aboutsummaryrefslogtreecommitdiff
path: root/src/text/template/exec.go
blob: ac3e7413906bcdb2d697f6f32d65b911a88d6a1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package template

import (
	"fmt"
	"internal/fmtsort"
	"io"
	"reflect"
	"runtime"
	"strings"
	"text/template/parse"
)

// maxExecDepth specifies the maximum stack depth of templates within
// templates. This limit is only practically reached by accidentally
// recursive template invocations. This limit allows us to return
// an error instead of triggering a stack overflow.
var maxExecDepth = initMaxExecDepth()

func initMaxExecDepth() int {
	if runtime.GOARCH == "wasm" {
		return 1000
	}
	return 100000
}

// state represents the state of an execution. It's not part of the
// template so that multiple executions of the same template
// can execute in parallel.
type state struct {
	tmpl  *Template
	wr    io.Writer
	node  parse.Node // current node, for errors
	vars  []variable // push-down stack of variable values.
	depth int        // the height of the stack of executing templates.
}

// variable holds the dynamic value of a variable such as $, $x etc.
type variable struct {
	name  string
	value reflect.Value
}

// push pushes a new variable on the stack.
func (s *state) push(name string, value reflect.Value) {
	s.vars = append(s.vars, variable{name, value})
}

// mark returns the length of the variable stack.
func (s *state) mark() int {
	return len(s.vars)
}

// pop pops the variable stack up to the mark.
func (s *state) pop(mark int) {
	s.vars = s.vars[0:mark]
}

// setVar overwrites the last declared variable with the given name.
// Used by variable assignments.
func (s *state) setVar(name string, value reflect.Value) {
	for i := s.mark() - 1; i >= 0; i-- {
		if s.vars[i].name == name {
			s.vars[i].value = value
			return
		}
	}
	s.errorf("undefined variable: %s", name)
}

// setTopVar overwrites the top-nth variable on the stack. Used by range iterations.
func (s *state) setTopVar(n int, value reflect.Value) {
	s.vars[len(s.vars)-n].value = value
}

// varValue returns the value of the named variable.
func (s *state) varValue(name string) reflect.Value {
	for i := s.mark() - 1; i >= 0; i-- {
		if s.vars[i].name == name {
			return s.vars[i].value
		}
	}
	s.errorf("undefined variable: %s", name)
	return zero
}

var zero reflect.Value

type missingValType struct{}

var missingVal = reflect.ValueOf(missingValType{})

// at marks the state to be on node n, for error reporting.
func (s *state) at(node parse.Node) {
	s.node = node
}

// doublePercent returns the string with %'s replaced by %%, if necessary,
// so it can be used safely inside a Printf format string.
func doublePercent(str string) string {
	return strings.ReplaceAll(str, "%", "%%")
}

// TODO: It would be nice if ExecError was more broken down, but
// the way ErrorContext embeds the template name makes the
// processing too clumsy.

// ExecError is the custom error type returned when Execute has an
// error evaluating its template. (If a write error occurs, the actual
// error is returned; it will not be of type ExecError.)
type ExecError struct {
	Name string // Name of template.
	Err  error  // Pre-formatted error.
}

func (e ExecError) Error() string {
	return e.Err.Error()
}

func (e ExecError) Unwrap() error {
	return e.Err
}

// errorf records an ExecError and terminates processing.
func (s *state) errorf(format string, args ...interface{}) {
	name := doublePercent(s.tmpl.Name())
	if s.node == nil {
		format = fmt.Sprintf("template: %s: %s", name, format)
	} else {
		location, context := s.tmpl.ErrorContext(s.node)
		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
	}
	panic(ExecError{
		Name: s.tmpl.Name(),
		Err:  fmt.Errorf(format, args...),
	})
}

