summaryrefslogtreecommitdiff
path: root/src/test/test_prob_distr.c
diff options
context:
space:
mode:
authorNick Mathewson <nickm@torproject.org>2019-01-14 14:48:00 -0500
committerNick Mathewson <nickm@torproject.org>2019-01-14 14:48:00 -0500
commitb169c8c14f23394b40305f38ee4ce08add278e27 (patch)
tree0649da16a97792103773f9d5cedbfd75deac49bd /src/test/test_prob_distr.c
parent691dec5d4615dec9a845d0f7dea7ef55cc66fe62 (diff)
parentb269ab5aaeee65a3a0b1e5e0923d9dc7898c232e (diff)
downloadtor-b169c8c14f23394b40305f38ee4ce08add278e27.tar.gz
tor-b169c8c14f23394b40305f38ee4ce08add278e27.zip
Merge remote-tracking branch 'asn-github/adaptive_padding-final'
Diffstat (limited to 'src/test/test_prob_distr.c')
-rw-r--r--src/test/test_prob_distr.c1428
1 files changed, 1428 insertions, 0 deletions
diff --git a/src/test/test_prob_distr.c b/src/test/test_prob_distr.c
new file mode 100644
index 0000000000..ff23f01033
--- /dev/null
+++ b/src/test/test_prob_distr.c
@@ -0,0 +1,1428 @@
+/* Copyright (c) 2018, The Tor Project, Inc. */
+/* See LICENSE for licensing information */
+
+/**
+ * \file test_prob_distr.c
+ * \brief Test probability distributions.
+ * \detail
+ *
+ * For each probability distribution we do two kinds of tests:
+ *
+ * a) We do numerical deterministic testing of their cdf/icdf/sf/isf functions
+ * and the various relationships between them for each distribution. We also
+ * do deterministic tests on their sampling functions. Test vectors for
+ * these tests were computed from alternative implementations and were
+ * eyeballed to make sure they make sense
+ * (e.g. src/test/prob_distr_mpfr_ref.c computes logit(p) using GNU mpfr
+ * with 200-bit precision and is then tested in test_logit_logistic()).
+ *
+ * b) We do stochastic hypothesis testing (G-test) to ensure that sampling from
+ * the given distributions is distributed properly. The stochastic tests are
+ * slow and their false positive rate is not well suited for CI, so they are
+ * currently disabled-by-default and put into 'tests-slow'.
+ */
+
+#define PROB_DISTR_PRIVATE
+
+#include "orconfig.h"
+
+#include "test/test.h"
+
+#include "core/or/or.h"
+
+#include "lib/math/prob_distr.h"
+#include "lib/math/fp.h"
+#include "lib/crypt_ops/crypto_rand.h"
+
+#include <float.h>
+#include <math.h>
+#include <stdbool.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdio.h>
+#include <stdlib.h>
+
+/**
+ * Return floor(d) converted to size_t, as a workaround for complaints
+ * under -Wbad-function-cast for (size_t)floor(d).
+ */
+static size_t
+floor_to_size_t(double d)
+{
+ double integral_d = floor(d);
+ return (size_t)integral_d;
+}
+
+/**
+ * Return ceil(d) converted to size_t, as a workaround for complaints
+ * under -Wbad-function-cast for (size_t)ceil(d).
+ */
+static size_t
+ceil_to_size_t(double d)
+{
+ double integral_d = ceil(d);
+ return (size_t)integral_d;
+}
+
+/*
+ * Geometric(p) distribution, supported on {1, 2, 3, ...}.
+ *
+ * Compute the probability mass function Geom(n; p) of the number of
+ * trials before the first success when success has probability p.
+ */
+static double
+logpmf_geometric(unsigned n, double p)
+{
+ /* This is actually a check against 1, but we do >= so that the compiler
+ does not raise a -Wfloat-equal */
+ if (p >= 1) {
+ if (n == 1)
+ return 0;
+ else
+ return -HUGE_VAL;
+ }
+ return (n - 1)*log1p(-p) + log(p);
+}
+
+/**
+ * Compute the logistic function, translated in output by 1/2:
+ * logistichalf(x) = logistic(x) - 1/2. Well-conditioned on the entire
+ * real plane, with maximum condition number 1 at 0.
+ *
+ * This implementation gives relative error bounded by 5 eps.
+ */
+static double
+logistichalf(double x)
+{
+ /*
+ * Rewrite this with the identity
+ *
+ * 1/(1 + e^{-x}) - 1/2
+ * = (1 - 1/2 - e^{-x}/2)/(1 + e^{-x})
+ * = (1/2 - e^{-x}/2)/(1 + e^{-x})
+ * = (1 - e^{-x})/[2 (1 + e^{-x})]
+ * = -(e^{-x} - 1)/[2 (1 + e^{-x})],
+ *
+ * which we can evaluate by -expm1(-x)/[2 (1 + exp(-x))].
+ *
+ * Suppose exp has error d0, + has error d1, expm1 has error
+ * d2, and / has error d3, so we evaluate
+ *
+ * -(1 + d2) (1 + d3) (e^{-x} - 1)
+ * / [2 (1 + d1) (1 + (1 + d0) e^{-x})].
+ *
+ * In the denominator,
+ *
+ * 1 + (1 + d0) e^{-x}
+ * = 1 + e^{-x} + d0 e^{-x}
+ * = (1 + e^{-x}) (1 + d0 e^{-x}/(1 + e^{-x})),
+ *
+ * so the relative error of the numerator is
+ *
+ * d' = d2 + d3 + d2 d3,
+ * and of the denominator,
+ * d'' = d1 + d0 e^{-x}/(1 + e^{-x}) + d0 d1 e^{-x}/(1 + e^{-x})
+ * = d1 + d0 L(-x) + d0 d1 L(-x),
+ *
+ * where L(-x) is logistic(-x). By Lemma 1 the relative error
+ * of the quotient is bounded by
+ *
+ * 2|d2 + d3 + d2 d3 - d1 - d0 L(x) + d0 d1 L(x)|,
+ *
+ * Since 0 < L(x) < 1, this is bounded by
+ *
+ * 2|d2| + 2|d3| + 2|d2 d3| + 2|d1| + 2|d0| + 2|d0 d1|
+ * <= 4 eps + 2 eps^2.
+ */
+ if (x < log(DBL_EPSILON/8)) {
+ /*
+ * Avoid overflow in e^{-x}. When x < log(eps/4), we
+ * we further have x < logit(eps/4), so that
+ * logistic(x) < eps/4. Hence the relative error of
+ * logistic(x) - 1/2 from -1/2 is bounded by eps/2, and
+ * so the relative error of -1/2 from logistic(x) - 1/2
+ * is bounded by eps.
+ */
+ return -0.5;
+ } else {
+ return -expm1(-x)/(2*(1 + exp(-x)));
+ }
+}
+
+/**
+ * Compute the log of the sum of the exps. Caller should arrange the
+ * array in descending order to minimize error because I don't want to
+ * deal with using temporary space and the one caller in this file
+ * arranges that anyway.
+ *
+ * Warning: This implementation does not handle infinite or NaN inputs
+ * sensibly, because I don't need that here at the moment. (NaN, or
+ * -inf and +inf together, should yield NaN; +inf and finite should
+ * yield +inf; otherwise all -inf should be ignored because exp(-inf) =
+ * 0.)
