summaryrefslogtreecommitdiff
path: root/src/test/ntor_ref.py
diff options
context:
space:
mode:
authorNick Mathewson <nickm@torproject.org>2013-01-03 11:52:41 -0500
committerNick Mathewson <nickm@torproject.org>2013-01-03 11:52:41 -0500
commitb1bdecd703879ca09bf63bf1453a70c4b80ac96d (patch)
tree9fd512361cae60d0aec849e52e349cc1a67f8055 /src/test/ntor_ref.py
parentee4182612f7f06ae09531bf75e9b84ea30871278 (diff)
parentd3de0b91fb322c00d11857d89a8420af0d466e39 (diff)
downloadtor-b1bdecd703879ca09bf63bf1453a70c4b80ac96d.tar.gz
tor-b1bdecd703879ca09bf63bf1453a70c4b80ac96d.zip
Merge branch 'ntor-resquashed'
Conflicts: src/or/cpuworker.c src/or/or.h src/test/bench.c
Diffstat (limited to 'src/test/ntor_ref.py')
-rw-r--r--src/test/ntor_ref.py387
1 files changed, 387 insertions, 0 deletions
diff --git a/src/test/ntor_ref.py b/src/test/ntor_ref.py
new file mode 100644
index 0000000000..6133be1395
--- /dev/null
+++ b/src/test/ntor_ref.py
@@ -0,0 +1,387 @@
+# Copyright 2012 The Tor Project, Inc
+# See LICENSE for licensing information
+
+"""
+ntor_ref.py
+
+
+This module is a reference implementation for the "ntor" protocol
+s proposed by Goldberg, Stebila, and Ustaoglu and as instantiated in
+Tor Proposal 216.
+
+It's meant to be used to validate Tor's ntor implementation. It
+requirs the curve25519 python module from the curve25519-donna
+package.
+
+ *** DO NOT USE THIS IN PRODUCTION. ***
+
+commands:
+
+ gen_kdf_vectors: Print out some test vectors for the RFC5869 KDF.
+ timing: Print a little timing information about this implementation's
+ handshake.
+ self-test: Try handshaking with ourself; make sure we can.
+ test-tor: Handshake with tor's ntor implementation via the program
+ src/test/test-ntor-cl; make sure we can.
+
+"""
+
+import binascii
+import curve25519
+import hashlib
+import hmac
+import subprocess
+
+# **********************************************************************
+# Helpers and constants
+
+def HMAC(key,msg):
+ "Return the HMAC-SHA256 of 'msg' using the key 'key'."
+ H = hmac.new(key, "", hashlib.sha256)
+ H.update(msg)
+ return H.digest()
+
+def H(msg,tweak):
+ """Return the hash of 'msg' using tweak 'tweak'. (In this version of ntor,
+ the tweaked hash is just HMAC with the tweak as the key.)"""
+ return HMAC(key=tweak,
+ msg=msg)
+
+def keyid(k):
+ """Return the 32-byte key ID of a public key 'k'. (Since we're
+ using curve25519, we let k be its own keyid.)
+ """
+ return k.serialize()
+
+NODE_ID_LENGTH = 20
+KEYID_LENGTH = 32
+G_LENGTH = 32
+H_LENGTH = 32
+
+PROTOID = b"ntor-curve25519-sha256-1"
+M_EXPAND = PROTOID + ":key_expand"
+T_MAC = PROTOID + ":mac"
+T_KEY = PROTOID + ":key_extract"
+T_VERIFY = PROTOID + ":verify"
+
+def H_mac(msg): return H(msg, tweak=T_MAC)
+def H_verify(msg): return H(msg, tweak=T_VERIFY)
+
+class PrivateKey(curve25519.keys.Private):
+ """As curve25519.keys.Private, but doesn't regenerate its public key
+ every time you ask for it.
+ """
+ def __init__(self):
+ curve25519.keys.Private.__init__(self)
+ self._memo_public = None
+
+ def get_public(self):
+ if self._memo_public is None:
+ self._memo_public = curve25519.keys.Private.get_public(self)
+
+ return self._memo_public
+
+# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+def kdf_rfc5869(key, salt, info, n):
+
+ prk = HMAC(key=salt, msg=key)
+
+ out = b""
+ last = b""
+ i = 1
+ while len(out) < n:
+ m = last + info + chr(i)
+ last = h = HMAC(key=prk, msg=m)
+ out += h
+ i = i + 1
+ return out[:n]
+
+def kdf_ntor(key, n):
+ return kdf_rfc5869(key, T_KEY, M_EXPAND, n)
+
+# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+def client_part1(node_id, pubkey_B):
+ """Initial handshake, client side.
+
+ From the specification:
+
+ <<To send a create cell, the client generates a keypair x,X =
+ KEYGEN(), and sends a CREATE cell with contents:
+
+ NODEID: ID -- ID_LENGTH bytes
+ KEYID: KEYID(B) -- H_LENGTH bytes
+ CLIENT_PK: X -- G_LENGTH bytes
+ >>
+
+ Takes node_id -- a digest of the server's identity key,
+ pubkey_B -- a public key for the server.