// writeError is the wrapper type used internally when Execute has an
// error writing to its output. We strip the wrapper in errRecover.
// Note that this is not an implementation of error, so it cannot escape
// from the package as an error value.
type writeError struct {
	Err error // Original error.
}

func (s *state) writeError(err error) {
	panic(writeError{
		Err: err,
	})
}

// errRecover is the handler that turns panics into returns from the top
// level of Parse.
func errRecover(errp *error) {
	e := recover()
	if e != nil {
		switch err := e.(type) {
		case runtime.Error:
			panic(e)
		case writeError:
			*errp = err.Err // Strip the wrapper.
		case ExecError:
			*errp = err // Keep the wrapper.
		default:
			panic(e)
		}
	}
}

// ExecuteTemplate applies the template associated with t that has the given name
// to the specified data object and writes the output to wr.
// If an error occurs executing the template or writing its output,
// execution stops, but partial results may already have been written to
// the output writer.
// A template may be executed safely in parallel, although if parallel
// executions share a Writer the output may be interleaved.
func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
	var tmpl *Template
	if t.common != nil {
		tmpl = t.tmpl[name]
	}
	if tmpl == nil {
		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
	}
	return tmpl.Execute(wr, data)
}

// Execute applies a parsed template to the specified data object,
// and writes the output to wr.
// If an error occurs executing the template or writing its output,
// execution stops, but partial results may already have been written to
// the output writer.
// A template may be executed safely in parallel, although if parallel
// executions share a Writer the output may be interleaved.
//
// If data is a reflect.Value, the template applies to the concrete
// value that the reflect.Value holds, as in fmt.Print.
func (t *Template) Execute(wr io.Writer, data interface{}) error {
	return t.execute(wr, data)
}

func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
	defer errRecover(&err)
	value, ok := data.(reflect.Value)
	if !ok {
		value = reflect.ValueOf(data)
	}
	state := &state{
		tmpl: t,
		wr:   wr,
		vars: []variable{{"$", value}},
	}
	if t.Tree == nil || t.Root == nil {
		state.errorf("%q is an incomplete or empty template", t.Name())
	}
	state.walk(value, t.Root)
	return
}

// DefinedTemplates returns a string listing the defined templates,
// prefixed by the string "; defined templates are: ". If there are none,
// it returns the empty string. For generating an error message here
// and in html/template.
func (t *Template) DefinedTemplates() string {
	if t.common == nil {
		return ""
	}
	var b strings.Builder
	for name, tmpl := range t.tmpl {
		if tmpl.Tree == nil || tmpl.Root == nil {
			continue
		}
		if b.Len() == 0 {
			b.WriteString("; defined templates are: ")
		} else {
			b.WriteString(", ")
		}
		fmt.Fprintf(&b, "%q", name)
	}
	return b.String()
}

// Walk functions step through the major pieces of the template structure,
// generating output as they go.
func (s *state) walk(dot reflect.Value, node parse.Node) {
	s.at(node)
	switch node := node.(type) {
	case *parse.ActionNode:
		// Do not pop variables so they persist until next end.
		// Also, if the action declares variables, don't print the result.
		val := s.evalPipeline(dot, node.Pipe)
		if len(node.Pipe.Decl) == 0 {
			s.printValue(node, val)
		}
	case *parse.IfNode:
		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
	case *parse.ListNode:
		for _, node := range node.Nodes {
			s.walk(dot, node)
		}
	case *parse.RangeNode:
		s.walkRange(dot, node)
	case *parse.TemplateNode:
		s.walkTemplate(dot, node)
	case *parse.TextNode:
		if _, err := s.wr.Write(node.Text); err != nil {
			s.writeError(err)
		}
	case *parse.WithNode:
		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
	default:
		s.errorf("unknown node: %s", node)
	}
}

// walkIfOrWith walks an 'if' or 'with' node. The two control structures
// are identical in behavior except that 'with' sets dot.
func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
	defer s.pop(s.mark())
	val := s.evalPipeline(dot, pipe)
	truth, ok := isTrue(indirectInterface(val))
	if !ok {
		s.errorf("if/with can't use %v", val)
	}
	if truth {
		if typ == parse.NodeWith {
			s.walk(val, list)
		} else {
			s.walk(dot, list)
		}
	} else if elseList != nil {
		s.walk(dot, elseList)
	}
}

// IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
// and whether the value has a meaningful truth value. This is the definition of
// truth used by if and other such actions.
func IsTrue(val interface{}) (truth, ok bool) {
	return isTrue(reflect.ValueOf(val))
}

func isTrue(val reflect.Value) (truth, ok bool) {
	if !val.IsValid() {
		// Something like var x interface{}, never set. It's a form of nil.
		return false, true
	}
	switch val.Kind() {
	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
		truth = val.Len() > 0
	case reflect.Bool:
		truth = val.Bool()
	case reflect.Complex64, reflect.Complex128:
		truth = val.Complex() != 0
	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
		truth = !val.IsNil()
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		truth = val.Int() != 0
	case reflect.Float32, reflect.Float64:
		truth = val.Float() != 0
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		truth = val.Uint() != 0
	case reflect.Struct:
		truth = true // Struct values are always true.
	default:
		return
	}
	return truth, true
}

func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
	s.at(r)
	defer s.pop(s.mark())
	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
	// mark top of stack before any variables in the body are pushed.
	mark := s.mark()
	oneIteration := func(index, elem reflect.Value) {
		// Set top var (lexically the second if there are two) to the element.
		if len(r.Pipe.Decl) > 0 {
			s.setTopVar(1, elem)
		}
		// Set next var (lexically the first if there are two) to the index.
		if len(r.Pipe.Decl) > 1 {
			s.setTopVar(2, index)
		}
		s.walk(elem, r.List)
		s.pop(mark)
	}
	switch val.Kind() {
	case reflect.Array, reflect.Slice:
		if val.Len() == 0 {
			break
		}
		for i := 0; i < val.Len(); i++ {
			oneIteration(reflect.ValueOf(i), val.Index(i))
		}
		return
	case reflect.Map:
		if val.Len() == 0 {
			break
		}
		om := fmtsort.Sort(val)
		for i, key := range om.Key {
			oneIteration(key, om.Value[i])
		}
		return
	case reflect.Chan:
		if val.IsNil() {
			break
		}
		i := 0
		for ; ; i++ {
			elem, ok := val.Recv()
			if !ok {
				break
			}
			oneIteration(reflect.ValueOf(i), elem)
		}
		if i == 0 {
			break
		}
		return
	case reflect.Invalid:
		break // An invalid value is likely a nil map, etc. and acts like an empty map.
	default:
		s.errorf("range can't iterate over %v", val)
	}
	if r.ElseList != nil {
		s.walk(dot, r.ElseList)
	}
}

func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
	s.at(t)
	tmpl := s.tmpl.tmpl[t.Name]
	if tmpl == nil {
		s.errorf("template %q not defined", t.Name)
	}
	if s.depth == maxExecDepth {
		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
	}
	// Variables declared by the pipeline persist.
	dot = s.evalPipeline(dot, t.Pipe)
	newState := *s
	newState.depth++
	newState.tmpl = tmpl
	// No dynamic scoping: template invocations inherit no variables.
	newState.vars = []variable{{"$", dot}}
	newState.walk(dot, tmpl.Root)
}

// Eval functions evaluate pipelines, commands, and their elements and extract
// values from the data structure by examining fields, calling methods, and so on.
// The printing of those values happens only through walk functions.

// evalPipeline returns the value acquired by evaluating a pipeline. If the
// pipeline has a variable declaration, the variable will be pushed on the
// stack. Callers should therefore pop the stack after they are finished
// executing commands depending on the pipeline value.
func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
	if pipe == nil {
		return
	}
	s.at(pipe)
	value = missingVal
	for _, cmd := range pipe.Cmds {
		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
		// If the object has type interface{}, dig down one level to the thing inside.
		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
			value = reflect.ValueOf(value.Interface()) // lovely!
		}
	}
	for _, variable := range pipe.Decl {
		if pipe.IsAssign {
			s.setVar(variable.Ident[0], value)
		} else {
			s.push(variable.Ident[0], value)
		}
	}
	return value
}

func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
	if len(args) > 1 || final != missingVal {
		s.errorf("can't give argument to non-function %s", args[0])
	}
}