+ */
+static double
+logsumexp(double *A, size_t n)
+{
+ double maximum, sum;
+ size_t i;
+
+ if (n == 0)
+ return log(0);
+
+ maximum = A[0];
+ for (i = 1; i < n; i++) {
+ if (A[i] > maximum)
+ maximum = A[i];
+ }
+
+ sum = 0;
+ for (i = n; i --> 0;)
+ sum += exp(A[i] - maximum);
+
+ return log(sum) + maximum;
+}
+
+/**
+ * Compute log(1 - e^x). Defined only for negative x so that e^x < 1.
+ * This is the complement of a probability in log space.
+ */
+static double
+log1mexp(double x)
+{
+
+ /*
+ * We want to compute log on [0, 1/2) but log1p on [1/2, +inf),
+ * so partition x at -log(2) = log(1/2).
+ */
+ if (-log(2) < x)
+ return log(-expm1(x));
+ else
+ return log1p(-exp(x));
+}
+
+/*
+ * Tests of numerical errors in computing logit, logistic, and the
+ * various cdfs, sfs, icdfs, and isfs.
+ */
+
+#define arraycount(A) (sizeof(A)/sizeof(A[0]))
+
+/** Return relative error between <b>actual</b> and <b>expected</b>.
+ * Special cases: If <b>expected</b> is zero or infinite, return 1 if
+ * <b>actual</b> is equal to <b>expected</b> and 0 if not, since the
+ * usual notion of relative error is undefined but we only use this
+ * for testing relerr(e, a) <= bound. If either is NaN, return NaN,
+ * which has the property that NaN <= bound is false no matter what
+ * bound is.
+ *
+ * Beware: if you test !(relerr(e, a) > bound), then then the result
+ * is true when a is NaN because NaN > bound is false too. See
+ * CHECK_RELERR for correct use to decide when to report failure.
+ */
+static double
+relerr(double expected, double actual)
+{
+ /*
+ * To silence -Wfloat-equal, we have to test for equality using
+ * inequalities: we have (fabs(expected) <= 0) iff (expected == 0),
+ * and (actual <= expected && actual >= expected) iff actual ==
+ * expected whether expected is zero or infinite.
+ */
+ if (fabs(expected) <= 0 || tor_isinf(expected)) {
+ if (actual <= expected && actual >= expected)
+ return 0;
+ else
+ return 1;
+ } else {
+ return fabs((expected - actual)/expected);
+ }
+}
+
+/** Check that relative error of <b>expected</b> and <b>actual</b> is within
+ * <b>relerr_bound</b>. Caller must arrange to have i and relerr_bound in
+ * scope. */
+#define CHECK_RELERR(expected, actual) do { \
+ double check_expected = (expected); \
+ double check_actual = (actual); \
+ const char *str_expected = #expected; \
+ const char *str_actual = #actual; \
+ double check_relerr = relerr(expected, actual); \
+ if (!(relerr(check_expected, check_actual) <= relerr_bound)) { \
+ log_warn(LD_GENERAL, "%s:%d: case %u: relerr(%s=%.17e, %s=%.17e)" \
+ " = %.17e > %.17e\n", \
+ __func__, __LINE__, (unsigned) i, \
+ str_expected, check_expected, \
+ str_actual, check_actual, \
+ check_relerr, relerr_bound); \
+ ok = false; \
+ } \
+} while (0)
+
+/* Check that a <= b.
+ * Caller must arrange to have i in scope. */
+#define CHECK_LE(a, b) do { \
+ double check_a = (a); \
+ double check_b = (b); \
+ const char *str_a = #a; \
+ const char *str_b = #b; \
+ if (!(check_a <= check_b)) { \
+ log_warn(LD_GENERAL, "%s:%d: case %u: %s=%.17e > %s=%.17e\n", \
+ __func__, __LINE__, (unsigned) i, \
+ str_a, check_a, str_b, check_b); \
+ ok = false; \
+ } \
+} while (0)
+
+/**
+ * Test the logit and logistic functions. Confirm that they agree with
+ * the cdf, sf, icdf, and isf of the standard Logistic distribution.
+ * Confirm that the sampler for the standard logistic distribution maps
+ * [0, 1] into the right subinterval for the inverse transform, for
+ * this implementation.
+ */
+static void
+test_logit_logistic(void *arg)
+{
+ (void) arg;
+
+ static const struct {
+ double x; /* x = logit(p) */
+ double p; /* p = logistic(x) */
+ double phalf; /* p - 1/2 = logistic(x) - 1/2 */
+ } cases[] = {
+ { -HUGE_VAL, 0, -0.5 },
+ { -1000, 0, -0.5 },
+ { -710, 4.47628622567513e-309, -0.5 },
+ { -708, 3.307553003638408e-308, -0.5 },
+ { -2, .11920292202211755, -.3807970779778824 },
+ { -1.0000001, .2689414017088022, -.23105859829119776 },
+ { -1, .2689414213699951, -.23105857863000487 },
+ { -0.9999999, .26894144103118883, -.2310585589688111 },
+ /* see src/test/prob_distr_mpfr_ref.c for computation */
+ { -4.000000000537333e-5, .49999, -1.0000000000010001e-5 },
+ { -4.000000000533334e-5, .49999, -.00001 },
+ { -4.000000108916878e-9, .499999999, -1.0000000272292198e-9 },
+ { -4e-9, .499999999, -1e-9 },
+ { -4e-16, .5, -1e-16 },
+ { -4e-300, .5, -1e-300 },
+ { 0, .5, 0 },
+ { 4e-300, .5, 1e-300 },
+ { 4e-16, .5, 1e-16 },
+ { 3.999999886872274e-9, .500000001, 9.999999717180685e-10 },
+ { 4e-9, .500000001, 1e-9 },
+ { 4.0000000005333336e-5, .50001, .00001 },
+ { 8.000042667076272e-3, .502, .002 },
+ { 0.9999999, .7310585589688111, .2310585589688111 },
+ { 1, .7310585786300049, .23105857863000487 },
+ { 1.0000001, .7310585982911977, .23105859829119774 },
+ { 2, .8807970779778823, .3807970779778824 },
+ { 708, 1, .5 },
+ { 710, 1, .5 },
+ { 1000, 1, .5 },
+ { HUGE_VAL, 1, .5 },
+ };
+ double relerr_bound = 3e-15; /* >10eps */
+ size_t i;
+ bool ok = true;
+
+ for (i = 0; i < arraycount(cases); i++) {
+ double x = cases[i].x;
+ double p = cases[i].p;
+ double phalf = cases[i].phalf;
+
+ /*
+ * cdf is logistic, icdf is logit, and symmetry for
+ * sf/isf.
+ */
+ CHECK_RELERR(logistic(x), cdf_logistic(x, 0, 1));
+ CHECK_RELERR(logistic(-x), sf_logistic(x, 0, 1));
+ CHECK_RELERR(logit(p), icdf_logistic(p, 0, 1));
+ CHECK_RELERR(-logit(p), isf_logistic(p, 0, 1));
+
+ CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2, 0, 2));
+ CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2, 0, 2));
+ CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0, 2)/2);
+ CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, 2)/2);
+
+ CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x/2, 0, .5));
+ CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x/2, 0, .5));
+ CHECK_RELERR(icdf_logistic(p, 0, 1), icdf_logistic(p, 0,.5)*2);
+ CHECK_RELERR(isf_logistic(p, 0, 1), isf_logistic(p, 0, .5)*2);
+
+ CHECK_RELERR(cdf_logistic(x, 0, 1), cdf_logistic(x*2 + 1, 1, 2));
+ CHECK_RELERR(sf_logistic(x, 0, 1), sf_logistic(x*2 + 1, 1, 2));
+
+ /*
+ * For p near 0 and p near 1/2, the arithmetic of
+ * translating by 1 loses precision.
