aboutsummaryrefslogtreecommitdiff
path: root/test/typeparam/listimp2.dir/a.go
blob: 3a7dfc3999a0db856c877a5cc2c4f21c899e801c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package a

import (
	"fmt"
)

// Element is an element of a linked list.
type Element[T any] struct {
	// Next and previous pointers in the doubly-linked list of elements.
	// To simplify the implementation, internally a list l is implemented
	// as a ring, such that &l.root is both the next element of the last
	// list element (l.Back()) and the previous element of the first list
	// element (l.Front()).
	next, prev *Element[T]

	// The list to which this element belongs.
	list *List[T]

	// The value stored with this element.
	Value T
}

// Next returns the next list element or nil.
func (e *Element[T]) Next() *Element[T] {
	if p := e.next; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// Prev returns the previous list element or nil.
func (e *Element[T]) Prev() *Element[T] {
	if p := e.prev; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List[T any] struct {
	root Element[T] // sentinel list element, only &root, root.prev, and root.next are used
	len  int        // current list length excluding (this) sentinel element
}

// Init initializes or clears list l.
func (l *List[T]) Init() *List[T] {
	l.root.next = &l.root
	l.root.prev = &l.root
	l.len = 0
	return l
}

// New returns an initialized list.
func New[T any]() *List[T] { return new(List[T]).Init() }

// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *List[_]) Len() int { return l.len }

// Front returns the first element of list l or nil if the list is empty.
func (l *List[T]) Front() *Element[T] {
	if l.len == 0 {
		return nil
	}
	return l.root.next
}

// Back returns the last element of list l or nil if the list is empty.
func (l *List[T]) Back() *Element[T] {
	if l.len == 0 {
		return nil
	}
	return l.root.prev
}

// lazyInit lazily initializes a zero List value.
func (l *List[_]) lazyInit() {
	if l.root.next == nil {
		l.Init()
	}
}

// insert inserts e after at, increments l.len, and returns e.
func (l *List[T]) insert(e, at *Element[T]) *Element[T] {
	e.prev = at
	e.next = at.next
	e.prev.next = e
	e.next.prev = e
	e.list = l
	l.len++
	return e
}

// insertValue is a convenience wrapper for insert(&Element[T]{Value: v}, at).
func (l *List[T]) insertValue(v T, at *Element[T]) *Element[T] {
	return l.insert(&Element[T]{Value: v}, at)
}

// remove removes e from its list, decrements l.len, and returns e.
func (l *List[T]) remove(e *Element[T]) *Element[T] {
	e.prev.next = e.next
	e.next.prev = e.prev
	e.next = nil // avoid memory leaks
	e.prev = nil // avoid memory leaks
	e.list = nil
	l.len--
	return e
}

// move moves e to next to at and returns e.
func (l *List[T]) move(e, at *Element[T]) *Element[T] {
	if e == at {
		return e
	}
	e.prev.next = e.next
	e.next.prev = e.prev

	e.prev = at
	e.next = at.next
	e.prev.next = e
	e.next.prev = e

	return e
}

// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *List[T]) Remove(e *Element[T]) T {
	if e.list == l {
		// if e.list == l, l must have been initialized when e was inserted
		// in l or l == nil (e is a zero Element) and l.remove will crash
		l.remove(e)
	}
	return e.Value
}

// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *List[T]) PushFront(v T) *Element[T] {
	l.lazyInit()
	return l.insertValue(v, &l.root)
}

// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *List[T]) PushBack(v T) *Element[T] {
	l.lazyInit()
	return l.insertValue(v, l.root.prev)
}

// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List[T]) InsertBefore(v T, mark *Element[T]) *Element[T] {
	if mark.list != l {
		return nil
	}
	// see comment in List.Remove about initialization of l
	return l.insertValue(v, mark.prev)
}

// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List[T]) InsertAfter(v T, mark *Element[T]) *Element[T] {
	if mark.list != l {
		return nil
	}
	// see comment in List.Remove about initialization of l
	return l.insertValue(v, mark)
}

// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List[T]) MoveToFront(e *Element[T]) {
	if e.list != l || l.root.next == e {
		return
	}
	// see comment in List.Remove about initialization of l
	l.move(e, &l.root)
}

// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List[T]) MoveToBack(e *Element[T]) {
	if e.list != l || l.root.prev == e {
		return
	}
	// see comment in List.Remove about initialization of l
	l.move(e, l.root.prev)
}

// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List[T]) MoveBefore(e, mark *Element[T]) {
	if e.list != l || e == mark || mark.list != l {
		return
	}
	l.move(e, mark.prev)
}

// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List[T]) MoveAfter(e, mark *Element[T]) {
	if e.list != l || e == mark || mark.list != l {
		return
	}
	l.move(e, mark)
}

// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List[T]) PushBackList(other *List[T]) {
	l.lazyInit()
	for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
		l.insertValue(e.Value, l.root.prev)
	}
}

// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List[T]) PushFrontList(other *List[T]) {
	l.lazyInit()
	for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
		l.insertValue(e.Value, &l.root)
	}
}

// Transform runs a transform function on a list returning a new list.
func Transform[TElem1, TElem2 any](lst *List[TElem1], f func(TElem1) TElem2) *List[TElem2] {
	ret := New[TElem2]()
	for p := lst.Front(); p != nil; p = p.Next() {
		ret.PushBack(f(p.Value))
	}
	return ret
}

func CheckListLen[T any](l *List[T], len int) bool {
	if n := l.Len(); n != len {
		panic(fmt.Sprintf("l.Len() = %d, want %d", n, len))
		return false
	}
	return true
}

func CheckListPointers[T any](l *List[T], es []*Element[T]) {
	root := &l.root

	if !CheckListLen(l, len(es)) {
		return
	}

	// zero length lists must be the zero value or properly initialized (sentinel circle)
	if len(es) == 0 {
		if l.root.next != nil && l.root.next != root || l.root.prev != nil && l.root.prev != root {
			panic(fmt.Sprintf("l.root.next = %p, l.root.prev = %p; both should both be nil or %p", l.root.next, l.root.prev, root))
		}
		return
	}
	// len(es) > 0

	// check internal and external prev/next connections
	for i, e := range es {
		prev := root
		Prev := (*Element[T])(nil)
		if i > 0 {
			prev = es[i-1]
			Prev = prev
		}
		if p := e.prev; p != prev {
			panic(fmt.Sprintf("elt[%d](%p).prev = %p, want %p", i, e, p, prev))
		}
		if p := e.Prev(); p != Prev {
			panic(fmt.Sprintf("elt[%d](%p).Prev() = %p, want %p", i, e, p, Prev))
		}

		next := root
		Next := (*Element[T])(nil)
		if i < len(es)-1 {
			next = es[i+1]
			Next = next
		}
		if n := e.next; n != next {
			panic(fmt.Sprintf("elt[%d](%p).next = %p, want %p", i, e, n, next))
		}
		if n := e.Next(); n != Next {
			panic(fmt.Sprintf("elt[%d](%p).Next() = %p, want %p", i, e, n, Next))
		}
	}
}