diff options
Diffstat (limited to 'doc/spec/proposals/125-bridges.txt')
-rw-r--r-- | doc/spec/proposals/125-bridges.txt | 291 |
1 files changed, 0 insertions, 291 deletions
diff --git a/doc/spec/proposals/125-bridges.txt b/doc/spec/proposals/125-bridges.txt deleted file mode 100644 index 9d95729d42..0000000000 --- a/doc/spec/proposals/125-bridges.txt +++ /dev/null @@ -1,291 +0,0 @@ -Filename: 125-bridges.txt -Title: Behavior for bridge users, bridge relays, and bridge authorities -Author: Roger Dingledine -Created: 11-Nov-2007 -Status: Closed -Implemented-In: 0.2.0.x - -0. Preface - - This document describes the design decisions around support for bridge - users, bridge relays, and bridge authorities. It acts as an overview - of the bridge design and deployment for developers, and it also tries - to point out limitations in the current design and implementation. - - For more details on what all of these mean, look at blocking.tex in - /doc/design-paper/ - -1. Bridge relays - - Bridge relays are just like normal Tor relays except they don't publish - their server descriptors to the main directory authorities. - -1.1. PublishServerDescriptor - - To configure your relay to be a bridge relay, just add - BridgeRelay 1 - PublishServerDescriptor bridge - to your torrc. This will cause your relay to publish its descriptor - to the bridge authorities rather than to the default authorities. - - Alternatively, you can say - BridgeRelay 1 - PublishServerDescriptor 0 - which will cause your relay to not publish anywhere. This could be - useful for private bridges. - -1.2. Exit policy - - Bridge relays should use an exit policy of "reject *:*". This is - because they only need to relay traffic between the bridge users - and the rest of the Tor network, so there's no need to let people - exit directly from them. - -1.3. RelayBandwidthRate / RelayBandwidthBurst - - We invented the RelayBandwidth* options for this situation: Tor clients - who want to allow relaying too. See proposal 111 for details. Relay - operators should feel free to rate-limit their relayed traffic. - -1.4. Helping the user with port forwarding, NAT, etc. - - Just as for operating normal relays, our documentation and hints for - how to make your ORPort reachable are inadequate for normal users. - - We need to work harder on this step, perhaps in 0.2.2.x. - -1.5. Vidalia integration - - Vidalia has turned its "Relay" settings page into a tri-state - "Don't relay" / "Relay for the Tor network" / "Help censored users". - - If you click the third choice, it forces your exit policy to reject *:*. - - If all the bridges end up on port 9001, that's not so good. On the - other hand, putting the bridges on a low-numbered port in the Unix - world requires jumping through extra hoops. The current compromise is - that Vidalia makes the ORPort default to 443 on Windows, and 9001 on - other platforms. - - At the bottom of the relay config settings window, Vidalia displays - the bridge identifier to the operator (see Section 3.1) so he can pass - it on to bridge users. - -1.6. What if the default ORPort is already used? - - If the user already has a webserver or some other application - bound to port 443, then Tor will fail to bind it and complain to the - user, probably in a cryptic way. Rather than just working on a better - error message (though we should do this), we should consider an - "ORPort auto" option that tells Tor to try to find something that's - bindable and reachable. This would also help us tolerate ISPs that - filter incoming connections on port 80 and port 443. But this should - be a different proposal, and can wait until 0.2.2.x. - -2. Bridge authorities. - - Bridge authorities are like normal directory authorities, except they - don't create their own network-status documents or votes. So if you - ask an authority for a network-status document or consensus, they - behave like a directory mirror: they give you one from one of the main - authorities. But if you ask the bridge authority for the descriptor - corresponding to a particular identity fingerprint, it will happily - give you the latest descriptor for that fingerprint. - - To become a bridge authority, add these lines to your torrc: - AuthoritativeDirectory 1 - BridgeAuthoritativeDir 1 - - Right now there's one bridge authority, running on the Tonga relay. - -2.1. Exporting bridge-purpose descriptors - - We've added a new purpose for server descriptors: the "bridge" - purpose. With the new router-descriptors file format that includes - annotations, it's easy to look through it and find the bridge-purpose - descriptors. - - Currently we export the bridge descriptors from Tonga to the - BridgeDB server, so it can give them out according to the policies - in blocking.pdf. - -2.2. Reachability/uptime testing - - Right now the bridge authorities do active reachability testing of - bridges, so we know which ones to recommend for users. - - But in the design document, we suggested that bridges should publish - anonymously (i.e. via Tor) to the bridge authority, so somebody watching - the bridge authority can't just enumerate all the bridges. But if we're - doing active measurement, the game is up. Perhaps we should back off on - this goal, or perhaps we should do our active measurement anonymously? - - Answering this issue is scheduled for 0.2.1.x. - -2.3. Migrating to multiple bridge authorities - - Having only one bridge authority is both a trust bottleneck (if you - break into one place you learn about every single bridge we've got) - and a robustness bottleneck (when it's down, bridge users become sad). - - Right now if we put up a second bridge authority, all the bridges would - publish to it, and (assuming the code works) bridge users would query - a random bridge authority. This resolves the robustness bottleneck, - but makes the trust bottleneck even worse. - - In 0.2.2.x and later we should think about better ways to have multiple - bridge authorities. - -3. Bridge users. - - Bridge users are like ordinary Tor users except they use encrypted - directory connections by default, and they use bridge relays as both - entry guards (their first hop) and directory guards (the source of - all their directory information). - - To become a bridge user, add the following line to your torrc: - - UseBridges 1 - - and then add at least one "Bridge" line to your torrc based on the - format below. - -3.1. Format of the bridge identifier. - - The canonical format for a bridge identifier contains