diff options
Diffstat (limited to 'doc/spec/control-spec-v0.txt')
-rw-r--r-- | doc/spec/control-spec-v0.txt | 498 |
1 files changed, 0 insertions, 498 deletions
diff --git a/doc/spec/control-spec-v0.txt b/doc/spec/control-spec-v0.txt deleted file mode 100644 index 3515d395a6..0000000000 --- a/doc/spec/control-spec-v0.txt +++ /dev/null @@ -1,498 +0,0 @@ - - TC: A Tor control protocol (Version 0) - --1. Deprecation - -THIS PROTOCOL IS DEPRECATED. It is still documented here because Tor -0.1.1.x happens to support much of it; but the support for v0 is not -maintained, so you should expect it to rot in unpredictable ways. Support -for v0 will be removed some time after Tor 0.1.2. - -0. Scope - -This document describes an implementation-specific protocol that is used -for other programs (such as frontend user-interfaces) to communicate -with a locally running Tor process. It is not part of the Tor onion -routing protocol. - -We're trying to be pretty extensible here, but not infinitely -forward-compatible. - -1. Protocol outline - -TC is a bidirectional message-based protocol. It assumes an underlying -stream for communication between a controlling process (the "client") and -a Tor process (the "server"). The stream may be implemented via TCP, -TLS-over-TCP, a Unix-domain socket, or so on, but it must provide -reliable in-order delivery. For security, the stream should not be -accessible by untrusted parties. - -In TC, the client and server send typed variable-length messages to each -other over the underlying stream. By default, all messages from the server -are in response to messages from the client. Some client requests, however, -will cause the server to send messages to the client indefinitely far into -the future. - -Servers respond to messages in the order they're received. - -2. Message format - -The messages take the following format: - - Length [2 octets; big-endian] - Type [2 octets; big-endian] - Body [Length octets] - -Upon encountering a recognized Type, implementations behave as described in -section 3 below. If the type is not recognized, servers respond with an -"ERROR" message (code UNRECOGNIZED; see 3.1 below), and clients simply ignore -the message. - -2.1. Types and encodings - - All numbers are given in big-endian (network) order. - - OR identities are given in hexadecimal, in the same format as identity key - fingerprints, but without spaces; see tor-spec.txt for more information. - -3. Message types - - Message types are drawn from the following ranges: - - 0x0000-0xEFFF : Reserved for use by official versions of this spec. - 0xF000-0xFFFF : Unallocated; usable by unofficial extensions. - -3.1. ERROR (Type 0x0000) - - Sent in response to a message that could not be processed as requested. - - The body of the message begins with a 2-byte error code. The following - values are defined: - - 0x0000 Unspecified error - [] - - 0x0001 Internal error - [Something went wrong inside Tor, so that the client's - request couldn't be fulfilled.] - - 0x0002 Unrecognized message type - [The client sent a message type we don't understand.] - - 0x0003 Syntax error - [The client sent a message body in a format we can't parse.] - - 0x0004 Unrecognized configuration key - [The client tried to get or set a configuration option we don't - recognize.] - - 0x0005 Invalid configuration value - [The client tried to set a configuration option to an - incorrect, ill-formed, or impossible value.] - - 0x0006 Unrecognized byte code - [The client tried to set a byte code (in the body) that - we don't recognize.] - - 0x0007 Unauthorized. - [The client tried to send a command that requires - authorization, but it hasn't sent a valid AUTHENTICATE - message.] - - 0x0008 Failed authentication attempt - [The client sent a well-formed authorization message.] - - 0x0009 Resource exhausted - [The server didn't have enough of a given resource to - fulfill a given request.] - - 0x000A No such stream - - 0x000B No such circuit - - 0x000C No such OR - - The rest of the body should be a human-readable description of the error. - - In general, new error codes should only be added when they don't fall under - one of the existing error codes. - -3.2. DONE (Type 0x0001) - - Sent from server to client in response to a request that was successfully - completed, with no more information needed. The body is usually empty but - may contain a message. - -3.3. SETCONF (Type 0x0002) - - Change the value of a configuration variable. The body contains a list of - newline-terminated key-value configuration lines. An individual key-value - configuration line consists of the key, followed by a space, followed by - the value. The server behaves as though it had just read the key-value pair - in its configuration file. - - The server responds with a DONE message on success, or an