summaryrefslogtreecommitdiff
path: root/doc/HACKING/CodingStandardsRust.md
diff options
context:
space:
mode:
Diffstat (limited to 'doc/HACKING/CodingStandardsRust.md')
-rw-r--r--doc/HACKING/CodingStandardsRust.md252
1 files changed, 252 insertions, 0 deletions
diff --git a/doc/HACKING/CodingStandardsRust.md b/doc/HACKING/CodingStandardsRust.md
new file mode 100644
index 0000000000..2efa8a177d
--- /dev/null
+++ b/doc/HACKING/CodingStandardsRust.md
@@ -0,0 +1,252 @@
+
+ Rust Coding Standards
+=======================
+
+You MUST follow the standards laid out in `.../doc/HACKING/CodingStandards.md`,
+where applicable.
+
+ Module/Crate Declarations
+---------------------------
+
+Each Tor C module which is being rewritten MUST be in its own crate.
+See the structure of `.../src/rust` for examples.
+
+In your crate, you MUST use `lib.rs` ONLY for pulling in external
+crates (e.g. `extern crate libc;`) and exporting public objects from
+other Rust modules (e.g. `pub use mymodule::foo;`). For example, if
+you create a crate in `.../src/rust/yourcrate`, your Rust code should
+live in `.../src/rust/yourcrate/yourcode.rs` and the public interface
+to it should be exported in `.../src/rust/yourcrate/lib.rs`.
+
+If your code is to be called from Tor C code, you MUST define a safe
+`ffi.rs` which ONLY copies `&[u8]`s (i.e. byte arrays) across the FFI
+boundary.
+
+For example, in a hypothetical `tor_addition` Rust module:
+
+In `.../src/rust/tor_addition/addition.rs`:
+
+ pub fn get_sum(a: i32, b: i32) -> i32 {
+ a + b
+ }
+
+In `.../src/rust/tor_addition/lib.rs`:
+
+ pub use addition::*;
+
+In `.../src/rust/tor_addition/ffi.rs`:
+
+ #[no_mangle]
+ pub extern "C" fn tor_get_sum(a: c_int, b: c_int) -> c_int {
+ get_sum(a, b)
+ }
+
+If your Rust code must call out to parts of Tor's C code, you must
+declare the functions you are calling in the `external` crate, located
+at `.../src/rust/external`.
+
+XXX get better examples of how to declare these externs, when/how they
+XXX are unsafe, what they are expected to do —isis
+
+Modules should strive to be below 500 lines (tests excluded). Single
+responsibility and limited dependencies should be a guiding standard.
+
+If you have any external modules as dependencies (e.g. `extern crate
+libc;`), you MUST declare them in your crate's `lib.rs` and NOT in any
+other module.
+
+ Dependencies
+--------------
+
+In general, we use modules from only the Rust standard library
+whenever possible. We will review including external crates on a
+case-by-case basis.
+
+ Documentation
+---------------
+
+You MUST include `#[deny(missing_docs)]` in your crate.
+
+For example, a one-sentence, "first person" description of function
+behaviour (see requirements for documentation as described in
+`.../src/HACKING/CodingStandards.md`), then an `# Inputs` section for
+inputs or initialisation values, a `# Returns` section for return
+values/types, a `# Warning` section containing warnings for unsafe
+behaviours or panics that could happen. For publicly accessible
+types/constants/objects/functions/methods, you SHOULD also include an
+`# Examples` section with runnable doctests.
+
+You MUST document your module with _module docstring_ comments,
+i.e. `//!` at the beginning of each line.
+
+ Testing
+---------
+
+All code MUST be unittested and integration tested.
+
+Public functions/objects exported from a crate SHOULD include doctests
+describing how the function/object is expected to be used.
+
+Integration tests SHOULD go into a `tests/` directory inside your
+crate. Unittests SHOULD go into their own module inside the module
+they are testing, e.g. in `.../src/rust/tor_addition/addition.rs` you
+should put:
+
+ #[cfg(test)]
+ mod test {
+ use super::*;
+
+ #[test]
+ fn addition_with_zero() {
+ let sum: i32 = get_sum(5i32, 0i32);
+ assert_eq!(sum, 5);
+ }
+ }
+
+ Benchmarking
+--------------
+
+If you wish to benchmark some of your Rust code, you MUST put the
+following in the `[features]` section of your crate's `Cargo.toml`:
+
+ [features]
+ bench = []
+
+Next, in your crate's `lib.rs` you MUST put:
+
+ #[cfg(all(test, feature = "bench"))]
+ extern crate test;
+
+This ensures that the external crate `test`, which contains utilities
+for basic benchmarks, is only used when running benchmarks via `cargo
+bench --features bench`. (This is due to the `test` module requiring
+nightly Rust, and since we may want to switch to a more stable Rust
+compiler eventually we don't want to break builds for stable compilers
+by always requiring the `test` crate.)
