aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorNick Mathewson <nickm@torproject.org>2021-08-26 12:07:09 -0400
committerNick Mathewson <nickm@torproject.org>2021-08-26 15:09:56 -0400
commita36391f9c0ca4d4206a1335f8ef80d6a135971de (patch)
tree05c6d85274f8a2e80a7aa6b241ae28f3cb545d4d /src
parent088c0367a2da29014f1c4d5b2dd5f6a656f6cf89 (diff)
downloadtor-a36391f9c0ca4d4206a1335f8ef80d6a135971de.tar.gz
tor-a36391f9c0ca4d4206a1335f8ef80d6a135971de.zip
Add reference implementation for ntor v3.
Diffstat (limited to 'src')
-rwxr-xr-xsrc/test/ntor_v3_ref.py308
1 files changed, 308 insertions, 0 deletions
diff --git a/src/test/ntor_v3_ref.py b/src/test/ntor_v3_ref.py
new file mode 100755
index 0000000000..28bc077105
--- /dev/null
+++ b/src/test/ntor_v3_ref.py
@@ -0,0 +1,308 @@
+#!/usr/bin/python
+
+import binascii
+import hashlib
+import os
+import struct
+
+import donna25519
+from Crypto.Cipher import AES
+from Crypto.Util import Counter
+
+# Define basic wrappers.
+
+DIGEST_LEN = 32
+ENC_KEY_LEN = 32
+PUB_KEY_LEN = 32
+SEC_KEY_LEN = 32
+IDENTITY_LEN = 32
+
+def sha3_256(s):
+ d = hashlib.sha3_256(s).digest()
+ assert len(d) == DIGEST_LEN
+ return d
+
+def shake_256(s):
+ # Note: In reality, you wouldn't want to generate more bytes than needed.
+ MAX_KEY_BYTES = 1024
+ return hashlib.shake_256(s).digest(MAX_KEY_BYTES)
+
+def curve25519(pk, sk):
+ assert len(pk) == PUB_KEY_LEN
+ assert len(sk) == SEC_KEY_LEN
+ private = donna25519.PrivateKey.load(sk)
+ public = donna25519.PublicKey(pk)
+ return private.do_exchange(public)
+
+def keygen():
+ private = donna25519.PrivateKey()
+ public = private.get_public()
+ return (private.private, public.public)
+
+def aes256_ctr(k, s):
+ assert len(k) == ENC_KEY_LEN
+ cipher = AES.new(k, AES.MODE_CTR, counter=Counter.new(128, initial_value=0))
+ return cipher.encrypt(s)
+
+# Byte-oriented helper. We use this for decoding keystreams and messages.
+
+class ByteSeq:
+ def __init__(self, data):
+ self.data = data
+
+ def take(self, n):
+ assert n <= len(self.data)
+ result = self.data[:n]
+ self.data = self.data[n:]
+ return result
+
+ def exhausted(self):
+ return len(self.data) == 0
+
+ def remaining(self):
+ return len(self.data)
+
+# Low-level functions
+
+MAC_KEY_LEN = 32
+MAC_LEN = DIGEST_LEN
+
+hash_func = sha3_256
+
+def encapsulate(s):
+ """encapsulate `s` with a length prefix.
+
+ We use this whenever we need to avoid message ambiguities in
+ cryptographic inputs.
+ """
+ assert len(s) <= 0xffffffff
+ header = b"\0\0\0\0" + struct.pack("!L", len(s))
+ assert len(header) == 8
+ return header + s
+
+def h(s, tweak):
+ return hash_func(encapsulate(tweak) + s)
+
+def mac(s, key, tweak):
+ return hash_func(encapsulate(tweak) + encapsulate(key) + s)
+
+def kdf(s, tweak):
+ data = shake_256(encapsulate(tweak) + s)
+ return ByteSeq(data)
+
+def enc(s, k):
+ return aes256_ctr(k, s)
+
+# Tweaked wrappers
+
+PROTOID = b"ntor3-curve25519-sha3_256-1"
+T_KDF_PHASE1 = PROTOID + b":kdf_phase1"
+T_MAC_PHASE1 = PROTOID + b":msg_mac"
+T_KDF_FINAL = PROTOID + b":kdf_final"
+T_KEY_SEED = PROTOID + b":key_seed"
+T_VERIFY = PROTOID + b":verify"
+T_AUTH = PROTOID + b":auth_final"
+
+def kdf_phase1(s):
+ return kdf(s, T_KDF_PHASE1)
+
+def kdf_final(s):
+ return kdf(s, T_KDF_FINAL)
+
+def mac_phase1(s, key):
+ return mac(s, key, T_MAC_PHASE1)
+
+def h_key_seed(s):
+ return h(s, T_KEY_SEED)
+
+def h_verify(s):
+ return h(s, T_VERIFY)
+
+def h_auth(s):
+ return h(s, T_AUTH)
+
+# Handshake.
+
+def client_phase1(msg, verification, B, ID):
+ assert len(B) == PUB_KEY_LEN
+ assert len(ID) == IDENTITY_LEN
+
+ (x,X) = keygen()
+ p(["x", "X"], locals())
+ p(["msg", "verification"], locals())
+ Bx = curve25519(B, x)
+ secret_input_phase1 = Bx + ID + X + B + PROTOID + encapsulate(verification)
+
+ phase1_keys = kdf_phase1(secret_input_phase1)
+ enc_key = phase1_keys.take(ENC_KEY_LEN)
+ mac_key = phase1_keys.take(MAC_KEY_LEN)
+ p(["enc_key", "mac_key"], locals())
+
+ msg_0 = ID + B + X + enc(msg, enc_key)
+ mac = mac_phase1(msg_0, mac_key)
+ p(["mac"], locals())
+
+ client_handshake = msg_0 + mac
+ state = dict(x=x, X=X, B=B, ID=ID, Bx=Bx, mac=mac, verification=verification)
+
+ p(["client_handshake"], locals())
+
+ return (client_handshake, state)
+
+# server.
