diff options
author | Nick Mathewson <nickm@torproject.org> | 2018-07-05 15:13:44 -0400 |
---|---|---|
committer | Nick Mathewson <nickm@torproject.org> | 2018-07-05 15:22:17 -0400 |
commit | 1e417b7275028a50227f57fb71d04c1837ec4b2c (patch) | |
tree | 3cbf379caf8367391980abf3a562b20eb4d63052 /src/lib/evloop/workqueue.c | |
parent | 947de40d198d83e561320afe5d0146f43dc9192a (diff) | |
download | tor-1e417b7275028a50227f57fb71d04c1837ec4b2c.tar.gz tor-1e417b7275028a50227f57fb71d04c1837ec4b2c.zip |
All remaining files in src/common belong to the event loop.
Diffstat (limited to 'src/lib/evloop/workqueue.c')
-rw-r--r-- | src/lib/evloop/workqueue.c | 682 |
1 files changed, 682 insertions, 0 deletions
diff --git a/src/lib/evloop/workqueue.c b/src/lib/evloop/workqueue.c new file mode 100644 index 0000000000..e5254396f9 --- /dev/null +++ b/src/lib/evloop/workqueue.c @@ -0,0 +1,682 @@ + +/* copyright (c) 2013-2015, The Tor Project, Inc. */ +/* See LICENSE for licensing information */ + +/** + * \file workqueue.c + * + * \brief Implements worker threads, queues of work for them, and mechanisms + * for them to send answers back to the main thread. + * + * The main structure here is a threadpool_t : it manages a set of worker + * threads, a queue of pending work, and a reply queue. Every piece of work + * is a workqueue_entry_t, containing data to process and a function to + * process it with. + * + * The main thread informs the worker threads of pending work by using a + * condition variable. The workers inform the main process of completed work + * by using an alert_sockets_t object, as implemented in compat_threads.c. + * + * The main thread can also queue an "update" that will be handled by all the + * workers. This is useful for updating state that all the workers share. + * + * In Tor today, there is currently only one thread pool, used in cpuworker.c. + */ + +#include "orconfig.h" +#include "common/compat_libevent.h" +#include "common/workqueue.h" + +#include "lib/crypt_ops/crypto_rand.h" +#include "lib/intmath/weakrng.h" +#include "lib/log/ratelim.h" +#include "lib/log/torlog.h" +#include "lib/log/util_bug.h" +#include "lib/net/alertsock.h" +#include "lib/net/socket.h" +#include "lib/thread/threads.h" + +#include "tor_queue.h" +#include <event2/event.h> +#include <string.h> + +#define WORKQUEUE_PRIORITY_FIRST WQ_PRI_HIGH +#define WORKQUEUE_PRIORITY_LAST WQ_PRI_LOW +#define WORKQUEUE_N_PRIORITIES (((int) WORKQUEUE_PRIORITY_LAST)+1) + +TOR_TAILQ_HEAD(work_tailq_t, workqueue_entry_s); +typedef struct work_tailq_t work_tailq_t; + +struct threadpool_s { + /** An array of pointers to workerthread_t: one for each running worker + * thread. */ + struct workerthread_s **threads; + + /** Condition variable that we wait on when we have no work, and which + * gets signaled when our queue becomes nonempty. */ + tor_cond_t condition; + /** Queues of pending work that we have to do. The queue with priority + * <b>p</b> is work[p]. */ + work_tailq_t work[WORKQUEUE_N_PRIORITIES]; + + /** Weak RNG, used to decide when to ignore priority. */ + tor_weak_rng_t weak_rng; + + /** The current 'update generation' of the threadpool. Any thread that is + * at an earlier generation needs to run the update function. */ + unsigned generation; + + /** Function that should be run for updates on each thread. */ + workqueue_reply_t (*update_fn)(void *, void *); + /** Function to free update arguments if they can't be run. */ + void (*free_update_arg_fn)(void *); + /** Array of n_threads update arguments. */ + void **update_args; + /** Event to notice when another thread has sent a reply. */ + struct