an IP address, - an ORPort, and an identity fingerprint: - bridge 128.31.0.34:9009 4C17 FB53 2E20 B2A8 AC19 9441 ECD2 B017 7B39 E4B1 - - However, the identity fingerprint can be left out, in which case the - bridge user will connect to that relay and use it as a bridge regardless - of what identity key it presents: - bridge 128.31.0.34:9009 - This might be useful for cases where only short bridge identifiers - can be communicated to bridge users. - - In a future version we may also support bridge identifiers that are - only a key fingerprint: - bridge 4C17 FB53 2E20 B2A8 AC19 9441 ECD2 B017 7B39 E4B1 - and the bridge user can fetch the latest descriptor from the bridge - authority (see Section 3.4). - -3.2. Bridges as entry guards - - For now, bridge users add their bridge relays to their list of "entry - guards" (see path-spec.txt for background on entry guards). They are - managed by the entry guard algorithms exactly as if they were a normal - entry guard -- their keys and timing get cached in the "state" file, - etc. This means that when the Tor user starts up with "UseBridges" - disabled, he will skip past the bridge entries since they won't be - listed as up and usable in his networkstatus consensus. But to be clear, - the "entry_guards" list doesn't currently distinguish guards by purpose. - - Internally, each bridge user keeps a smartlist of "bridge_info_t" - that reflects the "bridge" lines from his torrc along with a download - schedule (see Section 3.5 below). When he starts Tor, he attempts - to fetch a descriptor for each configured bridge (see Section 3.4 - below). When he succeeds at getting a descriptor for one of the bridges - in his list, he adds it directly to the entry guard list using the - normal add_an_entry_guard() interface. Once a bridge descriptor has - been added, should_delay_dir_fetches() will stop delaying further - directory fetches, and the user begins to bootstrap his directory - information from that bridge (see Section 3.3). - - Currently bridge users cache their bridge descriptors to the - "cached-descriptors" file (annotated with purpose "bridge"), but - they don't make any attempt to reuse descriptors they find in this - file. The theory is that either the bridge is available now, in which - case you can get a fresh descriptor, or it's not, in which case an - old descriptor won't do you much good. - - We could disable writing out the bridge lines to the state file, if - we think this is a problem. - - As an exception, if we get an application request when we have one - or more bridge descriptors but we believe none of them are running, - we mark them all as running again. This is similar to the exception - already in place to help long-idle Tor clients realize they should - fetch fresh directory information rather than just refuse requests. - -3.3. Bridges as directory guards - - In addition to using bridges as the first hop in their circuits, bridge - users also use them to fetch directory updates. Other than initial - bootstrapping to find a working bridge descriptor (see Section 3.4 - below), all further non-anonymized directory fetches will be redirected - to the bridge. - - This means that bridge relays need to have cached answers for all - questions the bridge user might ask. This makes the upgrade path - tricky --- for example, if we migrate to a v4 directory design, the - bridge user would need to keep using v3 so long as his bridge relays - only knew how to answer v3 queries. - - In a future design, for cases where the user has enough information - to build circuits yet the chosen bridge doesn't know how to answer a - given query, we might teach bridge users to make an anonymized request - to a more suitable directory server. - -3.4. How bridge users get their bridge descriptor - - Bridge users can fetch bridge descriptors in two ways: by going directly - to the bridge and asking for "/tor/server/authority", or by going to - the bridge authority and asking for "/tor/server/fp/ID". By default, - they will only try the direct queries. If the user sets - UpdateBridgesFromAuthority 1 - in his config file, then he will try querying the bridge authority - first for bridges where he knows a digest (if he only knows an IP - address and ORPort, then his only option is a direct query). - - If the user has at least one working bridge, then he will do further - queries to the bridge authority through a full three-hop Tor circuit. - But when bootstrapping, he will make a direct begin_dir-style connection - to the bridge authority. - - As of Tor 0.2.0.10-alpha, if the user attempts to fetch a descriptor - from the bridge authority and it returns a 404 not found, the user - will automatically fall back to trying a direct query. Therefore it is - recommended that bridge users always set UpdateBridgesFromAuthority, - since at worst it will delay their fetches a little bit and notify - the bridge authority of the identity fingerprint (but not location) - of their intended bridges. - -3.5. Bridge descriptor retry schedule - - Bridge users try to fetch a descriptor for each bridge (using the - steps in Section 3.4 above) on startup. Whenever they receive a - bridge descriptor, they reschedule a new descriptor download for 1 - hour from then. - - If on the other hand it fails, they try again after 15 minutes for the - first attempt, after 15 minutes for the second attempt, and after 60 - minutes for subsequent attempts. - - In 0.2.2.x we should come up with some smarter retry schedules. - -3.6. Vidalia integration - - Vidalia 0.0.16 has a checkbox in its Network config window called - "My ISP blocks connections to the Tor network." Users who click that - box change their configuration to: - UseBridges 1 - UpdateBridgesFromAuthority 1 - and should specify at least one Bridge identifier. - -3.7. Do we need a second layer of entry guards? - - If the bridge user uses the bridge as its entry guard, then the - triangulation attacks from Lasse and Paul's Oakland paper work to - locate the user's bridge(s). - - Worse, this is another way to enumerate bridges: if the bridge users - keep rotating through second hops, then if you run a few fast servers - (and avoid getting considered an Exit or a Guard) you'll quickly get - a list of the bridges in active use. - - That's probably the strongest reason why bridge users will need to - pick second-layer guards. Would this mean bridge users should switch - to four-hop circuits? - - We should figure this out in the 0.2.1.x timeframe. - |