diff options
Diffstat (limited to 'doc/spec/rend-spec.txt')
-rw-r--r-- | doc/spec/rend-spec.txt | 966 |
1 files changed, 0 insertions, 966 deletions
diff --git a/doc/spec/rend-spec.txt b/doc/spec/rend-spec.txt deleted file mode 100644 index 3c14ebc662..0000000000 --- a/doc/spec/rend-spec.txt +++ /dev/null @@ -1,966 +0,0 @@ - - Tor Rendezvous Specification - -0. Overview and preliminaries - - The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL - NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and - "OPTIONAL" in this document are to be interpreted as described in - RFC 2119. - - Read - https://svn.torproject.org/svn/projects/design-paper/tor-design.html#sec:rendezvous - before you read this specification. It will make more sense. - - Rendezvous points provide location-hidden services (server - anonymity) for the onion routing network. With rendezvous points, - Bob can offer a TCP service (say, a webserver) via the onion - routing network, without revealing the IP of that service. - - Bob does this by anonymously advertising a public key for his - service, along with a list of onion routers to act as "Introduction - Points" for his service. He creates forward circuits to those - introduction points, and tells them about his service. To - connect to Bob, Alice first builds a circuit to an OR to act as - her "Rendezvous Point." She then connects to one of Bob's chosen - introduction points, and asks it to tell him about her Rendezvous - Point (RP). If Bob chooses to answer, he builds a circuit to her - RP, and tells it to connect him to Alice. The RP joins their - circuits together, and begins relaying cells. Alice's 'BEGIN' - cells are received directly by Bob's OP, which passes data to - and from the local server implementing Bob's service. - - Below we describe a network-level specification of this service, - along with interfaces to make this process transparent to Alice - (so long as she is using an OP). - -0.1. Notation, conventions and prerequisites - - In the specifications below, we use the same notation and terminology - as in "tor-spec.txt". The service specified here also requires the - existence of an onion routing network as specified in that file. - - H(x) is a SHA1 digest of x. - PKSign(SK,x) is a PKCS.1-padded RSA signature of x with SK. - PKEncrypt(SK,x) is a PKCS.1-padded RSA encryption of x with SK. - Public keys are all RSA, and encoded in ASN.1. - All integers are stored in network (big-endian) order. - All symmetric encryption uses AES in counter mode, except where - otherwise noted. - - In all discussions, "Alice" will refer to a user connecting to a - location-hidden service, and "Bob" will refer to a user running a - location-hidden service. - - An OP is (as defined elsewhere) an "Onion Proxy" or Tor client. - - An OR is (as defined elsewhere) an "Onion Router" or Tor server. - - An "Introduction point" is a Tor server chosen to be Bob's medium-term - 'meeting place'. A "Rendezvous point" is a Tor server chosen by Alice to - be a short-term communication relay between her and Bob. All Tor servers - potentially act as introduction and rendezvous points. - -0.2. Protocol outline - - 1. Bob->Bob's OP: "Offer IP:Port as public-key-name:Port". [configuration] - (We do not specify this step; it is left to the implementor of - Bob's OP.) - - 2. Bob's OP generates a long-term keypair. - - 3. Bob's OP->Introduction point via Tor: [introduction setup] - "This public key is (currently) associated to me." - - 4. Bob's OP->directory service via Tor: publishes Bob's service descriptor - [advertisement] - "Meet public-key X at introduction point A, B, or C." (signed) - - 5. Out of band, Alice receives a z.onion:port address. - She opens a SOCKS connection to her OP, and requests z.onion:port. - - 6. Alice's OP retrieves Bob's descriptor via Tor. [descriptor lookup.] - - 7. Alice's OP chooses a rendezvous point, opens a circuit to that - rendezvous point, and establishes a rendezvous circuit. [rendezvous - setup.] - - 8. Alice connects to the Introduction point via Tor, and tells it about - her rendezvous point. (Encrypted to Bob.) [Introduction 1] - - 9. The Introduction point passes this on to Bob's OP via Tor, along the - introduction circuit. [Introduction 2] - - 10. Bob's OP decides whether to connect to Alice, and if so, creates a - circuit to Alice's RP via Tor. Establishes a shared circuit. - [Rendezvous 1] - - 11. The Rendezvous point forwards Bob's confirmation to Alice's OP. - [Rendezvous 2] - - 12. Alice's OP sends begin cells to Bob's OP. [Connection] - -0.3. Constants and new cell types - - Relay cell types - 32 -- RELAY_COMMAND_ESTABLISH_INTRO - 33 -- RELAY_COMMAND_ESTABLISH_RENDEZVOUS - 34 -- RELAY_COMMAND_INTRODUCE1 - 35 -- RELAY_COMMAND_INTRODUCE2 - 36 -- RELAY_COMMAND_RENDEZVOUS1 - 37 -- RELAY_COMMAND_RENDEZVOUS2 - 38 -- RELAY_COMMAND_INTRO_ESTABLISHED - 39 -- RELAY_COMMAND_RENDEZVOUS_ESTABLISHED - 40 -- RELAY_COMMAND_INTRODUCE_ACK - -0.4. Version overview - - There are several parts in the hidden service protocol that have - changed over time, each of them having its own version number, whereas - other parts remained the same. The following list of potentially - versioned protocol parts should help reduce some confusion: - - - Hidden service descriptor: the binary-based v0 was the default for a - long time, and an ASCII-based v2 has been added by proposal 114. The - v0 descriptor format has been