event *reply_event; + void (*reply_cb)(threadpool_t *); + + /** Number of elements in threads. */ + int n_threads; + /** Mutex to protect all the above fields. */ + tor_mutex_t lock; + + /** A reply queue to use when constructing new threads. */ + replyqueue_t *reply_queue; + + /** Functions used to allocate and free thread state. */ + void *(*new_thread_state_fn)(void*); + void (*free_thread_state_fn)(void*); + void *new_thread_state_arg; +}; + +/** Used to put a workqueue_priority_t value into a bitfield. */ +#define workqueue_priority_bitfield_t ENUM_BF(workqueue_priority_t) +/** Number of bits needed to hold all legal values of workqueue_priority_t */ +#define WORKQUEUE_PRIORITY_BITS 2 + +struct workqueue_entry_s { + /** The next workqueue_entry_t that's pending on the same thread or + * reply queue. */ + TOR_TAILQ_ENTRY(workqueue_entry_s) next_work; + /** The threadpool to which this workqueue_entry_t was assigned. This field + * is set when the workqueue_entry_t is created, and won't be cleared until + * after it's handled in the main thread. */ + struct threadpool_s *on_pool; + /** True iff this entry is waiting for a worker to start processing it. */ + uint8_t pending; + /** Priority of this entry. */ + workqueue_priority_bitfield_t priority : WORKQUEUE_PRIORITY_BITS; + /** Function to run in the worker thread. */ + workqueue_reply_t (*fn)(void *state, void *arg); + /** Function to run while processing the reply queue. */ + void (*reply_fn)(void *arg); + /** Argument for the above functions. */ + void *arg; +}; + +struct replyqueue_s { + /** Mutex to protect the answers field */ + tor_mutex_t lock; + /** Doubly-linked list of answers that the reply queue needs to handle. */ + TOR_TAILQ_HEAD(, workqueue_entry_s) answers; + + /** Mechanism to wake up the main thread when it is receiving answers. */ + alert_sockets_t alert; +}; + +/** A worker thread represents a single thread in a thread pool. */ +typedef struct workerthread_s { + /** Which thread it this? In range 0..in_pool->n_threads-1 */ + int index; + /** The pool this thread is a part of. */ + struct threadpool_s *in_pool; + /** User-supplied state field that we pass to the worker functions of each + * work item. */ + void *state; + /** Reply queue to which we pass our results. */ + replyqueue_t *reply_queue; + /** The current update generation of this thread */ + unsigned generation; + /** One over the probability of taking work from a lower-priority queue. */ + int32_t lower_priority_chance; +} workerthread_t; + +static void queue_reply(replyqueue_t *queue, workqueue_entry_t *work); + +/** Allocate and return a new workqueue_entry_t, set up to run the function + * <b>fn</b> in the worker thread, and <b>reply_fn</b> in the main + * thread. See threadpool_queue_work() for full documentation. */ +static workqueue_entry_t * +workqueue_entry_new(workqueue_reply_t (*fn)(void*, void*), + void (*reply_fn)(void*), + void *arg) +{ + workqueue_entry_t *ent = tor_malloc_zero(sizeof(workqueue_entry_t)); + ent->fn = fn; + ent->reply_fn = reply_fn; + ent->arg = arg; + ent->priority = WQ_PRI_HIGH; + return ent; +} + +#define workqueue_entry_free(ent) \ + FREE_AND_NULL(workqueue_entry_t, workqueue_entry_free_, (ent)) + +/** + * Release all storage held in <b>ent</b>. Call only when <b>ent</b> is not on + * any queue. + */ +static void +workqueue_entry_free_(workqueue_entry_t *ent) +{ + if (!ent) + return; + memset(ent, 0xf0, sizeof(*ent)); + tor_free(ent); +} + +/** + * Cancel a workqueue_entry_t that has been returned from + * threadpool_queue_work. + * + * You must not call this function on any work whose reply