summaryrefslogtreecommitdiff
path: root/src/or/scheduler.c
diff options
context:
space:
mode:
authorMatt Traudt <sirmatt@ksu.edu>2017-07-11 12:47:37 -0400
committerDavid Goulet <dgoulet@torproject.org>2017-09-15 11:40:59 -0400
commitdde358667d386d2c7b28866b029effa062ab9b6d (patch)
treec5dd77b8622b4366509d424b9245c3d6bba11fff /src/or/scheduler.c
parent2034e0d1d42c4f36a24c1eb88f95d057dacacf72 (diff)
downloadtor-dde358667d386d2c7b28866b029effa062ab9b6d.tar.gz
tor-dde358667d386d2c7b28866b029effa062ab9b6d.zip
sched: Implement the KIST scheduler
Closes #12541 Signed-off-by: David Goulet <dgoulet@torproject.org>
Diffstat (limited to 'src/or/scheduler.c')
-rw-r--r--src/or/scheduler.c639
1 files changed, 233 insertions, 406 deletions
diff --git a/src/or/scheduler.c b/src/or/scheduler.c
index eb31bc2152..b04bdceb40 100644
--- a/src/or/scheduler.c
+++ b/src/or/scheduler.c
@@ -2,9 +2,7 @@
/* See LICENSE for licensing information */
#include "or.h"
-
-#define TOR_CHANNEL_INTERNAL_ /* For channel_flush_some_cells() */
-#include "channel.h"
+#include "config.h"
#include "compat_libevent.h"
#define SCHEDULER_PRIVATE_
@@ -12,35 +10,41 @@
#include <event2/event.h>
-/*
- * Scheduler high/low watermarks
- */
-
-static uint32_t sched_q_low_water = 16384;
-static uint32_t sched_q_high_water = 32768;
-
-/*
- * Maximum cells to flush in a single call to channel_flush_some_cells();
- * setting this low means more calls, but too high and we could overshoot
- * sched_q_high_water.
- */
-
-static uint32_t sched_max_flush_cells = 16;
-
/**
* \file scheduler.c
* \brief Channel scheduling system: decides which channels should send and
* receive when.
*
- * This module implements a scheduler algorithm, to decide
- * which channels should send/receive when.
+ * This module is the global/common parts of the scheduling system. This system
+ * is what decides what channels get to send cells on their circuits and when.
+ *
+ * Terms:
+ * - "Scheduling system": the collection of scheduler*.{h,c} files and their
+ * aggregate behavior.
+ * - "Scheduler implementation": a scheduler_t. The scheduling system has one
+ * active scheduling implementation at a time.
+ *
+ * In this file you will find state that any scheduler implmentation can have
+ * access to as well as the functions the rest of Tor uses to interact with the
+ * scheduling system.
*
* The earliest versions of Tor approximated a kind of round-robin system
- * among active connections, but only approximated it.
+ * among active connections, but only approximated it. It would only consider
+ * one connection (roughly equal to a channel in today's terms) at a time, and
+ * thus could only prioritize circuits against others on the same connection.
+ *
+ * Then in response to the KIST paper[0], Tor implemented a global
+ * circuit scheduler. It was supposed to prioritize circuits across man
+ * channels, but wasn't effective. It is preserved in scheduler_vanilla.c.
+ *
+ * [0]: http://www.robgjansen.com/publications/kist-sec2014.pdf
*
- * Now, write scheduling works by keeping track of which channels can
- * accept cells, and have cells to write. From the scheduler's perspective,
- * a channel can be in four possible states:
+ * Then we actually got around to implementing KIST for real. We decided to
+ * modularize the scheduler so new ones can be implemented. You can find KIST
+ * in scheduler_kist.c.
+ *
+ * Channels have one of four scheduling states based on whether or not they
+ * have cells to send and whether or not they are able to send.