func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
	firstWord := cmd.Args[0]
	switch n := firstWord.(type) {
	case *parse.FieldNode:
		return s.evalFieldNode(dot, n, cmd.Args, final)
	case *parse.ChainNode:
		return s.evalChainNode(dot, n, cmd.Args, final)
	case *parse.IdentifierNode:
		// Must be a function.
		return s.evalFunction(dot, n, cmd, cmd.Args, final)
	case *parse.PipeNode:
		// Parenthesized pipeline. The arguments are all inside the pipeline; final must be absent.
		s.notAFunction(cmd.Args, final)
		return s.evalPipeline(dot, n)
	case *parse.VariableNode:
		return s.evalVariableNode(dot, n, cmd.Args, final)
	}
	s.at(firstWord)
	s.notAFunction(cmd.Args, final)
	switch word := firstWord.(type) {
	case *parse.BoolNode:
		return reflect.ValueOf(word.True)
	case *parse.DotNode:
		return dot
	case *parse.NilNode:
		s.errorf("nil is not a command")
	case *parse.NumberNode:
		return s.idealConstant(word)
	case *parse.StringNode:
		return reflect.ValueOf(word.Text)
	}
	s.errorf("can't evaluate command %q", firstWord)
	panic("not reached")
}

// idealConstant is called to return the value of a number in a context where
// we don't know the type. In that case, the syntax of the number tells us
// its type, and we use Go rules to resolve. Note there is no such thing as
// a uint ideal constant in this situation - the value must be of int type.
func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
	// These are ideal constants but we don't know the type
	// and we have no context.  (If it was a method argument,
	// we'd know what we need.) The syntax guides us to some extent.
	s.at(constant)
	switch {
	case constant.IsComplex:
		return reflect.ValueOf(constant.Complex128) // incontrovertible.

	case constant.IsFloat &&
		!isHexInt(constant.Text) && !isRuneInt(constant.Text) &&
		strings.ContainsAny(constant.Text, ".eEpP"):
		return reflect.ValueOf(constant.Float64)

	case constant.IsInt:
		n := int(constant.Int64)
		if int64(n) != constant.Int64 {
			s.errorf("%s overflows int", constant.Text)
		}
		return reflect.ValueOf(n)

	case constant.IsUint:
		s.errorf("%s overflows int", constant.Text)
	}
	return zero
}

func isRuneInt(s string) bool {
	return len(s) > 0 && s[0] == '\''
}

func isHexInt(s string) bool {
	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') && !strings.ContainsAny(s, "pP")
}

func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
	s.at(field)
	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
}

func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
	s.at(chain)
	if len(chain.Field) == 0 {
		s.errorf("internal error: no fields in evalChainNode")
	}
	if chain.Node.Type() == parse.NodeNil {
		s.errorf("indirection through explicit nil in %s", chain)
	}
	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
	pipe := s.evalArg(dot, nil, chain.Node)
	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
}

func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
	s.at(variable)
	value := s.varValue(variable.Ident[0])
	if len(variable.Ident) == 1 {
		s.notAFunction(args, final)
		return value
	}
	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
}

// evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
// dot is the environment in which to evaluate arguments, while
// receiver is the value being walked along the chain.
func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
	n := len(ident)
	for i := 0; i < n-1; i++ {
		receiver = s.evalField(dot, ident[i], node, nil, missingVal, receiver)
	}
	// Now if it's a method, it gets the arguments.
	return s.evalField(dot, ident[n-1], node, args, final, receiver)
}

func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
	s.at(node)
	name := node.Ident
	function, ok := findFunction(name, s.tmpl)
	if !ok {
		s.errorf("%q is not a defined function", name)
	}
	return s.evalCall(dot, function, cmd, name, args, final)
}

// evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
// The 'final' argument represents the return value from the preceding
// value of the pipeline, if any.
func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
	if !receiver.IsValid() {
		if s.tmpl.option.missingKey == mapError { // Treat invalid value as missing map key.
			s.errorf("nil data; no entry for key %q", fieldName)
		}
		return zero
	}
	typ := receiver.Type()
	receiver, isNil := indirect(receiver)
	if receiver.Kind() == reflect.Interface && isNil {
		// Calling a method on a nil interface can't work. The
		// MethodByName method call below would panic.
		s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
		return zero
	}