+ */
+ if (fabs(p) > DBL_EPSILON && fabs(p) < 0.4) {
+ CHECK_RELERR(icdf_logistic(p, 0, 1),
+ (icdf_logistic(p, 1, 2) - 1)/2);
+ CHECK_RELERR(isf_logistic(p, 0, 1),
+ (isf_logistic(p, 1, 2) - 1)/2);
+ }
+
+ CHECK_RELERR(p, logistic(x));
+ CHECK_RELERR(phalf, logistichalf(x));
+
+ /*
+ * On the interior floating-point numbers, either logit or
+ * logithalf had better give the correct answer.
+ *
+ * For probabilities near 0, we can get much finer resolution with
+ * logit, and for probabilities near 1/2, we can get much finer
+ * resolution with logithalf by representing them using p - 1/2.
+ *
+ * E.g., we can write -.00001 for phalf, and .49999 for p, but the
+ * difference 1/2 - .00001 gives 1.0000000000010001e-5 in binary64
+ * arithmetic. So test logit(.49999) which should give the same
+ * answer as logithalf(-1.0000000000010001e-5), namely
+ * -4.000000000537333e-5, and also test logithalf(-.00001) which
+ * gives -4.000000000533334e-5 instead -- but don't expect
+ * logit(.49999) to give -4.000000000533334e-5 even though it looks
+ * like 1/2 - .00001.
+ *
+ * A naive implementation of logit will just use log(p/(1 - p)) and
+ * give the answer -4.000000000551673e-05 for .49999, which is
+ * wrong in a lot of digits, which happens because log is
+ * ill-conditioned near 1 and thus amplifies whatever relative
+ * error we made in computing p/(1 - p).
+ */
+ if ((0 < p && p < 1) || tor_isinf(x)) {
+ if (phalf >= p - 0.5 && phalf <= p - 0.5)
+ CHECK_RELERR(x, logit(p));
+ if (p >= 0.5 + phalf && p <= 0.5 + phalf)
+ CHECK_RELERR(x, logithalf(phalf));
+ }
+
+ CHECK_RELERR(-phalf, logistichalf(-x));
+ if (fabs(phalf) < 0.5 || tor_isinf(x))
+ CHECK_RELERR(-x, logithalf(-phalf));
+ if (p < 1 || tor_isinf(x)) {
+ CHECK_RELERR(1 - p, logistic(-x));
+ if (p > .75 || tor_isinf(x))
+ CHECK_RELERR(-x, logit(1 - p));
+ } else {
+ CHECK_LE(logistic(-x), 1e-300);
+ }
+ }
+
+ for (i = 0; i <= 100; i++) {
+ double p0 = (double)i/100;
+
+ CHECK_RELERR(logit(p0/(1 + M_E)), sample_logistic(0, 0, p0));
+ CHECK_RELERR(-logit(p0/(1 + M_E)), sample_logistic(1, 0, p0));
+ CHECK_RELERR(logithalf(p0*(0.5 - 1/(1 + M_E))),
+ sample_logistic(0, 1, p0));
+ CHECK_RELERR(-logithalf(p0*(0.5 - 1/(1 + M_E))),
+ sample_logistic(1, 1, p0));
+ }
+
+ if (!ok)
+ printf("fail logit/logistic / logistic cdf/sf\n");
+
+ tt_assert(ok);
+
+ done:
+ ;
+}
+
+/**
+ * Test the cdf, sf, icdf, and isf of the LogLogistic distribution.
+ */
+static void
+test_log_logistic(void *arg)
+{
+ (void) arg;
+
+ static const struct {
+ /* x is a point in the support of the LogLogistic distribution */
+ double x;
+ /* 'p' is the probability that a random variable X for a given LogLogistic
+ * probability ditribution will take value less-or-equal to x */
+ double p;
+ /* 'np' is the probability that a random variable X for a given LogLogistic
+ * probability distribution will take value greater-or-equal to x. */
+ double np;
+ } cases[] = {
+ { 0, 0, 1 },
+ { 1e-300, 1e-300, 1 },
+ { 1e-17, 1e-17, 1 },
+ { 1e-15, 1e-15, .999999999999999 },
+ { .1, .09090909090909091, .90909090909090909 },
+ { .25, .2, .8 },
+ { .5, .33333333333333333, .66666666666666667 },
+ { .75, .42857142857142855, .5714285714285714 },
+ { .9999, .49997499874993756, .5000250012500626 },
+ { .99999999, .49999999749999996, .5000000025 },
+ { .999999999999999, .49999999999999994, .5000000000000002 },
+ { 1, .5, .5 },
+ };
+ double relerr_bound = 3e-15;
+ size_t i;
+ bool ok = true;
+
+ for (i = 0; i < arraycount(cases); i++) {
+ double x = cases[i].x;
+ double p = cases[i].p;
+ double np = cases[i].np;
+
+ CHECK_RELERR(p, cdf_log_logistic(x, 1, 1));
+ CHECK_RELERR(p, cdf_log_logistic(x/2, .5, 1));
+ CHECK_RELERR(p, cdf_log_logistic(x*2, 2, 1));
+ CHECK_RELERR(p, cdf_log_logistic(sqrt(x), 1, 2));
+ CHECK_RELERR(p, cdf_log_logistic(sqrt(x)/2, .5, 2));
+ CHECK_RELERR(p, cdf_log_logistic(sqrt(x)*2, 2, 2));
+ if (2*sqrt(DBL_MIN) < x) {
+ CHECK_RELERR(p, cdf_log_logistic(x*x, 1, .5));
+ CHECK_RELERR(p, cdf_log_logistic(x*x/2, .5, .5));
+ CHECK_RELERR(p, cdf_log_logistic(x*x*2, 2, .5));
+ }
+
+ CHECK_RELERR(np, sf_log_logistic(x, 1, 1));
+ CHECK_RELERR(np, sf_log_logistic(x/2, .5, 1));
+ CHECK_RELERR(np, sf_log_logistic(x*2, 2, 1));
+ CHECK_RELERR(np, sf_log_logistic(sqrt(x), 1, 2));
+ CHECK_RELERR(np, sf_log_logistic(sqrt(x)/2, .5, 2));
+ CHECK_RELERR(np, sf_log_logistic(sqrt(x)*2, 2, 2));
+ if (2*sqrt(DBL_MIN) < x) {
+ CHECK_RELERR(np, sf_log_logistic(x*x, 1, .5));
+ CHECK_RELERR(np, sf_log_logistic(x*x/2, .5, .5));
+ CHECK_RELERR(np, sf_log_logistic(x*x*2, 2, .5));
+ }
+
+ CHECK_RELERR(np, cdf_log_logistic(1/x, 1, 1));
+ CHECK_RELERR(np, cdf_log_logistic(1/(2*x), .5, 1));
+ CHECK_RELERR(np, cdf_log_logistic(2/x, 2, 1));
+ CHECK_RELERR(np, cdf_log_logistic(1/sqrt(x), 1, 2));
+ CHECK_RELERR(np, cdf_log_logistic(1/(2*sqrt(x)), .5, 2));
+ CHECK_RELERR(np, cdf_log_logistic(2/sqrt(x), 2, 2));
+ if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) {
+ CHECK_RELERR(np, cdf_log_logistic(1/(x*x), 1, .5));
+ CHECK_RELERR(np, cdf_log_logistic(1/(2*x*x), .5, .5));
