer has a type of 'Error', then no other answer may be given. - - The RELAY_RESOLVE cell must use a nonzero, distinct streamID; the - corresponding RELAY_RESOLVED cell must use the same streamID. No stream - is actually created by the OR when resolving the name. - -7. Flow control - -7.1. Link throttling - - Each client or relay should do appropriate bandwidth throttling to - keep its user happy. - - Communicants rely on TCP's default flow control to push back when they - stop reading. - - The mainline Tor implementation uses token buckets (one for reads, - one for writes) for the rate limiting. - - Since 0.2.0.x, Tor has let the user specify an additional pair of - token buckets for "relayed" traffic, so people can deploy a Tor relay - with strict rate limiting, but also use the same Tor as a client. To - avoid partitioning concerns we combine both classes of traffic over a - given OR connection, and keep track of the last time we read or wrote - a high-priority (non-relayed) cell. If it's been less than N seconds - (currently N=30), we give the whole connection high priority, else we - give the whole connection low priority. We also give low priority - to reads and writes for connections that are serving directory - information. See proposal 111 for details. - -7.2. Link padding - - Link padding can be created by sending PADDING cells along the - connection; relay cells of type "DROP" can be used for long-range - padding. - - Currently nodes are not required to do any sort of link padding or - dummy traffic. Because strong attacks exist even with link padding, - and because link padding greatly increases the bandwidth requirements - for running a node, we plan to leave out link padding until this - tradeoff is better understood. - -7.3. Circuit-level flow control - - To control a circuit's bandwidth usage, each OR keeps track of two - 'windows', consisting of how many RELAY_DATA cells it is allowed to - originate (package for transmission), and how many RELAY_DATA cells - it is willing to consume (receive for local streams). These limits - do not apply to cells that the OR receives from one host and relays - to another. - - Each 'window' value is initially set to 1000 data cells - in each direction (cells that are not data cells do not affect - the window). When an OR is willing to deliver more cells, it sends a - RELAY_SENDME cell towards the OP, with Stream ID zero. When an OR - receives a RELAY_SENDME cell with stream ID zero, it increments its - packaging window. - - Each of these cells increments the corresponding window by 100. - - The OP behaves identically, except that it must track a packaging - window and a delivery window for every OR in the circuit. - - An OR or OP sends cells to increment its delivery window when the - corresponding window value falls under some threshold (900). - - If a packaging window reaches 0, the OR or OP stops reading from - TCP connections for all streams on the corresponding circuit, and - sends no more RELAY_DATA cells until receiving a RELAY_SENDME cell. -[this stuff is badly worded; copy in the tor-design section -RD] - -7.4. Stream-level flow control - - Edge nodes use RELAY_SENDME cells to implement end-to-end flow - control for individual connections across circuits. Similarly to - circuit-level flow control, edge nodes begin with a window of cells - (500) per stream, and increment the window by a fixed value (50) - upon receiving a RELAY_SENDME cell. Edge nodes initiate RELAY_SENDME - cells when both a) the window is <= 450, and b) there are less than - ten cell payloads remaining to be flushed at that edge. - -A.1. Differences between spec and implementation - -- The current specification requires all ORs to have IPv4 addresses, but - allows servers to exit and resolve to IPv6 addresses, and to declare IPv6 - addresses in their exit policies. The current codebase has no IPv6 - support at all. - |