function has been + * executed in the main thread; that will cause undefined behavior (probably, + * a crash). + * + * If the work is cancelled, this function return the argument passed to the + * work function. It is the caller's responsibility to free this storage. + * + * This function will have no effect if the worker thread has already executed + * or begun to execute the work item. In that case, it will return NULL. + */ +void * +workqueue_entry_cancel(workqueue_entry_t *ent) +{ + int cancelled = 0; + void *result = NULL; + tor_mutex_acquire(&ent->on_pool->lock); + workqueue_priority_t prio = ent->priority; + if (ent->pending) { + TOR_TAILQ_REMOVE(&ent->on_pool->work[prio], ent, next_work); + cancelled = 1; + result = ent->arg; + } + tor_mutex_release(&ent->on_pool->lock); + + if (cancelled) { + workqueue_entry_free(ent); + } + return result; +} + +/**DOCDOC + + must hold lock */ +static int +worker_thread_has_work(workerthread_t *thread) +{ + unsigned i; + for (i = WORKQUEUE_PRIORITY_FIRST; i <= WORKQUEUE_PRIORITY_LAST; ++i) { + if (!TOR_TAILQ_EMPTY(&thread->in_pool->work[i])) + return 1; + } + return thread->generation != thread->in_pool->generation; +} + +/** Extract the next workqueue_entry_t from the the thread's pool, removing + * it from the relevant queues and marking it as non-pending. + * + * The caller must hold the lock. */ +static workqueue_entry_t * +worker_thread_extract_next_work(workerthread_t *thread) +{ + threadpool_t *pool = thread->in_pool; + work_tailq_t *queue = NULL, *this_queue; + unsigned i; + for (i = WORKQUEUE_PRIORITY_FIRST; i <= WORKQUEUE_PRIORITY_LAST; ++i) { + this_queue = &pool->work[i]; + if (!TOR_TAILQ_EMPTY(this_queue)) { + queue = this_queue; + if (! tor_weak_random_one_in_n(&pool->weak_rng, + thread->lower_priority_chance)) { + /* Usually we'll just break now, so that we can get out of the loop + * and use the queue where we found work. But with a small + * probability, we'll keep looking for lower priority work, so that + * we don't ignore our low-priority queues entirely. */ + break; + } + } + } + + if (queue == NULL) + return NULL; + + workqueue_entry_t *work = TOR_TAILQ_FIRST(queue); + TOR_TAILQ_REMOVE(queue, work, next_work); + work->pending = 0; + return work; +} + +/** + * Main function for the worker thread. + */ +static void +worker_thread_main(void *thread_) +{ + workerthread_t *thread = thread_; + threadpool_t *pool = thread->in_pool; + workqueue_entry_t *work; + workqueue_reply_t result; + + tor_mutex_acquire(&pool->lock); + while (1) { + /* lock must be held at this point. */ + while (worker_thread_has_work(thread)) { + /* lock must be held at this point. */ + if (thread->in_pool->generation != thread->generation) { + void *arg = thread->in_pool->update_args[thread->index]; + thread->in_pool->update_args[thread->index] = NULL; + workqueue_reply_t (*update_fn)(void*,void*) = + thread->in_pool->update_fn; + thread->generation = thread->in_pool->generation; + tor_mutex_release(&pool->lock); + + workqueue_reply_t r = update_fn(thread->state, arg); + + if (r != WQ_RPL_REPLY) { + return; + } + + tor_mutex_acquire(&pool->lock); + continue; + } + work = worker_thread_extract_next_work(thread); + if (BUG(work == NULL)) + break; + tor_mutex_release(&pool->lock); + + /* We run the work function without holding the thread lock. This + * is the main thread's first opportunity to give us more work. */ + result = work->fn(thread->state, work->arg); + + /* Queue the reply for the main thread. */ + queue_reply(thread->reply_queue, work); + + /* We may need to exit the thread. */ + if (result != WQ_RPL_REPLY) { + return; + } + tor_mutex_acquire(&pool->lock); + } + /* At this point the lock is held, and there is no work in this thread's + * queue. */ + + /* TODO: support an idle-function */ + + /* Okay. Now, wait till somebody has work for us. */ + if (tor_cond_wait(&pool->condition, &pool->lock, NULL) < 0) { + log_warn(LD_GENERAL, "Fail tor_cond_wait."); + } + } +} + +/** Put a reply on the reply queue. The reply must not currently be on + * any thread's work queue. */ +static void +queue_reply(replyqueue_t *queue, workqueue_entry_t *work) +{ + int was_empty; + tor_mutex_acquire(&queue->lock); + was_empty = TOR_TAILQ_EMPTY(&queue->answers); + TOR_TAILQ_INSERT_TAIL(&queue->answers, work, next_work); + tor_mutex_release(&queue->lock); + + if (was_empty) { + if (queue->alert.alert_fn(queue->alert.write_fd) < 0) { + /* XXXX complain! */ + } + } +} + +/** Allocate and start a new worker thread to use state object <b>state</b>, + * and send responses to <b>replyqueue</b>. */ +static workerthread_t * +workerthread_new(int32_t lower_priority_chance, + void *state, threadpool_t *pool, replyqueue_t *replyqueue) +{ + workerthread_t *thr = tor_malloc_zero(sizeof(workerthread_t)); + thr->state = state; + thr->reply_queue = replyqueue; + thr->in_pool = pool; + thr->lower_priority_chance = lower_priority_chance; + + if (spawn_func(worker_thread_main, thr) < 0) { + //LCOV_EXCL_START + tor_assert_nonfatal_unreached(); + log_err(LD_GENERAL, "Can't launch worker thread."); + tor_free(thr); + return NULL; + //LCOV_EXCL_STOP + } + + return thr; +} + +/** + * Queue an item of work for a thread in a thread pool. The function + * <b>fn</b> will be run in a worker thread, and will receive as arguments the + * thread's state object, and the provided object <b>arg</b>. It must return + * one of WQ_RPL_REPLY, WQ_RPL_ERROR, or WQ_RPL_SHUTDOWN. + * + * Regardless of its return value, the function <b>reply_fn</b> will later be + * run in the main thread when it invokes replyqueue_process(), and will + * receive as its argument the same <b>arg</b> object. It's the reply + * function's responsibility to free the work object. + * + * On success, return a workqueue_entry_t object that can be passed to + * workqueue_entry_cancel(). On failure, return NULL. (Failure is not + * currently possible, but callers should check anyway.) + * + * Items are executed in a loose priority order -- each thread will usually + * take from the queued work with the highest prioirity, but will occasionally + * visit lower-priority queues to keep them from starving completely. + * + * Note that because of priorities and thread behavior, work items may not + * be executed strictly in order. + */ +workqueue_entry_t * +threadpool_queue_work_priority(threadpool_t *pool, + workqueue_priority_t prio, + workqueue_reply_t (*fn)(void *, void *), + void (*reply_fn)(void *), + void *arg) +{ + tor_assert(((int)prio) >= WORKQUEUE_PRIORITY_FIRST && + ((int)prio) <= WORKQUEUE_PRIORITY_LAST); + + workqueue_entry_t *ent = workqueue_entry_new(fn, reply_fn, arg); + ent->on_pool = pool; + ent->pending = 1; + ent->priority = prio; + + tor_mutex_acquire(&pool->lock); + + TOR_TAILQ_INSERT_TAIL(&pool->work[prio], ent, next_work); + + tor_cond_signal_one(&pool->condition); + + tor_mutex_release(&pool->lock); + + return ent; +} + +/** As threadpool_queue_work_priority(), but assumes WQ_PRI_HIGH */ +workqueue_entry_t * +threadpool_queue_work(threadpool_t *pool, + workqueue_reply_t (*fn)(void *, void *), + void (*reply_fn)(void *), + void *arg) +{ + return threadpool_queue_work_priority(pool, WQ_PRI_HIGH, fn, reply_fn, arg); +} + +/** + * Queue a copy of a