*
* <ol>
* <li>
@@ -125,85 +129,108 @@ static uint32_t sched_max_flush_cells = 16;
* </ol>
*
* Other event-driven parts of the code move channels between these scheduling
- * states by calling scheduler functions; the scheduler only runs on open-for-
- * writes/has-cells channels and is the only path for those to transition to
- * other states. The scheduler_run() function gives us the opportunity to do
- * scheduling work, and is called from other scheduler functions whenever a
- * state transition occurs, and periodically from the main event loop.
+ * states by calling scheduler functions. The scheduling system builds up a
+ * list of channels in the SCHED_CHAN_PENDING state that the scheduler
+ * implementation should then use when it runs. Scheduling implementations need
+ * to properly update channel states during their scheduler_t->run() function
+ * as that is the only opportunity for channels to move from SCHED_CHAN_PENDING
+ * to any other state.
+ *
+ * The remainder of this file is a small amount of state that any scheduler
+ * implementation should have access to, and the functions the rest of Tor uses
+ * to interact with the scheduling system.
*/
-/* Scheduler global data structures */
+/*****************************************************************************
+ * Scheduling system state
+ *
+ * State that can be accessed from any scheduler implementation (but not
+ * outside the scheduling system)
+ *****************************************************************************/
+
+STATIC scheduler_t *scheduler;
/*
* We keep a list of channels that are pending - i.e, have cells to write
- * and can accept them to send. The enum scheduler_state in channel_t
+ * and can accept them to send. The enum scheduler_state in channel_t
* is reserved for our use.
+ *
+ * Priority queue of channels that can write and have cells (pending work)
*/
-
-/* Pqueue of channels that can write and have cells (pending work) */
STATIC smartlist_t *channels_pending = NULL;
/*
* This event runs the scheduler from its callback, and is manually
* activated whenever a channel enters open for writes/cells to send.
*/
-
STATIC struct event *run_sched_ev = NULL;
-/*
- * Queue heuristic; this is not the queue size, but an 'effective queuesize'
- * that ages out contributions from stalled channels.
- */
-
-STATIC uint64_t queue_heuristic = 0;
+/*****************************************************************************
+ * Scheduling system static function definitions
+ *
+ * Functions that can only be accessed from this file.
+ *****************************************************************************/
/*
- * Timestamp for last queue heuristic update
+ * Scheduler event callback; this should get triggered once per event loop
+ * if any scheduling work was created during the event loop.
*/
+static void
+scheduler_evt_callback(evutil_socket_t fd, short events, void *arg)
+{
+ (void) fd;
+ (void) events;
+ (void) arg;
-STATIC time_t queue_heuristic_timestamp = 0;
+ log_debug(LD_SCHED, "Scheduler event callback called");
-/* Scheduler static function declarations */
+ tor_assert(run_sched_ev);
-static void scheduler_evt_callback(evutil_socket_t fd,
- short events, void *arg);
-static int scheduler_more_work(void);
-static void scheduler_retrigger(void);
-#if 0
-static void scheduler_trigger(void);
-#endif
+ /* Run the scheduler. This is a mandatory function. */
+ tor_assert(scheduler->run);
+ scheduler->run();
-/* Scheduler function implementations */
+ /* Schedule itself back in if it has more work. */
+ tor_assert(scheduler->schedule);
+ scheduler->schedule();
+}
-/** Free everything and shut down the scheduling system */
+/*****************************************************************************
+ * Scheduling system private function definitions
+ *
+ * Functions that can only be accessed from scheduler*.c
+ *****************************************************************************/
-void
-scheduler_free_all(void)
+/* Return the pending channel list. */
+smartlist_t *
+get_channels_pending(void)
{
- log_debug(LD_SCHED, "Shutting down scheduler");
-
- if (run_sched_ev) {
