summaryrefslogtreecommitdiff
path: root/searx/engines/google_scholar.py
blob: 8b47360a8888c2c4b0d164d742b65f68cb013c6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# SPDX-License-Identifier: AGPL-3.0-or-later
"""This is the implementation of the Google Scholar engine.

Compared to other Google services the Scholar engine has a simple GET REST-API
and there does not exists `async` API.  Even though the API slightly vintage we
can make use of the :ref:`google API` to assemble the arguments of the GET
request.
"""

from typing import TYPE_CHECKING
from typing import Optional

from urllib.parse import urlencode
from datetime import datetime
from lxml import html

from searx.utils import (
    eval_xpath,
    eval_xpath_getindex,
    eval_xpath_list,
    extract_text,
)

from searx.exceptions import SearxEngineCaptchaException

from searx.engines.google import fetch_traits  # pylint: disable=unused-import
from searx.engines.google import (
    get_google_info,
    time_range_dict,
)
from searx.enginelib.traits import EngineTraits

if TYPE_CHECKING:
    import logging

    logger: logging.Logger

traits: EngineTraits

# about
about = {
    "website": 'https://scholar.google.com',
    "wikidata_id": 'Q494817',
    "official_api_documentation": 'https://developers.google.com/custom-search',
    "use_official_api": False,
    "require_api_key": False,
    "results": 'HTML',
}

# engine dependent config
categories = ['science', 'scientific publications']
paging = True
max_page = 50
language_support = True
time_range_support = True
safesearch = False
send_accept_language_header = True


def time_range_args(params):
    """Returns a dictionary with a time range arguments based on
    ``params['time_range']``.

    Google Scholar supports a detailed search by year.  Searching by *last
    month* or *last week* (as offered by SearXNG) is uncommon for scientific
    publications and is not supported by Google Scholar.

    To limit the result list when the users selects a range, all the SearXNG
    ranges (*day*, *week*, *month*, *year*) are mapped to *year*.  If no range
    is set an empty dictionary of arguments is returned.  Example;  when
    user selects a time range (current year minus one in 2022):

    .. code:: python

        { 'as_ylo' : 2021 }

    """
    ret_val = {}
    if params['time_range'] in time_range_dict:
        ret_val['as_ylo'] = datetime.now().year - 1
    return ret_val


def detect_google_captcha(dom):
    """In case of CAPTCHA Google Scholar open its own *not a Robot* dialog and is
    not redirected to ``sorry.google.com``.
    """
    if eval_xpath(dom, "//form[@id='gs_captcha_f']"):
        raise SearxEngineCaptchaException()


def request(query, params):
    """Google-Scholar search request"""

    google_info = get_google_info(params, traits)
    # subdomain is: scholar.google.xy
    google_info['subdomain'] = google_info['subdomain'].replace("www.", "scholar.")

    args = {
        'q': query,
        **google_info['params'],
        'start': (params['pageno'] - 1) * 10,
        'as_sdt': '2007',  # include patents / to disable set '0,5'
        'as_vis': '0',  # include citations / to disable set '1'
    }
    args.update(time_range_args(params))

    params['url'] = 'https://' + google_info['subdomain'] + '/scholar?' + urlencode(args)
    params['cookies'] = google_info['cookies']
    params['headers'].update(google_info['headers'])
    return params


def parse_gs_a(text: Optional[str]):
    """Parse the text written in green.

    Possible formats:
    * "{authors} - {journal}, {year} - {publisher}"
    * "{authors} - {year} - {publisher}"
    * "{authors} - {publisher}"
    """
    if text is None or text == "":
        return None, None, None, None

    s_text = text.split(' - ')
    authors = s_text[0].split(', ')
    publisher = s_text[-1]
    if len(s_text) != 3:
        return authors, None, publisher, None

    # the format is "{authors} - {journal}, {year} - {publisher}" or "{authors} - {year} - {publisher}"
    # get journal and year
    journal_year = s_text[1].split(', ')
    # journal is optional and may contains some coma
    if len(journal_year) > 1:
        journal = ', '.join(journal_year[0:-1])
        if journal == '…':
            journal = None
    else:
        journal = None
    # year
    year = journal_year[-1]
    try:
        publishedDate = datetime.strptime(year.strip(), '%Y')
    except ValueError:
        publishedDate = None
    return authors, journal, publisher, publishedDate


def response(resp):  # pylint: disable=too-many-locals
    """Parse response from Google Scholar"""
    results = []

    # convert the text to dom
    dom = html.fromstring(resp.text)
    detect_google_captcha(dom)

    # parse results
    for result in eval_xpath_list(dom, '//div[@data-rp]'):

        title = extract_text(eval_xpath(result, './/h3[1]//a'))

        if not title:
            # this is a [ZITATION] block
            continue

        pub_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
        if pub_type:
            pub_type = pub_type[1:-1].lower()

        url = eval_xpath_getindex(result, './/h3[1]//a/@href', 0)
        content = extract_text(eval_xpath(result, './/div[@class="gs_rs"]'))
        authors, journal, publisher, publishedDate = parse_gs_a(
            extract_text(eval_xpath(result, './/div[@class="gs_a"]'))
        )
        if publisher in url:
            publisher = None

        # cited by
        comments = extract_text(eval_xpath(result, './/div[@class="gs_fl"]/a[starts-with(@href,"/scholar?cites=")]'))

        # link to the html or pdf document
        html_url = None
        pdf_url = None
        doc_url = eval_xpath_getindex(result, './/div[@class="gs_or_ggsm"]/a/@href', 0, default=None)
        doc_type = extract_text(eval_xpath(result, './/span[@class="gs_ctg2"]'))
        if doc_type == "[PDF]":
            pdf_url = doc_url
        else:
            html_url = doc_url

        results.append(
            {
                'template': 'paper.html',
                'type': pub_type,
                'url': url,
                'title': title,
                'authors': authors,
                'publisher': publisher,
                'journal': journal,
                'publishedDate': publishedDate,
                'content': content,
                'comments': comments,
                'html_url': html_url,
                'pdf_url': pdf_url,
            }
        )

    # parse suggestion
    for suggestion in eval_xpath(dom, '//div[contains(@class, "gs_qsuggest_wrap")]//li//a'):
        # append suggestion
        results.append({'suggestion': extract_text(suggestion)})

    for correction in eval_xpath(dom, '//div[@class="gs_r gs_pda"]/a'):
        results.append({'correction': extract_text(correction)})

    return results