ERROR message on - failure. - - When a configuration options takes multiple values, or when multiple - configuration keys form a context-sensitive group (see below), then - setting _any_ of the options in a SETCONF command is taken to reset all of - the others. For example, if two ORBindAddress values are configured, - and a SETCONF command arrives containing a single ORBindAddress value, the - new command's value replaces the two old values. - - To _remove_ all settings for a given option entirely (and go back to its - default value), send a single line containing the key and no value. - -3.4. GETCONF (Type 0x0003) - - Request the value of a configuration variable. The body contains one or - more NL-terminated strings for configuration keys. The server replies - with a CONFVALUE message. - - If an option appears multiple times in the configuration, all of its - key-value pairs are returned in order. - - Some options are context-sensitive, and depend on other options with - different keywords. These cannot be fetched directly. Currently there - is only one such option: clients should use the "HiddenServiceOptions" - virtual keyword to get all HiddenServiceDir, HiddenServicePort, - HiddenServiceNodes, and HiddenServiceExcludeNodes option settings. - -3.5. CONFVALUE (Type 0x0004) - - Sent in response to a GETCONF message; contains a list of "Key Value\n" - (A non-whitespace keyword, a single space, a non-NL value, a NL) - strings. - -3.6. SETEVENTS (Type 0x0005) - - Request the server to inform the client about interesting events. - The body contains a list of 2-byte event codes (see "event" below). - Any events *not* listed in the SETEVENTS body are turned off; thus, sending - SETEVENTS with an empty body turns off all event reporting. - - The server responds with a DONE message on success, and an ERROR message - if one of the event codes isn't recognized. (On error, the list of active - event codes isn't changed.) - -3.7. EVENT (Type 0x0006) - - Sent from the server to the client when an event has occurred and the - client has requested that kind of event. The body contains a 2-byte - event code followed by additional event-dependent information. Event - codes are: - 0x0001 -- Circuit status changed - - Status [1 octet] - 0x00 Launched - circuit ID assigned to new circuit - 0x01 Built - all hops finished, can now accept streams - 0x02 Extended - one more hop has been completed - 0x03 Failed - circuit closed (was not built) - 0x04 Closed - circuit closed (was built) - Circuit ID [4 octets] - (Must be unique to Tor process/time) - Path [NUL-terminated comma-separated string] - (For extended/failed, is the portion of the path that is - built) - - 0x0002 -- Stream status changed - - Status [1 octet] - (Sent connect=0,sent resolve=1,succeeded=2,failed=3, - closed=4, new connection=5, new resolve request=6, - stream detached from circuit and still retriable=7) - Stream ID [4 octets] - (Must be unique to Tor process/time) - Target (NUL-terminated address-port string] - - 0x0003 -- OR Connection status changed - - Status [1 octet] - (Launched=0,connected=1,failed=2,closed=3) - OR nickname/identity [NUL-terminated] - - 0x0004 -- Bandwidth used in the last second - - Bytes read [4 octets] - Bytes written [4 octets] - - 0x0005 -- Notice/warning/error occurred - - Message [NUL-terminated] - - <obsolete: use 0x0007-0x000B instead.> - - 0x0006 -- New descriptors available - - OR List [NUL-terminated, comma-delimited list of - OR identity] - - 0x0007 -- Debug message occurred - 0x0008 -- Info message occurred - 0x0009 -- Notice message occurred - 0x000A -- Warning message occurred - 0x000B -- Error message occurred - - Message [NUL-terminated] - -3.8. AUTHENTICATE (Type 0x0007) - - Sent from the client to the server. Contains a 'magic cookie' to prove - that client is really allowed to control this Tor process. The server - responds with DONE or ERROR. - - The format of the 'cookie' is implementation-dependent; see 4.1 below for - information on how the standard Tor implementation handles it. - -3.9. SAVECONF (Type 0x0008) - - Sent from the client to the server. Instructs the server to write out - its config options into its torrc. Server returns DONE if successful, or - ERROR if it can't write the file or some other error occurs. - -3.10. SIGNAL (Type 0x0009) - - Sent from the client to the server. The body contains one byte that - indicates the action the client wishes the server to take. - - 1 (0x01) -- Reload: reload config items, refetch directory. - 2 (0x02) -- Controlled shutdown: if server is an OP, exit immediately. - If it's an OR, close listeners and exit after 30 seconds. - 10 (0x0A) -- Dump stats: log information about open connections and - circuits. - 12 (0x0C) -- Debug: switch all open logs to loglevel debug. - 15 (0x0F) -- Immediate