- if (event_del(run_sched_ev) < 0) {
- log_warn(LD_BUG, "Problem deleting run_sched_ev");
- }
- tor_event_free(run_sched_ev);
- run_sched_ev = NULL;
- }
+ return channels_pending;
+}
- if (channels_pending) {
- smartlist_free(channels_pending);
- channels_pending = NULL;
- }
+/* Return our libevent scheduler event. */
+struct event *
+get_run_sched_ev(void)
+{
+ return run_sched_ev;
}
-/**
- * Comparison function to use when sorting pending channels
- */
+/* Return true iff the scheduler subsystem should use KIST. */
+int
+scheduler_should_use_kist(void)
+{
+ int64_t run_freq = kist_scheduler_run_interval();
+ log_info(LD_SCHED, "Determined sched_run_interval should be %" PRId64 ". "
+ "Will%s use KIST.",
+ run_freq, (run_freq > 0 ? "" : " not"));
+ return run_freq > 0;
+}
-MOCK_IMPL(STATIC int,
+/* Comparison function to use when sorting pending channels */
+MOCK_IMPL(int,
scheduler_compare_channels, (const void *c1_v, const void *c2_v))
{
- channel_t *c1 = NULL, *c2 = NULL;
+ const channel_t *c1 = NULL, *c2 = NULL;
/* These are a workaround for -Wbad-function-cast throwing a fit */
const circuitmux_policy_t *p1, *p2;
uintptr_t p1_i, p2_i;
@@ -211,8 +238,8 @@ scheduler_compare_channels, (const void *c1_v, const void *c2_v))
tor_assert(c1_v);
tor_assert(c2_v);
- c1 = (channel_t *)(c1_v);
- c2 = (channel_t *)(c2_v);
+ c1 = (const channel_t *)(c1_v);
+ c2 = (const channel_t *)(c2_v);
tor_assert(c1);
tor_assert(c2);
@@ -242,26 +269,109 @@ scheduler_compare_channels, (const void *c1_v, const void *c2_v))
}
}
+/*****************************************************************************
+ * Scheduling system global functions
+ *
+ * Functions that can be accessed from anywhere in Tor.
+ *****************************************************************************/
+
/*
- * Scheduler event callback; this should get triggered once per event loop
- * if any scheduling work was created during the event loop.
+ * Little helper function called from a few different places. It changes the
+ * scheduler implementation, if necessary. And if it did, it then tells the
+ * old one to free its state and the new one to initialize.
*/
-
static void
-scheduler_evt_callback(evutil_socket_t fd, short events, void *arg)
+set_scheduler(void)
{
- (void)fd;
- (void)events;
- (void)arg;
- log_debug(LD_SCHED, "Scheduler event callback called");
+ int have_kist = 0;
- tor_assert(run_sched_ev);
+ /* Switch, if needed */
+ scheduler_t *old_scheduler = scheduler;
+ if (scheduler_should_use_kist()) {
+ scheduler = get_kist_scheduler();
+ have_kist = 1;
+ } else {
+ scheduler = get_vanilla_scheduler();
+ }
+ tor_assert(scheduler);
+
+ if (old_scheduler != scheduler) {
+ /* Allow the old scheduler to clean up, if needed. */
+ if (old_scheduler && old_scheduler->free_all) {
+ old_scheduler->free_all();
+ }
+ /* We don't clean up the old one, we keep any type of scheduler we've
+ * allocated so we can do an easy switch back. */
+
+ /* Initialize the new scheduler. */
+ if (scheduler->init) {
+ scheduler->init();
+ }
+ log_notice(LD_CONFIG, "Using the %s scheduler.",
+ have_kist ? "KIST" : "vanilla");
+ }
+}
+
+/*
+ * This is how the scheduling system is notified of Tor's configuration
+ * changing. For example: a SIGHUP was issued.
+ */
+void
+scheduler_conf_changed(void)
+{
+ /* Let the scheduler decide what it should do. */
+ set_scheduler();
+
+ /* Then tell the (possibly new) scheduler that we have new options. */
+ if (scheduler->on_new_options) {
+ scheduler->on_new_options();
+ }
+}
+
+/*
+ * Whenever we get a new consensus, this function is called.
+ */
+void
+scheduler_notify_networkstatus_changed(const networkstatus_t *old_c,
+ const networkstatus_t *new_c)
+{
+ /* Then tell the (possibly new) scheduler that we have a new consensus */
+ if (scheduler->on_new_consensus) {
+ scheduler->on_new_consensus(old_c, new_c);
+ }
+ /* Maybe the consensus param made us change the scheduler. */
+ set_scheduler();
+}
+
+/*
+ * Free everything scheduling-related from main.c. Note this is only called
+ * when Tor is shutting down, while scheduler_t->free_all() is called both when
+ * Tor is shutting down and when we are switching schedulers.