deprecated in 0.2.2.1-alpha. See 1.3. - - - Hidden service descriptor propagation mechanism: currently related to - the hidden service descriptor version -- v0 publishes to the original - hs directory authorities, whereas v2 publishes to a rotating subset - of relays with the "HSDir" flag; see 1.4 and 1.6. - - - Introduction protocol for how to generate an introduction cell: - v0 specified a nickname for the rendezvous point and assumed the - relay would know about it, whereas v2 now specifies IP address, - port, and onion key so the relay doesn't need to already recognize - it. See 1.8. - -1. The Protocol - -1.1. Bob configures his local OP. - - We do not specify a format for the OP configuration file. However, - OPs SHOULD allow Bob to provide more than one advertised service - per OP, and MUST allow Bob to specify one or more virtual ports per - service. Bob provides a mapping from each of these virtual ports - to a local IP:Port pair. - -1.2. Bob's OP establishes his introduction points. - - The first time the OP provides an advertised service, it generates - a public/private keypair (stored locally). - - The OP chooses a small number of Tor servers as introduction points. - The OP establishes a new introduction circuit to each introduction - point. These circuits MUST NOT be used for anything but hidden service - introduction. To establish the introduction, Bob sends a - RELAY_COMMAND_ESTABLISH_INTRO cell, containing: - - KL Key length [2 octets] - PK Bob's public key or service key [KL octets] - HS Hash of session info [20 octets] - SIG Signature of above information [variable] - - KL is the length of PK, in octets. - - To prevent replay attacks, the HS field contains a SHA-1 hash based on the - shared secret KH between Bob's OP and the introduction point, as - follows: - HS = H(KH | "INTRODUCE") - That is: - HS = H(KH | [49 4E 54 52 4F 44 55 43 45]) - (KH, as specified in tor-spec.txt, is H(g^xy | [00]) .) - - Upon receiving such a cell, the OR first checks that the signature is - correct with the included public key. If so, it checks whether HS is - correct given the shared state between Bob's OP and the OR. If either - check fails, the OP discards the cell; otherwise, it associates the - circuit with Bob's public key, and dissociates any other circuits - currently associated with PK. On success, the OR sends Bob a - RELAY_COMMAND_INTRO_ESTABLISHED cell with an empty payload. - - Bob's OP uses either Bob's public key or a freshly generated, single-use - service key in the RELAY_COMMAND_ESTABLISH_INTRO cell, depending on the - configured hidden service descriptor version. The public key is used for - v0 descriptors, the service key for v2 descriptors. In the latter case, the - service keys of all introduction points are included in the v2 hidden - service descriptor together with the other introduction point information. - The reason is that the introduction point does not need to and therefore - should not know for which hidden service it works, so as to prevent it from - tracking the hidden service's activity. If the hidden service is configured - to publish both v0 and v2 descriptors, two separate sets of introduction - points are established. - -1.3. Bob's OP generates service descriptors. - - For versions before 0.2.2.1-alpha, Bob's OP periodically generates and - publishes a descriptor of type "V0". - - The "V0" descriptor contains: - - KL Key length [2 octets] - PK Bob's public key [KL octets] - TS A timestamp [4 octets] - NI Number of introduction points [2 octets] - Ipt A list of NUL-terminated ORs [variable] - SIG Signature of above fields [variable] - - TS is the number of seconds elapsed since Jan 1, 1970. - - The members of Ipt may be either (a) nicknames, or (b) identity key - digests, encoded in hex, and prefixed with a '$'. Clients must - accept both forms. Services must only generate the second form. - Once 0.0.9.x is obsoleted, we can drop the first form. - - [It's ok for Bob to advertise 0 introduction points. He might want - to do that if he previously advertised some introduction points, - and now he doesn't have any. -RD] - - Beginning with 0.2.0.10-alpha, Bob's OP encodes "V2" descriptors in - addition to (or instead of) "V0" descriptors. The format of a "V2" - descriptor is as follows: - - "rendezvous-service-descriptor" descriptor-id NL - - [At start, exactly once] - - Indicates the beginning of the descriptor. "descriptor-id" is a - periodically changing identifier of 160 bits formatted as 32 base32 - chars that is calculated by the hidden service and its clients. The - "descriptor-id" is calculated by performing the following operation: - - descriptor-id = - H(permanent-id | H(time-period | descriptor-cookie | replica)) - - "permanent-id" is the permanent identifier of the hidden service, - consisting of 80 bits. It can be calculated by computing the hash value - of the public hidden service key and truncating after the first 80 bits: - - permanent-id = H(public-key)[:10] - - Note: If Bob's OP has "stealth" authorization enabled (see Section 2.2), - it uses the client key in place of the public hidden service key. - - "H(time-period | descriptor-cookie | replica)" is the (possibly - secret) id part that is necessary to verify that the hidden service is - the true originator of this descriptor and that is therefore contained - in the descriptor, too. The descriptor ID can only be created by the - hidden