shutdown: clean up and exit now. - - The server responds with DONE if the signal is recognized (or simply - closes the socket if it was asked to close immediately), else ERROR. - -3.11. MAPADDRESS (Type 0x000A) - - Sent from the client to the server. The body contains a sequence of - address mappings, each consisting of the address to be mapped, a single - space, the replacement address, and a NL character. - - Addresses may be IPv4 addresses, IPv6 addresses, or hostnames. - - The client sends this message to the server in order to tell it that future - SOCKS requests for connections to the original address should be replaced - with connections to the specified replacement address. If the addresses - are well-formed, and the server is able to fulfill the request, the server - replies with a single DONE message containing the source and destination - addresses. If request is malformed, the server replies with a syntax error - message. The server can't fulfill the request, it replies with an internal - ERROR message. - - The client may decline to provide a body for the original address, and - instead send a special null address ("0.0.0.0" for IPv4, "::0" for IPv6, or - "." for hostname), signifying that the server should choose the original - address itself, and return that address in the DONE message. The server - should ensure that it returns an element of address space that is unlikely - to be in actual use. If there is already an address mapped to the - destination address, the server may reuse that mapping. - - If the original address is already mapped to a different address, the old - mapping is removed. If the original address and the destination address - are the same, the server removes any mapping in place for the original - address. - - {Note: This feature is designed to be used to help Tor-ify applications - that need to use SOCKS4 or hostname-less SOCKS5. There are three - approaches to doing this: - 1. Somehow make them use SOCKS4a or SOCKS5-with-hostnames instead. - 2. Use tor-resolve (or another interface to Tor's resolve-over-SOCKS - feature) to resolve the hostname remotely. This doesn't work - with special addresses like x.onion or x.y.exit. - 3. Use MAPADDRESS to map an IP address to the desired hostname, and then - arrange to fool the application into thinking that the hostname - has resolved to that IP. - This functionality is designed to help implement the 3rd approach.} - - [XXXX When, if ever, can mappings expire? Should they expire?] - [XXXX What addresses, if any, are safe to use?] - -3.12 GETINFO (Type 0x000B) - - Sent from the client to the server. The message body is as for GETCONF: - one or more NL-terminated strings. The server replies with an INFOVALUE - message. - - Unlike GETCONF, this message is used for data that are not stored in the - Tor configuration file, but instead. - - Recognized key and their values include: - - "version" -- The version of the server's software, including the name - of the software. (example: "Tor 0.0.9.4") - - "desc/id/<OR identity>" or "desc/name/<OR nickname>" -- the latest server - descriptor for a given OR, NUL-terminated. If no such OR is known, the - corresponding value is an empty string. - - "network-status" -- a space-separated list of all known OR identities. - This is in the same format as the router-status line in directories; - see tor-spec.txt for details. - - "addr-mappings/all" - "addr-mappings/config" - "addr-mappings/cache" - "addr-mappings/control" -- a NL-terminated list of address mappings, each - in the form of "from-address" SP "to-address". The 'config' key - returns those address mappings set in the configuration; the 'cache' - key returns the mappings in the client-side DNS cache; the 'control' - key returns the mappings set via the control interface; the 'all' - target returns the mappings set through any mechanism. - -3.13 INFOVALUE (Type 0x000C) - - Sent from the server to the client in response to a GETINFO message. - Contains one or more items of the format: - - Key [(NUL-terminated string)] - Value [(NUL-terminated string)] - - The keys match those given in the GETINFO message. - -3.14 EXTENDCIRCUIT (Type 0x000D) - - Sent from the client to the server. The message body contains two fields: - Circuit ID [4 octets] - Path [NUL-terminated, comma-delimited string of OR nickname/identity] - - This request takes one of two forms: either the Circuit ID is zero, in - which case it is a request for the server to build a new circuit according - to the specified path, or the Circuit ID is nonzero, in which case it is a - request for the server to extend an existing circuit with that ID according - to the specified path. - - If the request is successful, the server sends a DONE message containing - a message body consisting of the four-octet Circuit ID of