+ CHECK_RELERR(np, cdf_log_logistic(2/(x*x), 2, .5));
+ }
+
+ CHECK_RELERR(p, sf_log_logistic(1/x, 1, 1));
+ CHECK_RELERR(p, sf_log_logistic(1/(2*x), .5, 1));
+ CHECK_RELERR(p, sf_log_logistic(2/x, 2, 1));
+ CHECK_RELERR(p, sf_log_logistic(1/sqrt(x), 1, 2));
+ CHECK_RELERR(p, sf_log_logistic(1/(2*sqrt(x)), .5, 2));
+ CHECK_RELERR(p, sf_log_logistic(2/sqrt(x), 2, 2));
+ if (2*sqrt(DBL_MIN) < x && x < 1/(2*sqrt(DBL_MIN))) {
+ CHECK_RELERR(p, sf_log_logistic(1/(x*x), 1, .5));
+ CHECK_RELERR(p, sf_log_logistic(1/(2*x*x), .5, .5));
+ CHECK_RELERR(p, sf_log_logistic(2/(x*x), 2, .5));
+ }
+
+ CHECK_RELERR(x, icdf_log_logistic(p, 1, 1));
+ CHECK_RELERR(x/2, icdf_log_logistic(p, .5, 1));
+ CHECK_RELERR(x*2, icdf_log_logistic(p, 2, 1));
+ CHECK_RELERR(x, icdf_log_logistic(p, 1, 1));
+ CHECK_RELERR(sqrt(x)/2, icdf_log_logistic(p, .5, 2));
+ CHECK_RELERR(sqrt(x)*2, icdf_log_logistic(p, 2, 2));
+ CHECK_RELERR(sqrt(x), icdf_log_logistic(p, 1, 2));
+ CHECK_RELERR(x*x/2, icdf_log_logistic(p, .5, .5));
+ CHECK_RELERR(x*x*2, icdf_log_logistic(p, 2, .5));
+
+ if (np < .9) {
+ CHECK_RELERR(x, isf_log_logistic(np, 1, 1));
+ CHECK_RELERR(x/2, isf_log_logistic(np, .5, 1));
+ CHECK_RELERR(x*2, isf_log_logistic(np, 2, 1));
+ CHECK_RELERR(sqrt(x), isf_log_logistic(np, 1, 2));
+ CHECK_RELERR(sqrt(x)/2, isf_log_logistic(np, .5, 2));
+ CHECK_RELERR(sqrt(x)*2, isf_log_logistic(np, 2, 2));
+ CHECK_RELERR(x*x, isf_log_logistic(np, 1, .5));
+ CHECK_RELERR(x*x/2, isf_log_logistic(np, .5, .5));
+ CHECK_RELERR(x*x*2, isf_log_logistic(np, 2, .5));
+
+ CHECK_RELERR(1/x, icdf_log_logistic(np, 1, 1));
+ CHECK_RELERR(1/(2*x), icdf_log_logistic(np, .5, 1));
+ CHECK_RELERR(2/x, icdf_log_logistic(np, 2, 1));
+ CHECK_RELERR(1/sqrt(x), icdf_log_logistic(np, 1, 2));
+ CHECK_RELERR(1/(2*sqrt(x)),
+ icdf_log_logistic(np, .5, 2));
+ CHECK_RELERR(2/sqrt(x), icdf_log_logistic(np, 2, 2));
+ CHECK_RELERR(1/(x*x), icdf_log_logistic(np, 1, .5));
+ CHECK_RELERR(1/(2*x*x), icdf_log_logistic(np, .5, .5));
+ CHECK_RELERR(2/(x*x), icdf_log_logistic(np, 2, .5));
+ }
+
+ CHECK_RELERR(1/x, isf_log_logistic(p, 1, 1));
+ CHECK_RELERR(1/(2*x), isf_log_logistic(p, .5, 1));
+ CHECK_RELERR(2/x, isf_log_logistic(p, 2, 1));
+ CHECK_RELERR(1/sqrt(x), isf_log_logistic(p, 1, 2));
+ CHECK_RELERR(1/(2*sqrt(x)), isf_log_logistic(p, .5, 2));
+ CHECK_RELERR(2/sqrt(x), isf_log_logistic(p, 2, 2));
+ CHECK_RELERR(1/(x*x), isf_log_logistic(p, 1, .5));
+ CHECK_RELERR(1/(2*x*x), isf_log_logistic(p, .5, .5));
+ CHECK_RELERR(2/(x*x), isf_log_logistic(p, 2, .5));
+ }
+
+ for (i = 0; i <= 100; i++) {
+ double p0 = (double)i/100;
+
+ CHECK_RELERR(0.5*p0/(1 - 0.5*p0), sample_log_logistic(0, p0));
+ CHECK_RELERR((1 - 0.5*p0)/(0.5*p0),
+ sample_log_logistic(1, p0));
+ }
+
+ if (!ok)
+ printf("fail log logistic cdf/sf\n");
+
+ tt_assert(ok);
+
+ done:
+ ;
+}
+
+/**
+ * Test the cdf, sf, icdf, isf of the Weibull distribution.
+ */
+static void
+test_weibull(void *arg)
+{
+ (void) arg;
+
+ static const struct {
+ /* x is a point in the support of the Weibull distribution */
+ double x;
+ /* 'p' is the probability that a random variable X for a given Weibull
+ * probability ditribution will take value less-or-equal to x */
+ double p;
+ /* 'np' is the probability that a random variable X for a given Weibull
+ * probability distribution will take value greater-or-equal to x. */
+ double np;
+ } cases[] = {
+ { 0, 0, 1 },
+ { 1e-300, 1e-300, 1 },
+ { 1e-17, 1e-17, 1 },
+ { .1, .09516258196404043, .9048374180359595 },
+ { .5, .3934693402873666, .6065306597126334 },
+ { .6931471805599453, .5, .5 },
+ { 1, .6321205588285577, .36787944117144233 },
+ { 10, .9999546000702375, 4.5399929762484854e-5 },
+ { 36, .9999999999999998, 2.319522830243569e-16 },
+ { 37, .9999999999999999, 8.533047625744066e-17 },
+ { 38, 1, 3.1391327920480296e-17 },
+ { 100, 1, 3.720075976020836e-44 },
+ { 708, 1, 3.307553003638408e-308 },
+ { 710, 1, 4.47628622567513e-309 },
+ { 1000, 1, 0 },
+ { HUGE_VAL, 1, 0 },
+ };
+ double relerr_bound = 3e-15;
+ size_t i;
+ bool ok = true;
+
+ for (i = 0; i < arraycount(cases); i++) {
+ double x = cases[i].x;
+ double p = cases[i].p;
+ double np = cases[i].np;
+
+ CHECK_RELERR(p, cdf_weibull(x, 1, 1));
+ CHECK_RELERR(p, cdf_weibull(x/2, .5, 1));
+ CHECK_RELERR(p, cdf_weibull(x*2, 2, 1));
+ /* For 0 < x < sqrt(DBL_MIN), x^2 loses lots of bits. */
+ if (x <= 0 ||
+ sqrt(DBL_MIN) <= x) {
+ CHECK_RELERR(p, cdf_weibull(x*x, 1, .5));
+ CHECK_RELERR(p, cdf_weibull(x*x/2, .5, .5));
+ CHECK_RELERR(p, cdf_weibull(x*x*2, 2, .5));
+ }
+ CHECK_RELERR(p, cdf_weibull(sqrt(x), 1, 2));
+ CHECK_RELERR(p, cdf_weibull(sqrt(x)/2, .5, 2));
+ CHECK_RELERR(p, cdf_weibull(sqrt(x)*2, 2, 2));
+ CHECK_RELERR(np, sf_weibull(x, 1, 1));
+ CHECK_RELERR(np, sf_weibull(x/2, .5, 1));
+ CHECK_RELERR(np, sf_weibull(x*2, 2, 1));
+ CHECK_RELERR(np, sf_weibull(x*x, 1, .5));
+ CHECK_RELERR(np, sf_weibull(x*x/2, .5, .5));
+ CHECK_RELERR(np, sf_weibull(x*x*2, 2, .5));
+ if (x >= 10) {
+ /*
+ * exp amplifies the error of sqrt(x)^2
+ * proportionally to exp(x); for large inputs
+ * this is significant.