+ */
+void
+scheduler_free_all(void)
+{
+ log_debug(LD_SCHED, "Shutting down scheduler");
+
+ if (run_sched_ev) {
+ if (event_del(run_sched_ev) < 0) {
+ log_warn(LD_BUG, "Problem deleting run_sched_ev");
+ }
+ tor_event_free(run_sched_ev);
+ run_sched_ev = NULL;
+ }
- /* Run the scheduler */
- scheduler_run();
+ if (channels_pending) {
+ /* We don't have ownership of the object in this list. */
+ smartlist_free(channels_pending);
+ channels_pending = NULL;
+ }
- /* Do we have more work to do? */
- if (scheduler_more_work()) scheduler_retrigger();
+ if (scheduler && scheduler->free_all) {
+ scheduler->free_all();
+ }
+ tor_free(scheduler);
+ scheduler = NULL;
}
/** Mark a channel as no longer ready to accept writes */
@@ -309,8 +419,6 @@ scheduler_channel_doesnt_want_writes,(channel_t *chan))
MOCK_IMPL(void,
scheduler_channel_has_waiting_cells,(channel_t *chan))
{
- int became_pending = 0;
-
tor_assert(chan);
tor_assert(channels_pending);
@@ -330,7 +438,9 @@ scheduler_channel_has_waiting_cells,(channel_t *chan))
"Channel " U64_FORMAT " at %p went from waiting_for_cells "
"to pending",
U64_PRINTF_ARG(chan->global_identifier), chan);
- became_pending = 1;
+ /* If we made a channel pending, we potentially have scheduling work to
+ * do. */
+ scheduler->schedule();
} else {
/*
* It's not in waiting_for_cells, so it can't become pending; it's
@@ -345,16 +455,13 @@ scheduler_channel_has_waiting_cells,(channel_t *chan))
U64_PRINTF_ARG(chan->global_identifier), chan);
}
}
-
- /*
- * If we made a channel pending, we potentially have scheduling work
- * to do.
- */
- if (became_pending) scheduler_retrigger();
}
-/** Set up the scheduling system */
-
+/*
+ * Initialize everything scheduling-related from config.c. Note this is only
+ * called when Tor is starting up, while scheduler_t->init() is called both
+ * when Tor is starting up and when we are switching schedulers.
+ */
void
scheduler_init(void)
{
@@ -363,34 +470,17 @@ scheduler_init(void)
tor_assert(!run_sched_ev);
run_sched_ev = tor_event_new(tor_libevent_get_base(), -1,
0, scheduler_evt_callback, NULL);
-
channels_pending = smartlist_new();
- queue_heuristic = 0;
- queue_heuristic_timestamp = approx_time();
-}
-/** Check if there's more scheduling work */
-
-static int
-scheduler_more_work(void)
-{
- tor_assert(channels_pending);
-
- return ((scheduler_get_queue_heuristic() < sched_q_low_water) &&
- ((smartlist_len(channels_pending) > 0))) ? 1 : 0;
+ set_scheduler();
}
-/** Retrigger the scheduler in a way safe to use from the callback */
-
-static void
-scheduler_retrigger(void)
-{
- tor_assert(run_sched_ev);
- event_active(run_sched_ev, EV_TIMEOUT, 1);
-}
-
-/** Notify the scheduler of a channel being closed */
-
+/*
+ * If a channel is going away, this is how the scheduling system is informed
+ * so it can do any freeing necessary. This ultimately calls
+ * scheduler_t->on_channel_free() so the current scheduler can release any
+ * state specific to this channel.