+
+class Reject(Exception):
+ pass
+
+def server_part1(cmsg, verification, b, B, ID):
+ assert len(B) == PUB_KEY_LEN
+ assert len(ID) == IDENTITY_LEN
+ assert len(b) == SEC_KEY_LEN
+
+ if len(cmsg) < (IDENTITY_LEN + PUB_KEY_LEN * 2 + MAC_LEN):
+ raise Reject()
+
+ mac_covered_portion = cmsg[0:-MAC_LEN]
+ cmsg = ByteSeq(cmsg)
+ cmsg_id = cmsg.take(IDENTITY_LEN)
+ cmsg_B = cmsg.take(PUB_KEY_LEN)
+ cmsg_X = cmsg.take(PUB_KEY_LEN)
+ cmsg_msg = cmsg.take(cmsg.remaining() - MAC_LEN)
+ cmsg_mac = cmsg.take(MAC_LEN)
+
+ assert cmsg.exhausted()
+
+ # XXXX for real purposes, you would use constant-time checks here
+ if cmsg_id != ID or cmsg_B != B:
+ raise Reject()
+
+ Xb = curve25519(cmsg_X, b)
+ secret_input_phase1 = Xb + ID + cmsg_X + B + PROTOID + encapsulate(verification)
+
+ phase1_keys = kdf_phase1(secret_input_phase1)
+ enc_key = phase1_keys.take(ENC_KEY_LEN)
+ mac_key = phase1_keys.take(MAC_KEY_LEN)
+
+ mac_received = mac_phase1(mac_covered_portion, mac_key)
+ if mac_received != cmsg_mac:
+ raise Reject()
+
+ client_msg = enc(cmsg_msg, enc_key)
+ state = dict(
+ b=b,
+ B=B,
+ X=cmsg_X,
+ mac_received=mac_received,
+ Xb=Xb,
+ ID=ID,
+ verification=verification)
+
+ return (client_msg, state)
+
+def server_part2(state, server_msg):
+ X = state['X']
+ Xb = state['Xb']
+ B = state['B']
+ b = state['b']
+ ID = state['ID']
+ mac_received = state['mac_received']
+ verification = state['verification']
+
+ p(["server_msg"], locals())
+
+ (y,Y) = keygen()
+ p(["y", "Y"], locals())
+ Xy = curve25519(X, y)
+
+ secret_input = Xy + Xb + ID + B + X + Y + PROTOID + encapsulate(verification)
+ key_seed = h_key_seed(secret_input)
+ verify = h_verify(secret_input)
+ p(["key_seed", "verify"], locals())
+
+ keys = kdf_final(key_seed)
+ server_enc_key = keys.take(ENC_KEY_LEN)
+ p(["server_enc_key"], locals())
+
+ smsg_msg = enc(server_msg, server_enc_key)
+
+ auth_input = verify + ID + B + Y + X + mac_received + encapsulate(smsg_msg) + PROTOID + b"Server"
+
+ auth = h_auth(auth_input)
+ server_handshake = Y + auth + smsg_msg
+ p(["auth", "server_handshake"], locals())
+
+ return (server_handshake, keys)
+
+def client_phase2(state, smsg):
+ x = state['x']
+ X = state['X']
+ B = state['B']
+ ID = state['ID']
+ Bx = state['Bx']
+ mac_sent = state['mac']
+ verification = state['verification']
+
+ if len(smsg) < PUB_KEY_LEN + DIGEST_LEN:
+ raise Reject()
+
+ smsg = ByteSeq(smsg)
+ Y = smsg.take(PUB_KEY_LEN)
+ auth_received = smsg.take(DIGEST_LEN)
+ server_msg = smsg.take(smsg.remaining())
+
+ Yx = curve25519(Y,x)
+
+ secret_input = Yx + Bx + ID + B + X + Y + PROTOID + encapsulate(verification)
+ key_seed = h_key_seed(secret_input)
+ verify = h_verify(secret_input)
+
+ auth_input = verify + ID + B + Y + X + mac_sent + encapsulate(server_msg) + PROTOID + b"Server"
+
+ auth = h_auth(auth_input)
+ if auth != auth_received:
+ raise Reject()
+
+ keys = kdf_final(key_seed)
+ enc_key = keys.take(ENC_KEY_LEN)
+
+ server_msg_decrypted = enc(server_msg, enc_key)
+
+ return (keys, server_msg_decrypted)
+
+def p(varnames, localvars):
+ for v in varnames:
+ label = v
+ val = localvars[label]
+ print('{} = "{}"'.format(label, binascii.b2a_hex(val).decode("ascii")))
+
+def test():
+ (b,B) = keygen()
+ ID = os.urandom(IDENTITY_LEN)
+
+ p(["b", "B", "ID"], locals())
+
+ print("# ============")
+ (c_handshake, c_state) = client_phase1(b"hello world", b"xyzzy", B, ID)
+
+ print("# ============")
+
+ (c_msg_got, s_state) = server_part1(c_handshake, b"xyzzy", b, B, ID)
+
+ #print(repr(c_msg_got))
+
+ (s_handshake, s_keys) = server_part2(s_state, b"Hola Mundo")
+
+ print("# ============")
+
+ (c_keys, s_msg_got) = client_phase2(c_state, s_handshake)
+
+ #print(repr(s_msg_got))
+
+ c_keys_256 = c_keys.take(256)
+ p(["c_keys_256"], locals())
+
+ assert (c_keys_256 == s_keys.take(256))
+
+
+if __name__ == '__main__':
+ test()