+ */
+ double t = -expm1(-x*(2*DBL_EPSILON + DBL_EPSILON));
+ relerr_bound = t + DBL_EPSILON + t*DBL_EPSILON;
+ if (relerr_bound < 3e-15)
+ /*
+ * The tests are written only to 16
+ * decimal places anyway even if your
+ * `double' is, say, i387 binary80, for
+ * whatever reason.
+ */
+ relerr_bound = 3e-15;
+ CHECK_RELERR(np, sf_weibull(sqrt(x), 1, 2));
+ CHECK_RELERR(np, sf_weibull(sqrt(x)/2, .5, 2));
+ CHECK_RELERR(np, sf_weibull(sqrt(x)*2, 2, 2));
+ }
+
+ if (p <= 0.75) {
+ /*
+ * For p near 1, not enough precision near 1 to
+ * recover x.
+ */
+ CHECK_RELERR(x, icdf_weibull(p, 1, 1));
+ CHECK_RELERR(x/2, icdf_weibull(p, .5, 1));
+ CHECK_RELERR(x*2, icdf_weibull(p, 2, 1));
+ }
+ if (p >= 0.25 && !tor_isinf(x) && np > 0) {
+ /*
+ * For p near 0, not enough precision in np
+ * near 1 to recover x. For 0, isf gives inf,
+ * even if p is precise enough for the icdf to
+ * work.
+ */
+ CHECK_RELERR(x, isf_weibull(np, 1, 1));
+ CHECK_RELERR(x/2, isf_weibull(np, .5, 1));
+ CHECK_RELERR(x*2, isf_weibull(np, 2, 1));
+ }
+ }
+
+ for (i = 0; i <= 100; i++) {
+ double p0 = (double)i/100;
+
+ CHECK_RELERR(3*sqrt(-log(p0/2)), sample_weibull(0, p0, 3, 2));
+ CHECK_RELERR(3*sqrt(-log1p(-p0/2)),
+ sample_weibull(1, p0, 3, 2));
+ }
+
+ if (!ok)
+ printf("fail Weibull cdf/sf\n");
+
+ tt_assert(ok);
+
+ done:
+ ;
+}
+
+/**
+ * Test the cdf, sf, icdf, and isf of the generalized Pareto
+ * distribution.
+ */
+static void
+test_genpareto(void *arg)
+{
+ (void) arg;
+
+ struct {
+ /* xi is the 'xi' parameter of the generalized Pareto distribution, and the
+ * rest are the same as in the above tests */
+ double xi, x, p, np;
+ } cases[] = {
+ { 0, 0, 0, 1 },
+ { 1e-300, .004, 3.992010656008528e-3, .9960079893439915 },
+ { 1e-300, .1, .09516258196404043, .9048374180359595 },
+ { 1e-300, 1, .6321205588285577, .36787944117144233 },
+ { 1e-300, 10, .9999546000702375, 4.5399929762484854e-5 },
+ { 1e-200, 1e-16, 9.999999999999999e-17, .9999999999999999 },
+ { 1e-16, 1e-200, 9.999999999999998e-201, 1 },
+ { 1e-16, 1e-16, 1e-16, 1 },
+ { 1e-16, .004, 3.992010656008528e-3, .9960079893439915 },
+ { 1e-16, .1, .09516258196404043, .9048374180359595 },
+ { 1e-16, 1, .6321205588285577, .36787944117144233 },
+ { 1e-16, 10, .9999546000702375, 4.539992976248509e-5 },
+ { 1e-10, 1e-6, 9.999995000001667e-7, .9999990000005 },
+ { 1e-8, 1e-8, 9.999999950000001e-9, .9999999900000001 },
+ { 1, 1e-300, 1e-300, 1 },
+ { 1, 1e-16, 1e-16, .9999999999999999 },
+ { 1, .1, .09090909090909091, .9090909090909091 },
+ { 1, 1, .5, .5 },
+ { 1, 10, .9090909090909091, .0909090909090909 },
+ { 1, 100, .9900990099009901, .0099009900990099 },
+ { 1, 1000, .999000999000999, 9.990009990009992e-4 },
+ { 10, 1e-300, 1e-300, 1 },
+ { 10, 1e-16, 9.999999999999995e-17, .9999999999999999 },
+ { 10, .1, .06696700846319258, .9330329915368074 },
+ { 10, 1, .21320655780322778, .7867934421967723 },
+ { 10, 10, .3696701667040189, .6303298332959811 },
+ { 10, 100, .49886285755007337, .5011371424499267 },
+ { 10, 1000, .6018968102992647, .3981031897007353 },
+ };
+ double xi_array[] = { -1.5, -1, -1e-30, 0, 1e-30, 1, 1.5 };
+ size_t i, j;
+ double relerr_bound = 3e-15;
+ bool ok = true;
+
+ for (i = 0; i < arraycount(cases); i++) {
+ double xi = cases[i].xi;
+ double x = cases[i].x;
+ double p = cases[i].p;
+ double np = cases[i].np;
+
+ CHECK_RELERR(p, cdf_genpareto(x, 0, 1, xi));
+ CHECK_RELERR(p, cdf_genpareto(x*2, 0, 2, xi));
+ CHECK_RELERR(p, cdf_genpareto(x/2, 0, .5, xi));
+ CHECK_RELERR(np, sf_genpareto(x, 0, 1, xi));
+ CHECK_RELERR(np, sf_genpareto(x*2, 0, 2, xi));
+ CHECK_RELERR(np, sf_genpareto(x/2, 0, .5, xi));
+
+ if (p < .5) {
+ CHECK_RELERR(x, icdf_genpareto(p, 0, 1, xi));
+ CHECK_RELERR(x*2, icdf_genpareto(p, 0, 2, xi));
+ CHECK_RELERR(x/2, icdf_genpareto(p, 0, .5, xi));
+ }
+ if (np < .5) {
+ CHECK_RELERR(x, isf_genpareto(np, 0, 1, xi));
+ CHECK_RELERR(x*2, isf_genpareto(np, 0, 2, xi));
+ CHECK_RELERR(x/2, isf_genpareto(np, 0, .5, xi));
+ }
+ }
+
+ for (i = 0; i < arraycount(xi_array); i++) {
+ for (j = 0; j <= 100; j++) {
+ double p0 = (j == 0 ? 2*DBL_MIN : (double)j/100);
+
+ /* This is actually a check against 0, but we do <= so that the compiler
+ does not raise a -Wfloat-equal */
+ if (fabs(xi_array[i]) <= 0) {
+ /*
+ * When xi == 0, the generalized Pareto
+ * distribution reduces to an
+ * exponential distribution.