+ Returns a tuple of (client secret key x, client->server message)"""
+
+ assert len(node_id) == NODE_ID_LENGTH
+
+ key_id = keyid(pubkey_B)
+ seckey_x = PrivateKey()
+ pubkey_X = seckey_x.get_public().serialize()
+
+ message = node_id + key_id + pubkey_X
+
+ assert len(message) == NODE_ID_LENGTH + H_LENGTH + H_LENGTH
+ return seckey_x , message
+
+def hash_nil(x):
+ """Identity function: if we don't pass a hash function that does nothing,
+ the curve25519 python lib will try to sha256 it for us."""
+ return x
+
+def bad_result(r):
+ """Helper: given a result of multiplying a public key by a private key,
+ return True iff one of the inputs was broken"""
+ assert len(r) == 32
+ return r == '\x00'*32
+
+def server(seckey_b, my_node_id, message, keyBytes=72):
+ """Handshake step 2, server side.
+
+ From the spec:
+
+ <<
+ The server generates a keypair of y,Y = KEYGEN(), and computes
+
+ secret_input = EXP(X,y) | EXP(X,b) | ID | B | X | Y | PROTOID
+ KEY_SEED = H(secret_input, t_key)
+ verify = H(secret_input, t_verify)
+ auth_input = verify | ID | B | Y | X | PROTOID | "Server"
+
+ The server sends a CREATED cell containing:
+
+ SERVER_PK: Y -- G_LENGTH bytes
+ AUTH: H(auth_input, t_mac) -- H_LENGTH byets
+ >>
+
+ Takes seckey_b -- the server's secret key
+ my_node_id -- the servers's public key digest,
+ message -- a message from a client
+ keybytes -- amount of key material to generate
+
+ Returns a tuple of (key material, sever->client reply), or None on
+ error.
+ """
+
+ assert len(message) == NODE_ID_LENGTH + H_LENGTH + H_LENGTH
+
+ if my_node_id != message[:NODE_ID_LENGTH]:
+ return None
+
+ badness = (keyid(seckey_b.get_public()) !=
+ message[NODE_ID_LENGTH:NODE_ID_LENGTH+H_LENGTH])
+
+ pubkey_X = curve25519.keys.Public(message[NODE_ID_LENGTH+H_LENGTH:])
+ seckey_y = PrivateKey()
+ pubkey_Y = seckey_y.get_public()
+ pubkey_B = seckey_b.get_public()
+ xy = seckey_y.get_shared_key(pubkey_X, hash_nil)
+ xb = seckey_b.get_shared_key(pubkey_X, hash_nil)
+
+ # secret_input = EXP(X,y) | EXP(X,b) | ID | B | X | Y | PROTOID
+ secret_input = (xy + xb + my_node_id +
+ pubkey_B.serialize() +
+ pubkey_X.serialize() +
+ pubkey_Y.serialize() +
+ PROTOID)
+
+ verify = H_verify(secret_input)
+
+ # auth_input = verify | ID | B | Y | X | PROTOID | "Server"
+ auth_input = (verify +
+ my_node_id +
+ pubkey_B.serialize() +
+ pubkey_Y.serialize() +
+ pubkey_X.serialize() +
+ PROTOID +
+ "Server")
+
+ msg = pubkey_Y.serialize() + H_mac(auth_input)
+
+ badness += bad_result(xb)
+ badness += bad_result(xy)
+
+ if badness:
+ return None
+
+ keys = kdf_ntor(secret_input, keyBytes)
+
+ return keys, msg
+
+def client_part2(seckey_x, msg, node_id, pubkey_B, keyBytes=72):
+ """Handshake step 3: client side again.
+
+ From the spec:
+
+ <<
+ The client then checks Y is in G^* [see NOTE below], and computes
+
+ secret_input = EXP(Y,x) | EXP(B,x) | ID | B | X | Y | PROTOID
+ KEY_SEED = H(secret_input, t_key)
+ verify = H(secret_input, t_verify)
+ auth_input = verify | ID | B | Y | X | PROTOID | "Server"
+
+ The client verifies that AUTH == H(auth_input, t_mac).
+ >>
+
+ Takes seckey_x -- the secret key we generated in step 1.
+ msg -- the message from the server.
+ node_id -- the node_id we used in step 1.
+ server_key -- the same public key we used in step 1.