service and its clients, but the "signature" below can only be - created by the service. - - "time-period" changes periodically as a function of time and - - "permanent-id". The current value for "time-period" can be calculated - using the following formula: - - time-period = (current-time + permanent-id-byte * 86400 / 256) - / 86400 - - "current-time" contains the current system time in seconds since - 1970-01-01 00:00, e.g. 1188241957. "permanent-id-byte" is the first - (unsigned) byte of the permanent identifier (which is in network - order), e.g. 143. Adding the product of "permanent-id-byte" and - 86400 (seconds per day), divided by 256, prevents "time-period" from - changing for all descriptors at the same time of the day. The result - of the overall operation is a (network-ordered) 32-bit integer, e.g. - 13753 or 0x000035B9 with the example values given above. - - "descriptor-cookie" is an optional secret password of 128 bits that - is shared between the hidden service provider and its clients. If the - descriptor-cookie is left out, the input to the hash function is 128 - bits shorter. - - "replica" denotes the number of the replica. A service publishes - multiple descriptors with different descriptor IDs in order to - distribute them to different places on the ring. - - "version" version-number NL - - [Exactly once] - - The version number of this descriptor's format. In this case: 2. - - "permanent-key" NL a public key in PEM format - - [Exactly once] - - The public key of the hidden service which is required to verify the - "descriptor-id" and the "signature". - - "secret-id-part" secret-id-part NL - - [Exactly once] - - The result of the following operation as explained above, formatted as - 32 base32 chars. Using this secret id part, everyone can verify that - the signed descriptor belongs to "descriptor-id". - - secret-id-part = H(time-period | descriptor-cookie | replica) - - "publication-time" YYYY-MM-DD HH:MM:SS NL - - [Exactly once] - - A timestamp when this descriptor has been created. - - "protocol-versions" version-string NL - - [Exactly once] - - A comma-separated list of recognized and permitted version numbers - for use in INTRODUCE cells; these versions are described in section - 1.8 below. - - "introduction-points" NL encrypted-string - - [At most once] - - A list of introduction points. If the optional "descriptor-cookie" is - used, this list is encrypted with AES in CTR mode with a random - initialization vector of 128 bits that is written to - the beginning of the encrypted string, and the "descriptor-cookie" as - secret key of 128 bits length. - - The string containing the introduction point data (either encrypted - or not) is encoded in base64, and surrounded with - "-----BEGIN MESSAGE-----" and "-----END MESSAGE-----". - - The unencrypted string may begin with: - - "service-authentication" auth-type auth-data NL - - [Any number] - - The service-specific authentication data can be used to perform - client authentication. This data is independent of the selected - introduction point as opposed to "intro-authentication" below. The - format of auth-data (base64-encoded or PEM format) depends on - auth-type. See section 2 of this document for details on auth - mechanisms. - - Subsequently, an arbitrary number of introduction point entries may - follow, each containing the following data: - - "introduction-point" identifier NL - - [At start, exactly once] - - The identifier of this introduction point: the base-32 encoded - hash of this introduction point's identity key. - - "ip-address" ip-address NL - - [Exactly once] - - The IP address of this introduction point. - - "onion-port" port NL - - [Exactly once] - - The TCP port on which the introduction point is listening for - incoming onion requests. - - "onion-key" NL a public key in PEM format - - [Exactly once] - - The public key that can be used to encrypt messages to this - introduction point. - - "service-key" NL a public key in PEM format - - [Exactly once] - - The public key that can be used to encrypt messages to the hidden - service. - - "intro-authentication" auth-type auth-data NL - - [Any number] - - The introduction-point-specific authentication data can be used - to perform client authentication. This data depends on the - selected introduction point as opposed to "service-authentication" - above. The format of auth-data (base64-encoded or PEM format) - depends on auth-type. See section 2 of this document for details - on auth mechanisms. - - (This ends the fields in the encrypted portion of the descriptor.) - - [It's ok for Bob to advertise 0 introduction points. He might want - to do that if he previously advertised some introduction points, - and now he doesn't have any. -RD] - - "signature" NL signature-string - - [At end, exactly once] - - A signature of all fields above with the private key of the hidden - service. - -1.3.1. Other descriptor formats we don't use. - - Support for the V0 descriptor format was dropped in 0.2.2.0-alpha-dev: - - KL Key length [2 octets] - PK Bob's public key [KL octets] - TS A timestamp [4 octets] - NI Number of introduction points [2 octets] - Ipt A list of NUL-terminated ORs [variable] - SIG Signature of above fields [variable] - - KL is the length of PK, in octets. - TS is the number of seconds elapsed since Jan 1, 1970. - - The members of Ipt may be either (a) nicknames, or (b) identity key - digests, encoded in