+ */
+ CHECK_RELERR(-log(p0/2),
+ sample_genpareto(0, p0, 0));
+ CHECK_RELERR(-log1p(-p0/2),
+ sample_genpareto(1, p0, 0));
+ } else {
+ CHECK_RELERR(expm1(-xi_array[i]*log(p0/2))/xi_array[i],
+ sample_genpareto(0, p0, xi_array[i]));
+ CHECK_RELERR((j == 0 ? DBL_MIN :
+ expm1(-xi_array[i]*log1p(-p0/2))/xi_array[i]),
+ sample_genpareto(1, p0, xi_array[i]));
+ }
+
+ CHECK_RELERR(isf_genpareto(p0/2, 0, 1, xi_array[i]),
+ sample_genpareto(0, p0, xi_array[i]));
+ CHECK_RELERR(icdf_genpareto(p0/2, 0, 1, xi_array[i]),
+ sample_genpareto(1, p0, xi_array[i]));
+ }
+ }
+
+ tt_assert(ok);
+
+ done:
+ ;
+}
+
+/**
+ * Test the deterministic sampler for uniform distribution on [a, b].
+ *
+ * This currently only tests whether the outcome lies within [a, b].
+ */
+static void
+test_uniform_interval(void *arg)
+{
+ (void) arg;
+ struct {
+ /* Sample from a uniform distribution with parameters 'a' and 'b', using
+ * 't' as the sampling index. */
+ double t, a, b;
+ } cases[] = {
+ { 0, 0, 0 },
+ { 0, 0, 1 },
+ { 0, 1.0000000000000007, 3.999999999999995 },
+ { 0, 4000, 4000 },
+ { 0.42475836677491291, 4000, 4000 },
+ { 0, -DBL_MAX, DBL_MAX },
+ { 0.25, -DBL_MAX, DBL_MAX },
+ { 0.5, -DBL_MAX, DBL_MAX },
+ };
+ size_t i = 0;
+ bool ok = true;
+
+ for (i = 0; i < arraycount(cases); i++) {
+ double t = cases[i].t;
+ double a = cases[i].a;
+ double b = cases[i].b;
+
+ CHECK_LE(a, sample_uniform_interval(t, a, b));
+ CHECK_LE(sample_uniform_interval(t, a, b), b);
+
+ CHECK_LE(a, sample_uniform_interval(1 - t, a, b));
+ CHECK_LE(sample_uniform_interval(1 - t, a, b), b);
+
+ CHECK_LE(sample_uniform_interval(t, -b, -a), -a);
+ CHECK_LE(-b, sample_uniform_interval(t, -b, -a));
+
+ CHECK_LE(sample_uniform_interval(1 - t, -b, -a), -a);
+ CHECK_LE(-b, sample_uniform_interval(1 - t, -b, -a));
+ }
+
+ tt_assert(ok);
+
+ done:
+ ;
+}
+
+/********************** Stochastic tests ****************************/
+
+/*
+ * Psi test, sometimes also called G-test. The psi test statistic,
+ * suitably scaled, has chi^2 distribution, but the psi test tends to
+ * have better statistical power in practice to detect deviations than
+ * the chi^2 test does. (The chi^2 test statistic is the first term of
+ * the Taylor expansion of the psi test statistic.) The psi test is
+ * generic, for any CDF; particular distributions might have higher-
+ * power tests to distinguish them from predictable deviations or bugs.
+ *
+ * We choose the psi critical value so that a single psi test has
+ * probability below alpha = 1% of spuriously failing even if all the
+ * code is correct. But the false positive rate for a suite of n tests
+ * is higher: 1 - Binom(0; n, alpha) = 1 - (1 - alpha)^n. For n = 10,
+ * this is about 10%, and for n = 100 it is well over 50%.
+ *
+ * We can drive it down by running each test twice, and accepting it if
+ * it passes at least once; in that case, it is as if we used Binom(2;
+ * 2, alpha) = alpha^2 as the false positive rate for each test, and
+ * for n = 10 tests, it would be 0.1%, and for n = 100 tests, still
+ * only 1%.
+ *
+ * The critical value for a chi^2 distribution with 100 degrees of
+ * freedom and false positive rate alpha = 1% was taken from:
+ *
+ * NIST/SEMATECH e-Handbook of Statistical Methods, Section
+ * 1.3.6.7.4 `Critical Values of the Chi-Square Distribution',
+ * <http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm>,
+ * retrieved 2018-10-28.
+ */
+
+static const size_t NSAMPLES = 100000;
+/* Number of chances we give to the test to succeed. */
+static const unsigned NTRIALS = 2;
+/* Number of times we want the test to pass per NTRIALS. */
+static const unsigned NPASSES_MIN = 1;
+
+#define PSI_DF 100 /* degrees of freedom */
+static const double PSI_CRITICAL = 135.807; /* critical value, alpha = .01 */
+
+/**
+ * Perform a psi test on an array of sample counts, C, adding up to N
+ * samples, and an array of log expected probabilities, logP,
+ * representing the null hypothesis for the distribution of samples
+ * counted. Return false if the psi test rejects the null hypothesis,
+ * true if otherwise.
+ */
+static bool
+psi_test(const size_t C[PSI_DF], const double logP[PSI_DF], size_t N)
+{
+ double psi = 0;
+ double c = 0; /* Kahan compensation */
+ double t, u;
+ size_t i;
+
+ for (i = 0; i < PSI_DF; i++) {
+ /*
+ * c*log(c/(n*p)) = (1/n) * f*log(f/p) where f = c/n is
+ * the frequency, and f*log(f/p) ---> 0 as f ---> 0, so
+ * this is a reasonable choice. Further, any mass that
+ * _fails_ to turn up in this bin will inflate another
+ * bin instead, so we don't really lose anything by
+ * ignoring empty bins even if they have high
+ * probability.
+ */
+ if (C[i] == 0)
+ continue;
+ t = C[i]*(log((double)C[i]/N) - logP[i]) - c;
+ u = psi + t;
+ c = (u - psi) - t;
+ psi = u;
+ }
+ psi *= 2;
+
+ return psi <= PSI_CRITICAL;
+}
+
+static bool
+test_stochastic_geometric_impl(double p)
+{
+ const struct geometric geometric = {
+ .base = GEOMETRIC(geometric),
+ .p = p,
+ };
+ double logP[PSI_DF] = {0};
+ unsigned ntry = NTRIALS, npass = 0;
+ unsigned i;
+ size_t j;
+
+ /* Compute logP[i] = Geom(i + 1; p). */
+ for (i = 0; i < PSI_DF - 1; i++)
+ logP[i] = logpmf_geometric(i + 1, p);
+
+ /* Compute logP[n-1] = log (1 - (P[0] + P[1] + ... + P[n-2])). */
+ logP[PSI_DF - 1] = log1mexp(logsumexp(logP, PSI_DF - 1));
+
+ while (ntry --> 0) {
+ size_t C[PSI_DF] = {0};
+
+ for (j = 0; j < NSAMPLES; j++) {
+ double n_tmp = dist_sample(&geometric.base);
+
+ /* Must be an integer. (XXX -Wfloat-equal) */
+ tor_assert(ceil(n_tmp) <= n_tmp && ceil(n_tmp) >= n_tmp);
+
+ /* Must be a positive integer. */
+ tor_assert(n_tmp >= 1);
+
+ /* Probability of getting a value in the billions is negligible. */
+ tor_assert(n_tmp <= (double)UINT_MAX);
+
+ unsigned n = (unsigned) n_tmp;
+
+ if (n > PSI_DF)
+ n = PSI_DF;
+ C[n - 1]++;
+ }
+
+ if (psi_test(C, logP, NSAMPLES)) {
+ if (++npass >= NPASSES_MIN)
+ break;
+ }
+ }
+
+ if (npass >= NPASSES_MIN) {
+ /* printf("pass %s sampler\n", "geometric"); */
+ return true;
+ } else {
+ printf("fail %s sampler\n", "geometric");
+ return false;
+ }
+}
+
+/**
+ * Divide the support of <b>dist</b> into histogram bins in <b>logP</b>. Start
+ * at the 1st percentile and ending at the 99th percentile. Pick the bin
+ * boundaries using linear interpolation so that they are uniformly spaced.