+ */
MOCK_IMPL(void,
scheduler_release_channel,(channel_t *chan))
{
@@ -398,179 +488,29 @@ scheduler_release_channel,(channel_t *chan))
tor_assert(channels_pending);
if (chan->scheduler_state == SCHED_CHAN_PENDING) {
- smartlist_pqueue_remove(channels_pending,
- scheduler_compare_channels,
- offsetof(channel_t, sched_heap_idx),
- chan);
- }
-
- chan->scheduler_state = SCHED_CHAN_IDLE;
-}
-
-/** Run the scheduling algorithm if necessary */
-
-MOCK_IMPL(void,
-scheduler_run, (void))
-{
- int n_cells, n_chans_before, n_chans_after;
- uint64_t q_len_before, q_heur_before, q_len_after, q_heur_after;
- ssize_t flushed, flushed_this_time;
- smartlist_t *to_readd = NULL;
- channel_t *chan = NULL;
-
- log_debug(LD_SCHED, "We have a chance to run the scheduler");
-
- if (scheduler_get_queue_heuristic() < sched_q_low_water) {
- n_chans_before = smartlist_len(channels_pending);
- q_len_before = channel_get_global_queue_estimate();
- q_heur_before = scheduler_get_queue_heuristic();
-
- while (scheduler_get_queue_heuristic() <= sched_q_high_water &&
- smartlist_len(channels_pending) > 0) {
- /* Pop off a channel */
- chan = smartlist_pqueue_pop(channels_pending,
- scheduler_compare_channels,
- offsetof(channel_t, sched_heap_idx));
- tor_assert(chan);
-
- /* Figure out how many cells we can write */
- n_cells = channel_num_cells_writeable(chan);
- if (n_cells > 0) {
- log_debug(LD_SCHED,
- "Scheduler saw pending channel " U64_FORMAT " at %p with "
- "%d cells writeable",
- U64_PRINTF_ARG(chan->global_identifier), chan, n_cells);
-
- flushed = 0;
- while (flushed < n_cells &&
- scheduler_get_queue_heuristic() <= sched_q_high_water) {
- flushed_this_time =
- channel_flush_some_cells(chan,
- MIN(sched_max_flush_cells,
- (size_t) n_cells - flushed));
- if (flushed_this_time <= 0) break;
- flushed += flushed_this_time;
- }
-
- if (flushed < n_cells) {
- /* We ran out of cells to flush */
- chan->scheduler_state = SCHED_CHAN_WAITING_FOR_CELLS;
- log_debug(LD_SCHED,
- "Channel " U64_FORMAT " at %p "
- "entered waiting_for_cells from pending",
- U64_PRINTF_ARG(chan->global_identifier),
- chan);
- } else {
- /* The channel may still have some cells */
- if (channel_more_to_flush(chan)) {
- /* The channel goes to either pending or waiting_to_write */
- if (channel_num_cells_writeable(chan) > 0) {
- /* Add it back to pending later */
- if (!to_readd) to_readd = smartlist_new();
- smartlist_add(to_readd, chan);
- log_debug(LD_SCHED,
- "Channel " U64_FORMAT " at %p "
- "is still pending",
- U64_PRINTF_ARG(chan->global_identifier),
- chan);
- } else {
- /* It's waiting to be able to write more */
- chan->scheduler_state = SCHED_CHAN_WAITING_TO_WRITE;
- log_debug(LD_SCHED,
- "Channel " U64_FORMAT " at %p "
- "entered waiting_to_write from pending",
- U64_PRINTF_ARG(chan->global_identifier),
- chan);
- }
- } else {
- /* No cells left; it can go to idle or waiting_for_cells */
- if (channel_num_cells_writeable(chan) > 0) {
- /*
- * It can still accept writes, so it goes to
- * waiting_for_cells
- */
- chan->scheduler_state = SCHED_CHAN_WAITING_FOR_CELLS;
- log_debug(LD_SCHED,
- "Channel " U64_FORMAT " at %p "
- "entered waiting_for_cells from pending",
- U64_PRINTF_ARG(chan->global_identifier),
- chan);
- } else {
- /*
- * We exactly filled up the output queue with all available
- * cells; go to idle.