hex, and prefixed with a '$'. - - The V1 descriptor format was understood and accepted from - 0.1.1.5-alpha-cvs to 0.2.0.6-alpha-dev, but no Tors generated it and - it was removed: - - V Format byte: set to 255 [1 octet] - V Version byte: set to 1 [1 octet] - KL Key length [2 octets] - PK Bob's public key [KL octets] - TS A timestamp [4 octets] - PROTO Protocol versions: bitmask [2 octets] - NI Number of introduction points [2 octets] - For each introduction point: (as in INTRODUCE2 cells) - IP Introduction point's address [4 octets] - PORT Introduction point's OR port [2 octets] - ID Introduction point identity ID [20 octets] - KLEN Length of onion key [2 octets] - KEY Introduction point onion key [KLEN octets] - SIG Signature of above fields [variable] - - A hypothetical "V1" descriptor, that has never been used but might - be useful for historical reasons, contains: - - V Format byte: set to 255 [1 octet] - V Version byte: set to 1 [1 octet] - KL Key length [2 octets] - PK Bob's public key [KL octets] - TS A timestamp [4 octets] - PROTO Rendezvous protocol versions: bitmask [2 octets] - NA Number of auth mechanisms accepted [1 octet] - For each auth mechanism: - AUTHT The auth type that is supported [2 octets] - AUTHL Length of auth data [1 octet] - AUTHD Auth data [variable] - NI Number of introduction points [2 octets] - For each introduction point: (as in INTRODUCE2 cells) - ATYPE An address type (typically 4) [1 octet] - ADDR Introduction point's IP address [4 or 16 octets] - PORT Introduction point's OR port [2 octets] - AUTHT The auth type that is supported [2 octets] - AUTHL Length of auth data [1 octet] - AUTHD Auth data [variable] - ID Introduction point identity ID [20 octets] - KLEN Length of onion key [2 octets] - KEY Introduction point onion key [KLEN octets] - SIG Signature of above fields [variable] - - AUTHT specifies which authentication/authorization mechanism is - required by the hidden service or the introduction point. AUTHD - is arbitrary data that can be associated with an auth approach. - Currently only AUTHT of [00 00] is supported, with an AUTHL of 0. - See section 2 of this document for details on auth mechanisms. - -1.4. Bob's OP advertises his service descriptor(s). - - Bob's OP advertises his service descriptor to a fixed set of v0 hidden - service directory servers and/or a changing subset of all v2 hidden service - directories. - - For versions before 0.2.2.1-alpha, Bob's OP opens a stream to each v0 - directory server's directory port via Tor. (He may re-use old circuits for - this.) Over this stream, Bob's OP makes an HTTP 'POST' request, to a URL - "/tor/rendezvous/publish" relative to the directory server's root, - containing as its body Bob's service descriptor. - - Upon receiving a descriptor, the directory server checks the signature, - and discards the descriptor if the signature does not match the enclosed - public key. Next, the directory server checks the timestamp. If the - timestamp is more than 24 hours in the past or more than 1 hour in the - future, or the directory server already has a newer descriptor with the - same public key, the server discards the descriptor. Otherwise, the - server discards any older descriptors with the same public key and - version format, and associates the new descriptor with the public key. - The directory server remembers this descriptor for at least 24 hours - after its timestamp. At least every 18 hours, Bob's OP uploads a - fresh descriptor. - - If Bob's OP is configured to publish v2 descriptors, it does so to a - changing subset of all v2 hidden service directories instead of the - authoritative directory servers. Therefore, Bob's OP opens a stream via - Tor to each responsible hidden service directory. (He may re-use old - circuits for this.) Over this stream, Bob's OP makes an HTTP 'POST' - request to a URL "/tor/rendezvous2/publish" relative to the hidden service - directory's root, containing as its body Bob's service descriptor. - - At any time, there are 6 hidden service directories responsible for - keeping replicas of a descriptor; they consist of 2 sets of 3 hidden - service directories with consecutive onion IDs. Bob's OP learns about - the complete list of hidden service directories by filtering the - consensus status document received from the directory authorities. A - hidden service directory is deemed responsible for all descriptor IDs in - the interval from its direct predecessor, exclusive, to its own ID, - inclusive; it further holds replicas for its 2 predecessors. A - participant only trusts its own routing list and never learns about - routing information from other parties. - - Bob's OP publishes a new v2 descriptor once an hour or whenever its - content changes. V2 descriptors can be found by clients within a given - time period of 24 hours, after which they change their ID as described - under 1.3. If a published descriptor would be valid for less than 60 - minutes (= 2 x 30 minutes to allow the server to be 30 minutes behind - and the client 30 minutes ahead), Bob's OP publishes the descriptor - under the ID of both, the current and the next publication period. - -1.5. Alice receives a z.onion address. - - When Alice receives a pointer to a location-hidden service, it is as a - hostname of the form "z.onion", where z is a base-32 encoding of a - 10-octet hash of Bob's service's public key, computed as follows: - - 1. Let H = H(PK). - 2. Let H' = the first 80 bits of H, considering each octet from - most significant bit to least significant bit. - 3. Generate a 16-character encoding of H', using base32 as defined - in RFC 3548. - - (We only use 80 bits instead of the 160 bits from SHA1 because we - don't need to worry about arbitrary collisions, and because it will - make handling the url's more convenient.) - - [Yes, numbers are allowed at the beginning. See RFC 1123. -NM] - -1.6. Alice's OP retrieves a service descriptor. - - Alice's OP fetches the service descriptor from the fixed set of v0 hidden - service directory servers and/or a changing subset of all v2 hidden service - directories. - - For versions before 0.2.2.1-alpha, Alice's OP opens a stream to a directory - server via Tor, and makes an HTTP GET request for the document - '/tor/rendezvous/<z>', where '<z>' is replaced with the encoding of Bob's - public key as described above. (She may re-use old circuits for this.) The - directory replies with a 404 HTTP response if it does not recognize <z>, - and otherwise returns Bob's most recently uploaded service descriptor. - - If Alice's OP receives a 404 response, it tries the other directory - servers, and only fails the lookup if none recognize the public key hash. - - Upon receiving a service descriptor, Alice verifies with the same process - as the directory server uses, described above in section 1.4. - - The directory server gives a 400 response if it cannot understand Alice's - request. - - Alice should cache the descriptor locally, but should not use - descriptors that are more than 24 hours older than their timestamp. - [Caching may make her partitionable, but she fetched it anonymously, - and we can't very well *not* cache it. -RD] - - If Alice's OP is running 0.2.1.10-alpha or higher, it fetches v2 hidden - service descriptors. Versions before 0.2.2.1-alpha are fetching both v0 and - v2 descriptors in parallel. Similar to the description in section 1.4, - Alice's OP fetches a v2 descriptor from a randomly chosen hidden service - directory out of the changing subset of 6 nodes. If the request is - unsuccessful, Alice retries the other remaining responsible hidden service - directories in a random order. Alice relies on Bob to care about a potential - clock skew between the two by possibly storing two sets of descriptors (see - end of section 1.4). - - Alice's OP opens a stream via Tor to the chosen v2 hidden service - directory. (She may re-use old circuits for this.) Over this stream, - Alice's OP makes an HTTP 'GET' request for the document - "/tor/rendezvous2/<z>", where z is replaced with the encoding of the - descriptor ID. The directory replies with a 404 HTTP response if it does - not recognize <z>, and otherwise returns Bob's most recently uploaded - service descriptor. - -1.7. Alice's OP establishes a rendezvous point. - - When Alice requests a connection to a given location-hidden service, - and Alice's OP does not have an established circuit to that service, - the OP builds a rendezvous circuit. It does this by establishing - a circuit to a randomly chosen OR, and sending a - RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell to that OR. The body of that cell - contains: - - RC Rendezvous cookie [20 octets] - - The rendezvous cookie is an arbitrary 20-byte value, chosen randomly by - Alice's OP. Alice SHOULD choose a new rendezvous cookie for each new - connection attempt. - - Upon receiving a RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell, the OR associates - the RC with the circuit that sent it. It replies to Alice with an empty - RELAY_COMMAND_RENDEZVOUS_ESTABLISHED cell to indicate success. - - Alice's OP MUST NOT use the circuit which sent the cell for any purpose - other than rendezvous with the given location-hidden service. - -1.8. Introduction: from Alice's OP to Introduction Point - - Alice builds a separate circuit to one of Bob's chosen introduction - points, and sends it a RELAY_COMMAND_INTRODUCE1 cell containing: - - Cleartext - PK_ID Identifier for Bob's PK [20 octets] - Encrypted to Bob's PK: (in the v0 intro protocol) - RP Rendezvous point's nickname [20 octets] - RC Rendezvous cookie [20 octets] - g^x Diffie-Hellman data, part 1 [128 octets] - OR (in the v1 intro protocol) - VER Version byte: set to 1. [1 octet] - RP Rendezvous point nick or ID [42 octets] - RC Rendezvous cookie [20 octets] - g^x Diffie-Hellman data, part 1 [128 octets] - OR (in the v2 intro protocol) - VER Version byte: set to 2. [1 octet] - IP Rendezvous point's address [4 octets] - PORT Rendezvous point's OR port [2 octets] - ID Rendezvous point identity ID [20 octets] - KLEN Length of onion key [2 octets] - KEY Rendezvous point onion key [KLEN octets] - RC Rendezvous cookie [20 octets] - g^x Diffie-Hellman data, part 1 [128 octets] - OR (in the v3 intro protocol) - VER Version byte: set to 3. [1 octet] - AUTHT The auth type that is used [1 octet] - AUTHL Length of auth data [2 octets] - AUTHD Auth data [variable] - TS A timestamp [4 octets] - IP Rendezvous point's address [4 octets] - PORT Rendezvous point's OR port [2 octets] - ID Rendezvous point identity ID [20 octets] - KLEN Length of onion key [2 octets] - KEY Rendezvous point onion key [KLEN octets] - RC Rendezvous cookie [20 octets] - g^x Diffie-Hellman data, part 1 [128 octets] - - PK_ID is the hash of Bob's public key or the service key, depending on the - hidden