diff options
author | Steven Murdoch <Steven.Murdoch@cl.cam.ac.uk> | 2008-12-25 12:10:27 +0000 |
---|---|---|
committer | Steven Murdoch <Steven.Murdoch@cl.cam.ac.uk> | 2008-12-25 12:10:27 +0000 |
commit | 3ba7a6e219b3a341bb650cdc37b3ca1435a1a8a2 (patch) | |
tree | d5eccfd07595e80e24c3f1e6e3f7238386bdd33b /doc/design-paper | |
parent | a32477db65f9925708d36cc1217a9997d1ca7d58 (diff) | |
download | tor-3ba7a6e219b3a341bb650cdc37b3ca1435a1a8a2.tar.gz tor-3ba7a6e219b3a341bb650cdc37b3ca1435a1a8a2.zip |
Add R script for estimating average node latency at different levels of network load
svn:r17768
Diffstat (limited to 'doc/design-paper')
-rw-r--r-- | doc/design-paper/node-selection/vary-network-load.R | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/doc/design-paper/node-selection/vary-network-load.R b/doc/design-paper/node-selection/vary-network-load.R new file mode 100644 index 0000000000..e2b96dd01f --- /dev/null +++ b/doc/design-paper/node-selection/vary-network-load.R @@ -0,0 +1,93 @@ +## The waiting time for a node (assuming no overloaded nodes) +## x: 1/bandwidth +## q: selection probability +## L: network load +wait <- function(x,q,L) { + a <- q*L*x*x + b <- 2*(1-q*x*L) + return (x + a/b) +} + +## The weighted wait time +wwait <- function(x,q,L) { + return (q*wait(x,q,L)) +} + +## Average latency, returning NA for infinite +netLatency <- function(x, q, L) { + if (any(x*q*L <0 | x*q*L >1)) { + return (NA) + } else { + return (sum(wwait(x, q, L))) + } +} + +## Load in data files +t1 <- read.table("opt_1e-6.pickle.dat", header=TRUE) +t2 <- read.table("opt_1e-3.pickle.dat", header=TRUE) +t3 <- read.table("opt_1e-1.pickle.dat", header=TRUE) +t4 <- read.table("opt_0.75.pickle.dat", header=TRUE) +t5 <- read.table("opt_0.5.pickle.dat", header=TRUE) +t6 <- read.table("opt_0.25.pickle.dat", header=TRUE) +t7 <- read.table("opt_0.1.pickle.dat", header=TRUE) +tt <- read.table("opt_tor.pickle.dat", header=TRUE) + +## Node bandwidth and reciprocal +bw <- t1$bw +x <- 1/bw + +## Calculate network capcity +capacity <- sum(bw) + +## Calculate selection probabilties that Tor uses +torProb <- bw/sum(bw) + +## Load values to try +varyLoad <- seq(0.01,0.93,0.01) +latencyTor <- c() +latency3 <- c() +latency4 <- c() +latency5 <- c() +for (L in varyLoad) { + latencyTor <- append(latencyTor, + netLatency(x, torProb, capacity*L)) + latency3 <- append(latency3, + netLatency(x, t3$prob, capacity*L)) + latency4 <- append(latency4, + netLatency(x, t4$prob, capacity*L)) + latency5 <- append(latency5, + netLatency(x, t5$prob, capacity*L)) +} + +## Output graph +pdf("vary-network-load.pdf") + +## Set up axes +yFac <- 1000 +xFac <- 100 + +ylim <- range(na.omit(c(latencyTor, latency3, latency4, latency5))) +ylim <- c(0,0.015) * yFac +xlim <- c(0,1) * xFac +plot(NA, NA, + xlim=xlim, ylim=ylim, + frame.plot=FALSE, + xlab = "Network load (%)", + ylab = "Average queuing delay (ms)", + main = "Latency for varying network loads") + +## Plot data +col <- rainbow(8) +lines(varyLoad*xFac, latency3*yFac, col=col[3]) +lines(varyLoad*xFac, latency4*yFac, col=col[4]) +lines(varyLoad*xFac, latency5*yFac, col=col[5]) +lines(varyLoad*xFac, latencyTor*yFac) + +## Plot points at which selection probabilities are optimal +par(xpd=TRUE) +points(c(0.9, 0.75, 0.5, 1)*xFac, rep(par("usr")[3], 4), + col=c(col[3:5], "black"), pch=20, + cex=2) + +## Close output device +dev.off() |