+ *
+ * In each bin logP[i] we insert the expected log-probability that a sampled
+ * value will fall into that bin. We will use this as the null hypothesis of
+ * the psi test.
+ *
+ * Set logP[i] = log(CDF(x_i) - CDF(x_{i-1})), where x_-1 = -inf, x_n =
+ * +inf, and x_i = i*(hi - lo)/(n - 2).
+ */
+static void
+bin_cdfs(const struct dist *dist, double lo, double hi, double *logP, size_t n)
+{
+#define CDF(x) dist_cdf(dist, x)
+#define SF(x) dist_sf(dist, x)
+ const double w = (hi - lo)/(n - 2);
+ double halfway = dist_icdf(dist, 0.5);
+ double x_0, x_1;
+ size_t i;
+ size_t n2 = ceil_to_size_t((halfway - lo)/w);
+
+ tor_assert(lo <= halfway);
+ tor_assert(halfway <= hi);
+ tor_assert(n2 <= n);
+
+ x_1 = lo;
+ logP[0] = log(CDF(x_1) - 0); /* 0 = CDF(-inf) */
+ for (i = 1; i < n2; i++) {
+ x_0 = x_1;
+ /* do the linear interpolation */
+ x_1 = (i <= n/2 ? lo + i*w : hi - (n - 2 - i)*w);
+ /* set the expected log-probability */
+ logP[i] = log(CDF(x_1) - CDF(x_0));
+ }
+ x_0 = hi;
+ logP[n - 1] = log(SF(x_0) - 0); /* 0 = SF(+inf) = 1 - CDF(+inf) */
+
+ /* In this loop we are filling out the high part of the array. We are using
+ * SF because in these cases the CDF is near 1 where precision is lower. So
+ * instead we are using SF near 0 where the precision is higher. We have
+ * SF(t) = 1 - CDF(t). */
+ for (i = 1; i < n - n2; i++) {
+ x_1 = x_0;
+ /* do the linear interpolation */
+ x_0 = (i <= n/2 ? hi - i*w : lo + (n - 2 - i)*w);
+ /* set the expected log-probability */
+ logP[n - i - 1] = log(SF(x_0) - SF(x_1));
+ }
+#undef SF
+#undef CDF
+}
+
+/**
+ * Draw NSAMPLES samples from dist, counting the number of samples x in
+ * the ith bin C[i] if x_{i-1} <= x < x_i, where x_-1 = -inf, x_n =
+ * +inf, and x_i = i*(hi - lo)/(n - 2).
+ */
+static void
+bin_samples(const struct dist *dist, double lo, double hi, size_t *C, size_t n)
+{
+ const double w = (hi - lo)/(n - 2);
+ size_t i;
+
+ for (i = 0; i < NSAMPLES; i++) {
+ double x = dist_sample(dist);
+ size_t bin;
+
+ if (x < lo)
+ bin = 0;
+ else if (x < hi)
+ bin = 1 + floor_to_size_t((x - lo)/w);
+ else
+ bin = n - 1;
+ tor_assert(bin < n);
+ C[bin]++;
+ }
+}
+
+/**
+ * Carry out a Psi test on <b>dist</b>.
+ *
+ * Sample NSAMPLES from dist, putting them in bins from -inf to lo to
+ * hi to +inf, and apply up to two psi tests. True if at least one psi
+ * test passes; false if not. False positive rate should be bounded by
+ * 0.01^2 = 0.0001.
+ */
+static bool
+test_psi_dist_sample(const struct dist *dist)
+{
+ double logP[PSI_DF] = {0};
+ unsigned ntry = NTRIALS, npass = 0;
+ double lo = dist_icdf(dist, 1/(double)(PSI_DF + 2));
+ double hi = dist_isf(dist, 1/(double)(PSI_DF + 2));
+
+ /* Create the null hypothesis in logP */
+ bin_cdfs(dist, lo, hi, logP, PSI_DF);
+
+ /* Now run the test */
+ while (ntry --> 0) {
+ size_t C[PSI_DF] = {0};
+ bin_samples(dist, lo, hi, C, PSI_DF);
+ if (psi_test(C, logP, NSAMPLES)) {
+ if (++npass >= NPASSES_MIN)
+ break;
+ }
+ }
+
+ /* Did we fail or succeed? */
+ if (npass >= NPASSES_MIN) {
+ /* printf("pass %s sampler\n", dist_name(dist));*/
+ return true;
+ } else {
+ printf("fail %s sampler\n", dist_name(dist));
+ return false;
+ }
+}
+
+/* This is the seed of the deterministic randomness */
+static uint32_t deterministic_rand_counter;
+
+/** Initialize the seed of the deterministic randomness. */
+static void
+init_deterministic_rand(void)
+{
+ deterministic_rand_counter = crypto_rand_u32();
+}
+
+/** Produce deterministic randomness for the stochastic tests using the global
+ * deterministic_rand_counter seed
+ *
+ * This function produces deterministic data over multiple calls iff it's
+ * called in the same call order with the same 'n' parameter (which is the
+ * case for the psi test). If not, outputs will deviate. */
+static void
+crypto_rand_deterministic(char *out, size_t n)
+{
+ /* Use a XOF to squeeze bytes out of that silly counter */
+ crypto_xof_t *xof = crypto_xof_new();
+ tor_assert(xof);
+ crypto_xof_add_bytes(xof, (uint8_t*)&deterministic_rand_counter,
+ sizeof(deterministic_rand_counter));
+ crypto_xof_squeeze_bytes(xof, (uint8_t*)out, n);
+ crypto_xof_free(xof);
+
+ /* Increase counter for next run */
+ deterministic_rand_counter++;
+}
+
+static void
+test_stochastic_uniform(void *arg)
+{
+ (void) arg;
+
+ const struct uniform uniform01 = {
+ .base = UNIFORM(uniform01),
+ .a = 0,
+ .b = 1,
+ };
+ const struct uniform uniform_pos = {
+ .base = UNIFORM(uniform_pos),
+ .a = 1.23,
+ .b = 4.56,
+ };
+ const struct uniform uniform_neg = {
+ .base = UNIFORM(uniform_neg),
+ .a = -10,
+ .b = -1,
+ };
+ const struct uniform uniform_cross = {
+ .base = UNIFORM(uniform_cross),
+ .a = -1.23,
+ .b = 4.56,
+ };
+ const struct uniform uniform_subnormal = {
+ .base = UNIFORM(uniform_subnormal),
+ .a = 4e-324,
+ .b = 4e-310,
+ };
+ const struct uniform uniform_subnormal_cross = {
+ .base = UNIFORM(uniform_subnormal_cross),
+ .a = -4e-324,
+ .b = 4e-310,
+ };
+ bool ok = true;
+
+ init_deterministic_rand();
+ MOCK(crypto_rand, crypto_rand_deterministic);
+
+ ok &= test_psi_dist_sample(&uniform01.base);
+ ok &= test_psi_dist_sample(&uniform_pos.base);
+ ok &= test_psi_dist_sample(&uniform_neg.base);
+ ok &= test_psi_dist_sample(&uniform_cross.base);
+ ok &= test_psi_dist_sample(&uniform_subnormal.base);
+ ok &= test_psi_dist_sample(&uniform_subnormal_cross.base);
+
+ tt_assert(ok);
+
+ done:
+ ;
+}
+
+static bool
+test_stochastic_logistic_impl(double mu, double sigma)
+{
+ const struct logistic dist = {
+ .base = LOGISTIC(dist),
+ .mu = mu,
+ .sigma = sigma,
+ };
+
+ /* XXX Consider some fancier logistic test. */
+ return test_psi_dist_sample(&dist.base);
+}
+
+static bool
+test_stochastic_log_logistic_impl(double alpha, double beta)
+{
+ const struct log_logistic dist = {
+ .base = LOG_LOGISTIC(dist),
+ .alpha = alpha,
+ .beta = beta,
+ };
+
+ /* XXX Consider some fancier log logistic test. */
+ return test_psi_dist_sample(&dist.base);
+}
+
+static bool
+test_stochastic_weibull_impl(double lambda, double k)
+{
+ const struct weibull dist = {
+ .base = WEIBULL(dist),
+ .lambda = lambda,
+ .k = k,
+ };
+
+/*
+ * XXX Consider applying a Tiku-Singh test:
+ *
+ * M.L. Tiku and M. Singh, `Testing the two-parameter
+ * Weibull distribution', Communications in Statistics --
+ * Theory and Methods A10(9), 1981, 907--918.