service descriptor version. In case of a v0 descriptor, Alice's OP - uses Bob's public key. If Alice has downloaded a v2 descriptor, she uses - the contained public key ("service-key"). - - RP is NUL-padded and terminated. In version 0 of the intro protocol, RP - must contain a nickname. In version 1, it must contain EITHER a nickname or - an identity key digest that is encoded in hex and prefixed with a '$'. - - The hybrid encryption to Bob's PK works just like the hybrid - encryption in CREATE cells (see tor-spec). Thus the payload of the - version 0 RELAY_COMMAND_INTRODUCE1 cell on the wire will contain - 20+42+16+20+20+128=246 bytes, and the version 1 and version 2 - introduction formats have other sizes. - - Through Tor 0.2.0.6-alpha, clients only generated the v0 introduction - format, whereas hidden services have understood and accepted v0, - v1, and v2 since 0.1.1.x. As of Tor 0.2.0.7-alpha and 0.1.2.18, - clients switched to using the v2 intro format. - -1.9. Introduction: From the Introduction Point to Bob's OP - - If the Introduction Point recognizes PK_ID as a public key which has - established a circuit for introductions as in 1.2 above, it sends the body - of the cell in a new RELAY_COMMAND_INTRODUCE2 cell down the corresponding - circuit. (If the PK_ID is unrecognized, the RELAY_COMMAND_INTRODUCE1 cell is - discarded.) - - After sending the RELAY_COMMAND_INTRODUCE2 cell to Bob, the OR replies to - Alice with an empty RELAY_COMMAND_INTRODUCE_ACK cell. If no - RELAY_COMMAND_INTRODUCE2 cell can be sent, the OR replies to Alice with a - non-empty cell to indicate an error. (The semantics of the cell body may be - determined later; the current implementation sends a single '1' byte on - failure.) - - When Bob's OP receives the RELAY_COMMAND_INTRODUCE2 cell, it decrypts it - with the private key for the corresponding hidden service, and extracts the - rendezvous point's nickname, the rendezvous cookie, and the value of g^x - chosen by Alice. - -1.10. Rendezvous - - Bob's OP builds a new Tor circuit ending at Alice's chosen rendezvous - point, and sends a RELAY_COMMAND_RENDEZVOUS1 cell along this circuit, - containing: - RC Rendezvous cookie [20 octets] - g^y Diffie-Hellman [128 octets] - KH Handshake digest [20 octets] - - (Bob's OP MUST NOT use this circuit for any other purpose.) - - If the RP recognizes RC, it relays the rest of the cell down the - corresponding circuit in a RELAY_COMMAND_RENDEZVOUS2 cell, containing: - - g^y Diffie-Hellman [128 octets] - KH Handshake digest [20 octets] - - (If the RP does not recognize the RC, it discards the cell and - tears down the circuit.) - - When Alice's OP receives a RELAY_COMMAND_RENDEZVOUS2 cell on a circuit which - has sent a RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell but which has not yet - received a reply, it uses g^y and H(g^xy) to complete the handshake as in - the Tor circuit extend process: they establish a 60-octet string as - K = SHA1(g^xy | [00]) | SHA1(g^xy | [01]) | SHA1(g^xy | [02]) - and generate - KH = K[0..15] - Kf = K[16..31] - Kb = K[32..47] - - Subsequently, the rendezvous point passes relay cells, unchanged, from - each of the two circuits to the other. When Alice's OP sends - RELAY cells along the circuit, it first encrypts them with the - Kf, then with all of the keys for the ORs in Alice's side of the circuit; - and when Alice's OP receives RELAY cells from the circuit, it decrypts - them with the keys for the ORs in Alice's side of the circuit, then - decrypts them with Kb. Bob's OP does the same, with Kf and Kb - interchanged. - -1.11. Creating streams - - To open TCP connections to Bob's location-hidden service, Alice's OP sends - a RELAY_COMMAND_BEGIN cell along the established circuit, using the special - address "", and a chosen port. Bob's OP chooses a destination IP and - port, based on the configuration of the service connected to the circuit, - and opens a TCP stream. From then on, Bob's OP treats the stream as an - ordinary exit connection. - [ Except he doesn't include addr in the connected cell or the end - cell. -RD] - - Alice MAY send multiple RELAY_COMMAND_BEGIN cells along the circuit, to open - multiple streams to Bob. Alice SHOULD NOT send RELAY_COMMAND_BEGIN cells - for any other address along her circuit to Bob; if she does, Bob MUST reject - them. - -2. Authentication and authorization. - - The rendezvous protocol as described in Section 1 provides a few options - for implementing client-side authorization. There are two steps in the - rendezvous protocol that can be used for performing client authorization: - when downloading and decrypting parts of the hidden service descriptor and - at Bob's Tor client before contacting the rendezvous point. A service - provider can restrict access to his service at these two points to - authorized clients only. - - There are currently two authorization protocols specified that are - described in more detail below: - - 1. The first protocol allows a service provider to restrict access - to clients with a previously received secret key only, but does not - attempt to hide service activity from others. - - 2. The second protocol, albeit being feasible for a limited set of about - 16 clients, performs client authorization and hides service activity - from everyone but the authorized clients. - -2.1. Service with large-scale client authorization - - The first client authorization protocol