- */
- chan->scheduler_state = SCHED_CHAN_IDLE;
- log_debug(LD_SCHED,
- "Channel " U64_FORMAT " at %p "
- "become idle from pending",
- U64_PRINTF_ARG(chan->global_identifier),
- chan);
- }
- }
- }
-
- log_debug(LD_SCHED,
- "Scheduler flushed %d cells onto pending channel "
- U64_FORMAT " at %p",
- (int)flushed, U64_PRINTF_ARG(chan->global_identifier),
- chan);
- } else {
- log_info(LD_SCHED,
- "Scheduler saw pending channel " U64_FORMAT " at %p with "
- "no cells writeable",
- U64_PRINTF_ARG(chan->global_identifier), chan);
- /* Put it back to WAITING_TO_WRITE */
- chan->scheduler_state = SCHED_CHAN_WAITING_TO_WRITE;
- }
+ if (smartlist_pos(channels_pending, chan) == -1) {
+ log_warn(LD_SCHED, "Scheduler asked to release channel %" PRIu64 " "
+ "but it wasn't in channels_pending",
+ chan->global_identifier);
+ } else {
+ smartlist_pqueue_remove(channels_pending,
+ scheduler_compare_channels,
+ offsetof(channel_t, sched_heap_idx),
+ chan);
}
-
- /* Readd any channels we need to */
- if (to_readd) {
- SMARTLIST_FOREACH_BEGIN(to_readd, channel_t *, readd_chan) {
- readd_chan->scheduler_state = SCHED_CHAN_PENDING;
- smartlist_pqueue_add(channels_pending,
- scheduler_compare_channels,
- offsetof(channel_t, sched_heap_idx),
- readd_chan);
- } SMARTLIST_FOREACH_END(readd_chan);
- smartlist_free(to_readd);
+ if (scheduler->on_channel_free) {
+ scheduler->on_channel_free(chan);
}
-
- n_chans_after = smartlist_len(channels_pending);
- q_len_after = channel_get_global_queue_estimate();
- q_heur_after = scheduler_get_queue_heuristic();
- log_debug(LD_SCHED,
- "Scheduler handled %d of %d pending channels, queue size from "
- U64_FORMAT " to " U64_FORMAT ", queue heuristic from "
- U64_FORMAT " to " U64_FORMAT,
- n_chans_before - n_chans_after, n_chans_before,
- U64_PRINTF_ARG(q_len_before), U64_PRINTF_ARG(q_len_after),
- U64_PRINTF_ARG(q_heur_before), U64_PRINTF_ARG(q_heur_after));
}
-}
-
-/** Trigger the scheduling event so we run the scheduler later */
-
-#if 0
-static void
-scheduler_trigger(void)
-{
- log_debug(LD_SCHED, "Triggering scheduler event");
-
- tor_assert(run_sched_ev);
- event_add(run_sched_ev, EV_TIMEOUT, 1);
+ chan->scheduler_state = SCHED_CHAN_IDLE;
}
-#endif
/** Mark a channel as ready to accept writes */
void
scheduler_channel_wants_writes(channel_t *chan)
{
- int became_pending = 0;
-
tor_assert(chan);
tor_assert(channels_pending);
@@ -579,6 +519,8 @@ scheduler_channel_wants_writes(channel_t *chan)
/*
* It can write now, so it goes to channels_pending.
*/
+ log_debug(LD_SCHED, "chan=%" PRIu64 " became pending",
+ chan->global_identifier);
smartlist_pqueue_add(channels_pending,
scheduler_compare_channels,
offsetof(channel_t, sched_heap_idx),
@@ -588,7 +530,8 @@ scheduler_channel_wants_writes(channel_t *chan)
"Channel " U64_FORMAT " at %p went from waiting_to_write "
"to pending",
U64_PRINTF_ARG(chan->global_identifier), chan);
- became_pending = 1;
+ /* We just made a channel pending, we have scheduling work to do. */
+ scheduler->schedule();
} else {
/*
* It's not in SCHED_CHAN_WAITING_TO_WRITE, so it can't become pending;
@@ -602,19 +545,13 @@ scheduler_channel_wants_writes(channel_t *chan)
U64_PRINTF_ARG(chan->global_identifier), chan);
}
}
-
- /*
- * If we made a channel pending, we potentially have scheduling work
- * to do.