+ keyBytes -- the number of bytes we want to generate
+ Returns key material, or None on error
+
+ """
+ assert len(msg) == G_LENGTH + H_LENGTH
+
+ pubkey_Y = curve25519.keys.Public(msg[:G_LENGTH])
+ their_auth = msg[G_LENGTH:]
+
+ pubkey_X = seckey_x.get_public()
+
+ yx = seckey_x.get_shared_key(pubkey_Y, hash_nil)
+ bx = seckey_x.get_shared_key(pubkey_B, hash_nil)
+
+
+ # secret_input = EXP(Y,x) | EXP(B,x) | ID | B | X | Y | PROTOID
+ secret_input = (yx + bx + node_id +
+ pubkey_B.serialize() +
+ pubkey_X.serialize() +
+ pubkey_Y.serialize() + PROTOID)
+
+ verify = H_verify(secret_input)
+
+ # auth_input = verify | ID | B | Y | X | PROTOID | "Server"
+ auth_input = (verify + node_id +
+ pubkey_B.serialize() +
+ pubkey_Y.serialize() +
+ pubkey_X.serialize() + PROTOID +
+ "Server")
+
+ my_auth = H_mac(auth_input)
+
+ badness = my_auth != their_auth
+ badness = bad_result(yx) + bad_result(bx)
+
+ if badness:
+ return None
+
+ return kdf_ntor(secret_input, keyBytes)
+
+# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+def demo(node_id="iToldYouAboutStairs.", server_key=PrivateKey()):
+ """
+ Try to handshake with ourself.
+ """
+ x, create = client_part1(node_id, server_key.get_public())
+ skeys, created = server(server_key, node_id, create)
+ ckeys = client_part2(x, created, node_id, server_key.get_public())
+ assert len(skeys) == 72
+ assert len(ckeys) == 72
+ assert skeys == ckeys
+
+# ======================================================================
+def timing():
+ """
+ Use Python's timeit module to see how fast this nonsense is
+ """
+ import timeit
+ t = timeit.Timer(stmt="ntor_ref.demo(N,SK)",
+ setup="import ntor_ref,curve25519;N='ABCD'*5;SK=ntor_ref.PrivateKey()")
+ print t.timeit(number=1000)
+
+# ======================================================================
+
+def kdf_vectors():
+ """
+ Generate some vectors to check our KDF.
+ """
+ import binascii
+ def kdf_vec(inp):
+ k = kdf(inp, T_KEY, M_EXPAND, 100)
+ print repr(inp), "\n\""+ binascii.b2a_hex(k)+ "\""
+ kdf_vec("")
+ kdf_vec("Tor")
+ kdf_vec("AN ALARMING ITEM TO FIND ON YOUR CREDIT-RATING STATEMENT")
+
+# ======================================================================
+
+
+def test_tor():
+ """
+ Call the test-ntor-cl command-line program to make sure we can
+ interoperate with Tor's ntor program
+ """
+ enhex=binascii.b2a_hex
+ dehex=lambda s: binascii.a2b_hex(s.strip())
+
+ PROG = "./src/test/test-ntor-cl"
+ def tor_client1(node_id, pubkey_B):
+ " returns (msg, state) "
+ p = subprocess.Popen([PROG, "client1", enhex(node_id),
+ enhex(pubkey_B.serialize())],
+ stdout=subprocess.PIPE)
+ return map(dehex, p.stdout.readlines())
+ def tor_server1(seckey_b, node_id, msg, n):
+ " returns (msg, keys) "
+ p = subprocess.Popen([PROG, "server1", enhex(seckey_b.serialize()),
+ enhex(node_id), enhex(msg), str(n)],
+ stdout=subprocess.PIPE)
+ return map(dehex, p.stdout.readlines())
+ def tor_client2(state, msg, n):
+ " returns (keys,) "
+ p = subprocess.Popen([PROG, "client2", enhex(state),
+ enhex(msg), str(n)],
+ stdout=subprocess.PIPE)
+ return map(dehex, p.stdout.readlines())
+
+
+ node_id = "thisisatornodeid$#%^"
+ seckey_b = PrivateKey()
+ pubkey_B = seckey_b.get_public()
+
+ # Do a pure-Tor handshake
+ c2s_msg, c_state = tor_client1(node_id, pubkey_B)
+ s2c_msg, s_keys = tor_server1(seckey_b, node_id, c2s_msg, 90)
+ c_keys, = tor_client2(c_state, s2c_msg, 90)
+ assert c_keys == s_keys
+ assert len(c_keys) == 90
+
+ # Try a mixed handshake with Tor as the client
+ c2s_msg, c_state = tor_client1(node_id, pubkey_B)
+ s_keys, s2c_msg = server(seckey_b, node_id, c2s_msg, 90)
+ c_keys, = tor_client2(c_state, s2c_msg, 90)
+ assert c_keys == s_keys
+ assert len(c_keys) == 90
+
+ # Now do a mixed handshake with Tor as the server
+ c_x, c2s_msg = client_part1(node_id, pubkey_B)
+ s2c_msg, s_keys = tor_server1(seckey_b, node_id, c2s_msg, 90)
+ c_keys = client_part2(c_x, s2c_msg, node_id, pubkey_B, 90)
+ assert c_keys == s_keys
+ assert len(c_keys) == 90
+
+ print "We just interoperated."
+
+# ======================================================================
+
+if __name__ == '__main__':
+ import sys
+ if sys.argv[1] == 'gen_kdf_vectors':
+ kdf_vectors()
+ elif sys.argv[1] == 'timing':
+ timing()
+ elif sys.argv[1] == 'self-test':
+ demo()
+ elif sys.argv[1] == 'test-tor':
+ test_tor()
+
+ else:
+ print __doc__