aims at performing access control - while consuming as few additional resources as possible. This is the "basic" - authorization protocol. A service provider should be able to permit access - to a large number of clients while denying access for everyone else. - However, the price for scalability is that the service won't be able to hide - its activity from unauthorized or formerly authorized clients. - - The main idea of this protocol is to encrypt the introduction-point part - in hidden service descriptors to authorized clients using symmetric keys. - This ensures that nobody else but authorized clients can learn which - introduction points a service currently uses, nor can someone send a - valid INTRODUCE1 message without knowing the introduction key. Therefore, - a subsequent authorization at the introduction point is not required. - - A service provider generates symmetric "descriptor cookies" for his - clients and distributes them outside of Tor. The suggested key size is - 128 bits, so that descriptor cookies can be encoded in 22 base64 chars - (which can hold up to 22 * 5 = 132 bits, leaving 4 bits to encode the - authorization type (here: "0") and allow a client to distinguish this - authorization protocol from others like the one proposed below). - Typically, the contact information for a hidden service using this - authorization protocol looks like this: - - v2cbb2l4lsnpio4q.onion Ll3X7Xgz9eHGKCCnlFH0uz - - When generating a hidden service descriptor, the service encrypts the - introduction-point part with a single randomly generated symmetric - 128-bit session key using AES-CTR as described for v2 hidden service - descriptors in rend-spec. Afterwards, the service encrypts the session - key to all descriptor cookies using AES. Authorized client should be able - to efficiently find the session key that is encrypted for him/her, so - that 4 octet long client ID are generated consisting of descriptor cookie - and initialization vector. Descriptors always contain a number of - encrypted session keys that is a multiple of 16 by adding fake entries. - Encrypted session keys are ordered by client IDs in order to conceal - addition or removal of authorized clients by the service provider. - - ATYPE Authorization type: set to 1. [1 octet] - ALEN Number of clients := 1 + ((clients - 1) div 16) [1 octet] - for each symmetric descriptor cookie: - ID Client ID: H(descriptor cookie | IV)[:4] [4 octets] - SKEY Session key encrypted with descriptor cookie [16 octets] - (end of client-specific part) - RND Random data [(15 - ((clients - 1) mod 16)) * 20 octets] - IV AES initialization vector [16 octets] - IPOS Intro points, encrypted with session key [remaining octets] - - An authorized client needs to configure Tor to use the descriptor cookie - when accessing the hidden service. Therefore, a user adds the contact - information that she received from the service provider to her torrc - file. Upon downloading a hidden service descriptor, Tor finds the - encrypted introduction-point part and attempts to decrypt it using the - configured descriptor cookie. (In the rare event of two or more client - IDs being equal a client tries to decrypt all of them.) - - Upon sending the introduction, the client includes her descriptor cookie - as auth type "1" in the INTRODUCE2 cell that she sends to the service. - The hidden service checks whether the included descriptor cookie is - authorized to access the service and either responds to the introduction - request, or not. - -2.2. Authorization for limited number of clients - - A second, more sophisticated client authorization protocol goes the extra - mile of hiding service activity from unauthorized clients. This is the - "stealth" authorization protocol. With all else being equal to the preceding - authorization protocol, the second protocol publishes hidden service - descriptors for each user separately and gets along with encrypting the - introduction-point part of descriptors to a single client. This allows the - service to stop publishing descriptors for removed clients. As long as a - removed client cannot link descriptors issued for other clients to the - service, it cannot derive service activity any more. The downside of this - approach is limited scalability. Even though the distributed storage of - descriptors (cf. proposal 114) tackles the problem of limited scalability to - a certain extent, this protocol should not be used for services with more - than 16 clients. (In fact, Tor should refuse to advertise services for more - than this number of clients.) - - A hidden service generates an asymmetric "client key" and a symmetric - "descriptor cookie" for each client. The client key is used as - replacement for the service's permanent key, so that the service uses a - different identity for each of his clients. The descriptor cookie is used - to store descriptors at changing directory nodes that are unpredictable - for anyone but service and client, to encrypt the introduction-point - part, and to be included in INTRODUCE2 cells. Once the service has - created client key and descriptor cookie, he tells them to the client - outside of Tor. The contact information string looks similar to the one - used by the preceding authorization protocol (with the only difference - that it has "1" encoded as auth-type in the remaining 4 of 132 bits - instead of "0" as before). - - When creating a hidden service