- */
- if (became_pending) scheduler_retrigger();
}
-/**
- * Notify the scheduler that a channel's position in the pqueue may have
- * changed
- */
+#ifdef TOR_UNIT_TESTS
+/*
+ * Notify scheduler that a channel's queue position may have changed.
+ */
void
scheduler_touch_channel(channel_t *chan)
{
@@ -634,115 +571,5 @@ scheduler_touch_channel(channel_t *chan)
/* else no-op, since it isn't in the queue */
}
-/**
- * Notify the scheduler of a queue size adjustment, to recalculate the
- * queue heuristic.
- */
-
-void
-scheduler_adjust_queue_size(channel_t *chan, int dir, uint64_t adj)
-{
- time_t now = approx_time();
-
- log_debug(LD_SCHED,
- "Queue size adjustment by %s" U64_FORMAT " for channel "
- U64_FORMAT,
- (dir >= 0) ? "+" : "-",
- U64_PRINTF_ARG(adj),
- U64_PRINTF_ARG(chan->global_identifier));
-
- /* Get the queue heuristic up to date */
- scheduler_update_queue_heuristic(now);
-
- /* Adjust as appropriate */
- if (dir >= 0) {
- /* Increasing it */
- queue_heuristic += adj;
- } else {
- /* Decreasing it */
- if (queue_heuristic > adj) queue_heuristic -= adj;
- else queue_heuristic = 0;
- }
-
- log_debug(LD_SCHED,
- "Queue heuristic is now " U64_FORMAT,
- U64_PRINTF_ARG(queue_heuristic));
-}
-
-/**
- * Query the current value of the queue heuristic
- */
-
-STATIC uint64_t
-scheduler_get_queue_heuristic(void)
-{
- time_t now = approx_time();
-
- scheduler_update_queue_heuristic(now);
-
- return queue_heuristic;
-}
-
-/**
- * Adjust the queue heuristic value to the present time
- */
-
-STATIC void
-scheduler_update_queue_heuristic(time_t now)
-{
- time_t diff;
-
- if (queue_heuristic_timestamp == 0) {
- /*
- * Nothing we can sensibly do; must not have been initted properly.
- * Oh well.
- */
- queue_heuristic_timestamp = now;
- } else if (queue_heuristic_timestamp < now) {
- diff = now - queue_heuristic_timestamp;
- /*
- * This is a simple exponential age-out; the other proposed alternative
- * was a linear age-out using the bandwidth history in rephist.c; I'm
- * going with this out of concern that if an adversary can jam the
- * scheduler long enough, it would cause the bandwidth to drop to
- * zero and render the aging mechanism ineffective thereafter.
- */
- if (0 <= diff && diff < 64) queue_heuristic >>= diff;
- else queue_heuristic = 0;
-
- queue_heuristic_timestamp = now;
-
- log_debug(LD_SCHED,
- "Queue heuristic is now " U64_FORMAT,
- U64_PRINTF_ARG(queue_heuristic));
- }
- /* else no update needed, or time went backward */
-}
-
-/**
- * Set scheduler watermarks and flush size
- */
-
-void
-scheduler_set_watermarks(uint32_t lo, uint32_t hi, uint32_t max_flush)
-{
- /* Sanity assertions - caller should ensure these are true */
- tor_assert(lo > 0);
- tor_assert(hi > lo);
- tor_assert(max_flush > 0);
-
- sched_q_low_water = lo;
- sched_q_high_water = hi;
- sched_max_flush_cells = max_flush;
-}
-
-/* XXXFORTOR Temp def of this func to get this commit to compile. Replace with
- * real func */
-void
-scheduler_notify_networkstatus_changed(const networkstatus_t *old_c,
- const networkstatus_t *new_c)
-{
- (void) old_c;
- (void) new_c;
-}
+#endif /* TOR_UNIT_TESTS */