+
+Finally, to write your benchmark code, in
+`.../src/rust/tor_addition/addition.rs` you SHOULD put:
+
+ #[cfg(all(test, features = "bench"))]
+ mod bench {
+ use test::Bencher;
+ use super::*;
+
+ #[bench]
+ fn addition_small_integers(b: &mut Bencher) {
+ b.iter(| | get_sum(5i32, 0i32));
+ }
+ }
+
+ Safety
+--------
+
+You SHOULD read [the nomicon](https://doc.rust-lang.org/nomicon/) before writing
+Rust FFI code. It is *highly advised* that you read and write normal Rust code
+before attempting to write FFI or any other unsafe code.
+
+Here are some additional bits of advice and rules:
+
+1. `unwrap()`
+
+ If you call `unwrap()`, anywhere, even in a test, you MUST include
+ an inline comment stating how the unwrap will either 1) never fail,
+ or 2) should fail (i.e. in a unittest).
+
+2. `unsafe`
+
+ If you use `unsafe`, you MUST describe a contract in your
+ documentation which describes how and when the unsafe code may
+ fail, and what expectations are made w.r.t. the interfaces to
+ unsafe code. This is also REQUIRED for major pieces of FFI between
+ C and Rust.
+
+ When creating an FFI in Rust for C code to call, it is NOT REQUIRED
+ to declare the entire function `unsafe`. For example, rather than doing:
+
+ #[no_mangle]
+ pub unsafe extern "C" fn increment_and_combine_numbers(mut numbers: [u8; 4]) -> u32 {
+ for index in 0..numbers.len() {
+ numbers[index] += 1;
+ }
+ std::mem::transmute::<[u8; 4], u32>(numbers)
+ }
+
+ You SHOULD instead do:
+
+ #[no_mangle]
+ pub extern "C" fn increment_and_combine_numbers(mut numbers: [u8; 4]) -> u32 {
+ for index in 0..numbers.len() {
+ numbers[index] += 1;
+ }
+ unsafe {
+ std::mem::transmute::<[u8; 4], u32>(numbers)
+ }
+ }
+
+3. Pass only integer types and bytes over the boundary
+
+ The only non-integer type which may cross the FFI boundary is
+ bytes, e.g. `&[u8]`. This SHOULD be done on the Rust side by
+ passing a pointer (`*mut libc::c_char`) and a length
+ (`libc::size_t`).
+
+ One might be tempted to do this via doing
+ `CString::new("blah").unwrap().into_raw()`. This has several problems:
+
+ a) If you do `CString::new("bl\x00ah")` then the unwrap() will fail
+ due to the additional NULL terminator, causing a dangling
+ pointer to be returned (as well as a potential use-after-free).
+
+ b) Returning the raw pointer will cause the CString to run its deallocator,
+ which causes any C code which tries to access the contents to dereference a
+ NULL pointer.
+
+ c) If we were to do `as_raw()` this would result in a potential double-free
+ since the Rust deallocator would run and possibly Tor's deallocator.
+
+ d) Calling `into_raw()` without later using the same pointer in Rust to call
+ `from_raw()` and then deallocate in Rust can result in a
+ [memory leak](https://doc.rust-lang.org/std/ffi/struct.CString.html#method.into_raw).
+
+ [It was determined](https://github.com/rust-lang/rust/pull/41074) that this
+ is safe to do if you use the same allocator in C and Rust and also specify
+ the memory alignment for CString (except that there is no way to specify
+ the alignment for CString). It is believed that the alignment is always 1,
+ which would mean it's safe to dealloc the resulting `*mut c_char` in Tor's
+ C code. However, the Rust developers are not willing to guarantee the
+ stability of, or a contract for, this behaviour, citing concerns that this
+ is potentially extremely and subtly unsafe.
+
+
+4. Perform an allocation on the other side of the boundary
+
+ After crossing the boundary, the other side MUST perform an
+ allocation to copy the data and is therefore responsible for
+ freeing that memory later.
+
+5. No touching other language's enums
+
+ Rust enums should never be touched from C (nor can they be safely
+ `#[repr(C)]`) nor vice versa:
+
+ > "The chosen size is the default enum size for the target platform's C
+ > ABI. Note that enum representation in C is implementation defined, so this is
+ > really a "best guess". In particular, this may be incorrect when the C code
+ > of interest is compiled with certain flags."
+
+ (from https://gankro.github.io/nomicon/other-reprs.html)
+
+6. Type safety
+
+ Wherever possible and sensical, you SHOULD create new types, either as tuple
+ structs (e.g. `struct MyInteger(pub u32)`) or as type aliases (e.g. `pub type
+ MyInteger = u32`).
+
+ Whitespace & Formatting
+-------------------------
+
+You MUST run `rustfmt` (https://github.com/rust-lang-nursery/rustfmt)
+on your code before your code will be merged. You can install rustfmt
+by doing `cargo install rustfmt-nightly` and then run it with `cargo
+fmt`.