the newly created - circuit. - -3.15 ATTACHSTREAM (Type 0x000E) - - Sent from the client to the server. The message body contains two fields: - Stream ID [4 octets] - Circuit ID [4 octets] - - This message informs the server that the specified stream should be - associated with the specified circuit. Each stream may be associated with - at most one circuit, and multiple streams may share the same circuit. - Streams can only be attached to completed circuits (that is, circuits that - have sent a circuit status 'built' event). - - If the circuit ID is 0, responsibility for attaching the given stream is - returned to Tor. - - {Implementation note: By default, Tor automatically attaches streams to - circuits itself, unless the configuration variable - "__LeaveStreamsUnattached" is set to "1". Attempting to attach streams - via TC when "__LeaveStreamsUnattached" is false may cause a race between - Tor and the controller, as both attempt to attach streams to circuits.} - -3.16 POSTDESCRIPTOR (Type 0x000F) - - Sent from the client to the server. The message body contains one field: - Descriptor [NUL-terminated string] - - This message informs the server about a new descriptor. - - The descriptor, when parsed, must contain a number of well-specified - fields, including fields for its nickname and identity. - - If there is an error in parsing the descriptor, the server must send an - appropriate error message. If the descriptor is well-formed but the server - chooses not to add it, it must reply with a DONE message whose body - explains why the server was not added. - -3.17 FRAGMENTHEADER (Type 0x0010) - - Sent in either direction. Used to encapsulate messages longer than 65535 - bytes in length. - - Underlying type [2 bytes] - Total Length [4 bytes] - Data [Rest of message] - - A FRAGMENTHEADER message MUST be followed immediately by a number of - FRAGMENT messages, such that lengths of the "Data" fields of the - FRAGMENTHEADER and FRAGMENT messages add to the "Total Length" field of the - FRAGMENTHEADER message. - - Implementations MUST NOT fragment messages of length less than 65536 bytes. - Implementations MUST be able to process fragmented messages that not - optimally packed. - -3.18 FRAGMENT (Type 0x0011) - - Data [Entire message] - - See FRAGMENTHEADER for more information - -3.19 REDIRECTSTREAM (Type 0x0012) - - Sent from the client to the server. The message body contains two fields: - Stream ID [4 octets] - Address [variable-length, NUL-terminated.] - - Tells the server to change the exit address on the specified stream. No - remapping is performed on the new provided address. - - To be sure that the modified address will be used, this event must be sent - after a new stream event is received, and before attaching this stream to - a circuit. - -3.20 CLOSESTREAM (Type 0x0013) - - Sent from the client to the server. The message body contains three - fields: - Stream ID [4 octets] - Reason [1 octet] - Flags [1 octet] - - Tells the server to close the specified stream. The reason should be - one of the Tor RELAY_END reasons given in tor-spec.txt. Flags is not - used currently. Tor may hold the stream open for a while to flush - any data that is pending. - -3.21 CLOSECIRCUIT (Type 0x0014) - - Sent from the client to the server. The message body contains two - fields: - Circuit ID [4 octets] - Flags [1 octet] - - Tells the server to close the specified circuit. If the LSB of the flags - field is nonzero, do not close the circuit unless it is unused. - -4. Implementation notes - -4.1. Authentication - - By default, the current Tor implementation trusts all local users. - - If the 'CookieAuthentication' option is true, Tor writes a "magic cookie" - file named "control_auth_cookie" into its data directory. To authenticate, - the controller must send the contents of this file. - - If the 'HashedControlPassword' option is set, it must contain the salted - hash of a secret password. The salted hash is computed according to the - S2K algorithm in RFC 2440 (OpenPGP), and prefixed with the s2k specifier. - This is then encoded in hexadecimal, prefixed by the indicator sequence - "16:". Thus, for example, the password 'foo' could encode to: - 16:660537E3E1CD49996044A3BF558097A981F539FEA2F9DA662B4626C1C2 - ++++++++++++++++**^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ - salt hashed value - indicator - You can generate the salt of a password by calling - 'tor --hash-password <password>' - or by using the example code in the Python and Java controller libraries. - To authenticate under this scheme, the controller sends Tor the original - secret that was used to generate the password. - -4.2. Don't let the buffer get too big. - - If you ask for lots of events, and 16MB of them queue up on the buffer, - the Tor process will close the socket. - |