descriptor for an authorized client, the - hidden service uses the client key and descriptor cookie to compute - secret ID part and descriptor ID: - - secret-id-part = H(time-period | descriptor-cookie | replica) - - descriptor-id = H(client-key[:10] | secret-id-part) - - The hidden service also replaces permanent-key in the descriptor with - client-key and encrypts introduction-points with the descriptor cookie. - - ATYPE Authorization type: set to 2. [1 octet] - IV AES initialization vector [16 octets] - IPOS Intro points, encr. with descriptor cookie [remaining octets] - - When uploading descriptors, the hidden service needs to make sure that - descriptors for different clients are not uploaded at the same time (cf. - Section 1.1) which is also a limiting factor for the number of clients. - - When a client is requested to establish a connection to a hidden service - it looks up whether it has any authorization data configured for that - service. If the user has configured authorization data for authorization - protocol "2", the descriptor ID is determined as described in the last - paragraph. Upon receiving a descriptor, the client decrypts the - introduction-point part using its descriptor cookie. Further, the client - includes its descriptor cookie as auth-type "2" in INTRODUCE2 cells that - it sends to the service. - -2.3. Hidden service configuration - - A hidden service that is meant to perform client authorization adds a - new option HiddenServiceAuthorizeClient to its hidden service - configuration. This option contains the authorization type which is - either "basic" for the protocol described in 2.1 or "stealth" for the - protocol in 2.2 and a comma-separated list of human-readable client - names, so that Tor can create authorization data for these clients: - - HiddenServiceAuthorizeClient auth-type client-name,client-name,... - - If this option is configured, HiddenServiceVersion is automatically - reconfigured to contain only version numbers of 2 or higher. There is - a maximum of 512 client names for basic auth and a maximum of 16 for - stealth auth. - - Tor stores all generated authorization data for the authorization - protocols described in Sections 2.1 and 2.2 in a new file using the - following file format: - - "client-name" human-readable client identifier NL - "descriptor-cookie" 128-bit key ^= 22 base64 chars NL - - If the authorization protocol of Section 2.2 is used, Tor also generates - and stores the following data: - - "client-key" NL a public key in PEM format - -2.4. Client configuration - - Clients need to make their authorization data known to Tor using another - configuration option that contains a service name (mainly for the sake of - convenience), the service address, and the descriptor cookie that is - required to access a hidden service (the authorization protocol number is - encoded in the descriptor cookie): - - HidServAuth service-name service-address descriptor-cookie - -3. Hidden service directory operation - - This section has been introduced with the v2 hidden service descriptor - format. It describes all operations of the v2 hidden service descriptor - fetching and propagation mechanism that are required for the protocol - described in section 1 to succeed with v2 hidden service descriptors. - -3.1. Configuring as hidden service directory - - Every onion router that has its directory port open can decide whether it - wants to store and serve hidden service descriptors. An onion router which - is configured as such includes the "hidden-service-dir" flag in its router - descriptors that it sends to directory authorities. - - The directory authorities include a new flag "HSDir" for routers that - decided to provide storage for hidden service descriptors and that - have been running for at least 24 hours. - -3.2. Accepting publish requests - - Hidden service directory nodes accept publish requests for v2 hidden service - descriptors and store them to their local memory. (It is not necessary to - make descriptors persistent, because after restarting, the onion router - would not be accepted as a storing node anyway, because it has not been - running for at least 24 hours.) All requests and replies are formatted as - HTTP messages. Requests are initiated via BEGIN_DIR cells directed to - the router's directory port, and formatted as HTTP POST requests to the URL - "/tor/rendezvous2/publish" relative to the hidden service directory's root, - containing as its body a v2 service descriptor. - - A hidden service directory node parses every received descriptor and only - stores it when it thinks that it is responsible for storing that descriptor - based on its own routing table. See section 1.4 for more information on how - to determine responsibility for a certain descriptor ID. - -3.3. Processing fetch requests - - Hidden service directory nodes process fetch requests for hidden service - descriptors by looking them up in their local memory. (They do not need to - determine if they are responsible for the passed ID, because it does no harm - if they deliver a descriptor for which they are not (any more) responsible.) - All requests and replies are formatted as HTTP messages. Requests are - initiated via BEGIN_DIR cells directed to the router's directory port, - and formatted as HTTP GET requests for the document "/tor/rendezvous2/<z>", - where z is replaced with the encoding of the descriptor ID. - |