work item for every thread in a pool. This can be used, + * for example, to tell the threads to update some parameter in their states. + * + * Arguments are as for <b>threadpool_queue_work</b>, except that the + * <b>arg</b> value is passed to <b>dup_fn</b> once per each thread to + * make a copy of it. + * + * UPDATE FUNCTIONS MUST BE IDEMPOTENT. We do not guarantee that every update + * will be run. If a new update is scheduled before the old update finishes + * running, then the new will replace the old in any threads that haven't run + * it yet. + * + * Return 0 on success, -1 on failure. + */ +int +threadpool_queue_update(threadpool_t *pool, + void *(*dup_fn)(void *), + workqueue_reply_t (*fn)(void *, void *), + void (*free_fn)(void *), + void *arg) +{ + int i, n_threads; + void (*old_args_free_fn)(void *arg); + void **old_args; + void **new_args; + + tor_mutex_acquire(&pool->lock); + n_threads = pool->n_threads; + old_args = pool->update_args; + old_args_free_fn = pool->free_update_arg_fn; + + new_args = tor_calloc(n_threads, sizeof(void*)); + for (i = 0; i < n_threads; ++i) { + if (dup_fn) + new_args[i] = dup_fn(arg); + else + new_args[i] = arg; + } + + pool->update_args = new_args; + pool->free_update_arg_fn = free_fn; + pool->update_fn = fn; + ++pool->generation; + + tor_cond_signal_all(&pool->condition); + + tor_mutex_release(&pool->lock); + + if (old_args) { + for (i = 0; i < n_threads; ++i) { + if (old_args[i] && old_args_free_fn) + old_args_free_fn(old_args[i]); + } + tor_free(old_args); + } + + return 0; +} + +/** Don't have more than this many threads per pool. */ +#define MAX_THREADS 1024 + +/** For half of our threads, choose lower priority queues with probability + * 1/N for each of these values. Both are chosen somewhat arbitrarily. If + * CHANCE_PERMISSIVE is too low, then we have a risk of low-priority tasks + * stalling forever. If it's too high, we have a risk of low-priority tasks + * grabbing half of the threads. */ +#define CHANCE_PERMISSIVE 37 +#define CHANCE_STRICT INT32_MAX + +/** Launch threads until we have <b>n</b>. */ +static int +threadpool_start_threads(threadpool_t *pool, int n) +{ + if (BUG(n < 0)) + return -1; // LCOV_EXCL_LINE + if (n > MAX_THREADS) + n = MAX_THREADS; + + tor_mutex_acquire(&pool->lock); + + if (pool->n_threads < n) + pool->threads = tor_reallocarray(pool->threads, + sizeof(workerthread_t*), n); + + while (pool->n_threads < n) { + /* For half of our threads, we'll choose lower priorities permissively; + * for the other half, we'll stick more strictly to higher priorities. + * This keeps slow low-priority tasks from taking over completely. */ + int32_t chance = (pool->n_threads & 1) ? CHANCE_STRICT : CHANCE_PERMISSIVE; + + void *state = pool->new_thread_state_fn(pool->new_thread_state_arg); + workerthread_t *thr = workerthread_new(chance, + state, pool, pool->reply_queue); + + if (!thr) { + //LCOV_EXCL_START + tor_assert_nonfatal_unreached(); + pool->free_thread_state_fn(state); + tor_mutex_release(&pool->lock); + return -1; + //LCOV_EXCL_STOP + } + thr->index = pool->n_threads; + pool->threads[pool->n_threads++] = thr; + } + tor_mutex_release(&pool->lock); + + return 0; +} + +/** + * Construct a new thread pool with <b>n</b> worker threads, configured to + * send their output to <b>replyqueue</b>. The threads' states will be + * constructed with the <b>new_thread_state_fn</b> call, receiving <b>arg</b> + * as its argument. When the threads close, they will call + * <b>free_thread_state_fn</b> on their states. + */ +threadpool_t * +threadpool_new(int n_threads, + replyqueue_t *replyqueue, + void *(*new_thread_state_fn)(void*), + void (*free_thread_state_fn)(void*), + void *arg) +{ + threadpool_t *pool; + pool = tor_malloc_zero(sizeof(threadpool_t)); + tor_mutex_init_nonrecursive(&pool->lock); + tor_cond_init(&pool->condition); + unsigned i; + for (i = WORKQUEUE_PRIORITY_FIRST; i <= WORKQUEUE_PRIORITY_LAST; ++i) { + TOR_TAILQ_INIT(&pool->work[i]); + } + { + unsigned seed; + crypto_rand((void*)&seed, sizeof(seed)); + tor_init_weak_random(&pool->weak_rng, seed); + } + + pool->new_thread_state_fn = new_thread_state_fn; + pool->new_thread_state_arg = arg; + pool->free_thread_state_fn = free_thread_state_fn; + pool->reply_queue = replyqueue; + + if (threadpool_start_threads(pool, n_threads) < 0) { + //LCOV_EXCL_START + tor_assert_nonfatal_unreached(); + tor_cond_uninit(&pool->condition); + tor_mutex_uninit(&pool->lock); + tor_free(pool); + return NULL; + //LCOV_EXCL_STOP + } + + return pool; +} + +/** Return the reply queue associated with a given thread pool. */ +replyqueue_t * +threadpool_get_replyqueue(threadpool_t *tp) +{ + return tp->reply_queue; +} + +/** Allocate a new reply queue. Reply queues are used to pass results from + * worker threads to the main thread. Since the main thread is running an + * IO-centric event loop, it needs to get woken up with means other than a + * condition variable. */ +replyqueue_t * +replyqueue_new(uint32_t alertsocks_flags) +{ + replyqueue_t *rq; + + rq = tor_malloc_zero(sizeof(replyqueue_t)); + if (alert_sockets_create(&rq->alert, alertsocks_flags) < 0) { + //LCOV_EXCL_START + tor_free(rq); + return NULL; + //LCOV_EXCL_STOP + } + + tor_mutex_init(&rq->lock); + TOR_TAILQ_INIT(&rq->answers); + + return rq; +} + +/** Internal: Run from the libevent mainloop when there is work to handle in + * the reply queue handler. */ +static void +reply_event_cb(evutil_socket_t sock, short events, void *arg) +{ + threadpool_t *tp = arg; + (void) sock; + (void) events; + replyqueue_process(tp->reply_queue); + if (tp->reply_cb) + tp->reply_cb(tp); +} + +/** Register the threadpool <b>tp</b>'s reply queue with the libevent + * mainloop of <b>base</b>. If <b>tp</b> is provided, it is run after + * each time there is work to process from the reply queue. Return 0 on + * success, -1 on failure. + */ +int +threadpool_register_reply_event(threadpool_t *tp, + void (*cb)(threadpool_t *tp)) +{ + struct event_base *base = tor_libevent_get_base(); + + if (tp->reply_event) { + tor_event_free(tp->reply_event); + } + tp->reply_event = tor_event_new(base, + tp->reply_queue->alert.read_fd, + EV_READ|EV_PERSIST, + reply_event_cb, + tp); + tor_assert(tp->reply_event); + tp->reply_cb = cb; + return event_add(tp->reply_event, NULL); +} + +/** + * Process all pending replies on a reply queue. The main thread should call + * this function every time the socket returned by replyqueue_get_socket() is + * readable. + */ +void +replyqueue_process(replyqueue_t *queue) +{ + int r = queue->alert.drain_fn(queue->alert.read_fd); + if (r < 0) { + //LCOV_EXCL_START + static ratelim_t warn_limit = RATELIM_INIT(7200); + log_fn_ratelim(&warn_limit, LOG_WARN, LD_GENERAL, + "Failure from drain_fd: %s", + tor_socket_strerror(-r)); + //LCOV_EXCL_STOP + } + + tor_mutex_acquire(&queue->lock); + while (!TOR_TAILQ_EMPTY(&queue->answers)) { + /* lock must be held at this point.*/ + workqueue_entry_t *work = TOR_TAILQ_FIRST(&queue->answers); + TOR_TAILQ_REMOVE(&queue->answers, work, next_work); + tor_mutex_release(&queue->lock); + work->on_pool = NULL; + + work->reply_fn(work->arg); + workqueue_entry_free(work); + + tor_mutex_acquire(&queue->lock); + } + + tor_mutex_release(&queue->lock); +} |