+ *https://www.tandfonline.com/doi/pdf/10.1080/03610928108828082?needAccess=true
+ */
+ return test_psi_dist_sample(&dist.base);
+}
+
+static bool
+test_stochastic_genpareto_impl(double mu, double sigma, double xi)
+{
+ const struct genpareto dist = {
+ .base = GENPARETO(dist),
+ .mu = mu,
+ .sigma = sigma,
+ .xi = xi,
+ };
+
+ /* XXX Consider some fancier GPD test. */
+ return test_psi_dist_sample(&dist.base);
+}
+
+static void
+test_stochastic_genpareto(void *arg)
+{
+ bool ok = 0;
+ bool tests_failed = true;
+ (void) arg;
+
+ init_deterministic_rand();
+ MOCK(crypto_rand, crypto_rand_deterministic);
+
+ ok = test_stochastic_genpareto_impl(0, 1, -0.25);
+ tt_assert(ok);
+ ok = test_stochastic_genpareto_impl(0, 1, -1e-30);
+ tt_assert(ok);
+ ok = test_stochastic_genpareto_impl(0, 1, 0);
+ tt_assert(ok);
+ ok = test_stochastic_genpareto_impl(0, 1, 1e-30);
+ tt_assert(ok);
+ ok = test_stochastic_genpareto_impl(0, 1, 0.25);
+ tt_assert(ok);
+ ok = test_stochastic_genpareto_impl(-1, 1, -0.25);
+ tt_assert(ok);
+ ok = test_stochastic_genpareto_impl(1, 2, 0.25);
+ tt_assert(ok);
+
+ tests_failed = false;
+
+ done:
+ if (tests_failed) {
+ printf("seed: %"PRIu32, deterministic_rand_counter);
+ }
+ UNMOCK(crypto_rand);
+}
+
+static void
+test_stochastic_geometric(void *arg)
+{
+ bool ok = 0;
+ bool tests_failed = true;
+
+ (void) arg;
+
+ init_deterministic_rand();
+ MOCK(crypto_rand, crypto_rand_deterministic);
+
+ ok = test_stochastic_geometric_impl(0.1);
+ tt_assert(ok);
+ ok = test_stochastic_geometric_impl(0.5);
+ tt_assert(ok);
+ ok = test_stochastic_geometric_impl(0.9);
+ tt_assert(ok);
+ ok = test_stochastic_geometric_impl(1);
+ tt_assert(ok);
+
+ tests_failed = false;
+
+ done:
+ if (tests_failed) {
+ printf("seed: %"PRIu32, deterministic_rand_counter);
+ }
+ UNMOCK(crypto_rand);
+}
+
+static void
+test_stochastic_logistic(void *arg)
+{
+ bool ok = 0;
+ bool tests_failed = true;
+ (void) arg;
+
+ init_deterministic_rand();
+ MOCK(crypto_rand, crypto_rand_deterministic);
+
+ ok = test_stochastic_logistic_impl(0, 1);
+ tt_assert(ok);
+ ok = test_stochastic_logistic_impl(0, 1e-16);
+ tt_assert(ok);
+ ok = test_stochastic_logistic_impl(1, 10);
+ tt_assert(ok);
+ ok = test_stochastic_logistic_impl(-10, 100);
+ tt_assert(ok);
+
+ tests_failed = false;
+
+ done:
+ if (tests_failed) {
+ printf("seed: %"PRIu32, deterministic_rand_counter);
+ }
+ UNMOCK(crypto_rand);
+}
+
+static void
+test_stochastic_log_logistic(void *arg)
+{
+ bool ok = 0;
+ bool tests_failed = true;
+ (void) arg;
+
+ init_deterministic_rand();
+ MOCK(crypto_rand, crypto_rand_deterministic);
+
+ ok = test_stochastic_log_logistic_impl(1, 1);
+ tt_assert(ok);
+ ok = test_stochastic_log_logistic_impl(1, 10);
+ tt_assert(ok);
+ ok = test_stochastic_log_logistic_impl(M_E, 1e-1);
+ tt_assert(ok);
+ ok = test_stochastic_log_logistic_impl(exp(-10), 1e-2);
+ tt_assert(ok);
+
+ tests_failed = false;
+
+ done:
+ if (tests_failed) {
+ printf("seed: %"PRIu32, deterministic_rand_counter);
+ }
+ UNMOCK(crypto_rand);
+}
+
+static void
+test_stochastic_weibull(void *arg)
+{
+ bool ok = 0;
+ bool tests_failed = true;
+ (void) arg;
+
+ init_deterministic_rand();
+ MOCK(crypto_rand, crypto_rand_deterministic);
+
+ ok = test_stochastic_weibull_impl(1, 0.5);
+ tt_assert(ok);
+ ok = test_stochastic_weibull_impl(1, 1);
+ tt_assert(ok);
+ ok = test_stochastic_weibull_impl(1, 1.5);
+ tt_assert(ok);
+ ok = test_stochastic_weibull_impl(1, 2);
+ tt_assert(ok);
+ ok = test_stochastic_weibull_impl(10, 1);
+ tt_assert(ok);
+
+ tests_failed = false;
+
+ done:
+ if (tests_failed) {
+ printf("seed: %"PRIu32, deterministic_rand_counter);
+ }
+ UNMOCK(crypto_rand);
+}
+
+struct testcase_t prob_distr_tests[] = {
+ { "logit_logistics", test_logit_logistic, TT_FORK, NULL, NULL },
+ { "log_logistic", test_log_logistic, TT_FORK, NULL, NULL },
+ { "weibull", test_weibull, TT_FORK, NULL, NULL },
+ { "genpareto", test_genpareto, TT_FORK, NULL, NULL },
+ { "uniform_interval", test_uniform_interval, TT_FORK, NULL, NULL },
+ END_OF_TESTCASES
+};
+
+struct testcase_t slow_stochastic_prob_distr_tests[] = {
+ { "stochastic_genpareto", test_stochastic_genpareto, TT_FORK, NULL, NULL },
+ { "stochastic_geometric", test_stochastic_geometric, TT_FORK, NULL, NULL },
+ { "stochastic_uniform", test_stochastic_uniform, TT_FORK, NULL, NULL },
+ { "stochastic_logistic", test_stochastic_logistic, TT_FORK, NULL, NULL },
+ { "stochastic_log_logistic", test_stochastic_log_logistic, TT_FORK, NULL,
+ NULL },
+ { "stochastic_weibull", test_stochastic_weibull, TT_FORK, NULL, NULL },
+ END_OF_TESTCASES
+};