	// Unless it's an interface, need to get to a value of type *T to guarantee
	// we see all methods of T and *T.
	ptr := receiver
	if ptr.Kind() != reflect.Interface && ptr.Kind() != reflect.Ptr && ptr.CanAddr() {
		ptr = ptr.Addr()
	}
	if method := ptr.MethodByName(fieldName); method.IsValid() {
		return s.evalCall(dot, method, node, fieldName, args, final)
	}
	hasArgs := len(args) > 1 || final != missingVal
	// It's not a method; must be a field of a struct or an element of a map.
	switch receiver.Kind() {
	case reflect.Struct:
		tField, ok := receiver.Type().FieldByName(fieldName)
		if ok {
			field := receiver.FieldByIndex(tField.Index)
			if tField.PkgPath != "" { // field is unexported
				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
			}
			// If it's a function, we must call it.
			if hasArgs {
				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
			}
			return field
		}
	case reflect.Map:
		// If it's a map, attempt to use the field name as a key.
		nameVal := reflect.ValueOf(fieldName)
		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
			if hasArgs {
				s.errorf("%s is not a method but has arguments", fieldName)
			}
			result := receiver.MapIndex(nameVal)
			if !result.IsValid() {
				switch s.tmpl.option.missingKey {
				case mapInvalid:
					// Just use the invalid value.
				case mapZeroValue:
					result = reflect.Zero(receiver.Type().Elem())
				case mapError:
					s.errorf("map has no entry for key %q", fieldName)
				}
			}
			return result
		}
	case reflect.Ptr:
		etyp := receiver.Type().Elem()
		if etyp.Kind() == reflect.Struct {
			if _, ok := etyp.FieldByName(fieldName); !ok {
				// If there's no such field, say "can't evaluate"
				// instead of "nil pointer evaluating".
				break
			}
		}
		if isNil {
			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
		}
	}
	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
	panic("not reached")
}

var (
	errorType        = reflect.TypeOf((*error)(nil)).Elem()
	fmtStringerType  = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
	reflectValueType = reflect.TypeOf((*reflect.Value)(nil)).Elem()
)

// evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
// it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
// as the function itself.
func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
	if args != nil {
		args = args[1:] // Zeroth arg is function name/node; not passed to function.
	}
	typ := fun.Type()
	numIn := len(args)
	if final != missingVal {
		numIn++
	}
	numFixed := len(args)
	if typ.IsVariadic() {
		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
		if numIn < numFixed {
			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
		}
	} else if numIn != typ.NumIn() {
		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), numIn)
	}
	if !goodFunc(typ) {
		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
	}
	// Build the arg list.
	argv := make([]reflect.Value, numIn)
	// Args must be evaluated. Fixed args first.
	i := 0
	for ; i < numFixed && i < len(args); i++ {
		argv[i] = s.evalArg(dot, typ.In(i), args[i])
	}
	// Now the ... args.
	if typ.IsVariadic() {
		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
		for ; i < len(args); i++ {
			argv[i] = s.evalArg(dot, argType, args[i])
		}
	}
	// Add final value if necessary.
	if final != missingVal {
		t := typ.In(typ.NumIn() - 1)
		if typ.IsVariadic() {
			if numIn-1 < numFixed {
				// The added final argument corresponds to a fixed parameter of the function.
				// Validate against the type of the actual parameter.
				t = typ.In(numIn - 1)
			} else {
				// The added final argument corresponds to the variadic part.
				// Validate against the type of the elements of the variadic slice.
				t = t.Elem()
			}
		}
		argv[i] = s.validateType(final, t)
	}
	v, err := safeCall(fun, argv)
	// If we have an error that is not nil, stop execution and return that
	// error to the caller.
	if err != nil {
		s.at(node)
		s.errorf("error calling %s: %v", name, err)
	}
	if v.Type() == reflectValueType {
		v = v.Interface().(reflect.Value)
	}
	return v
}

// canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
func canBeNil(typ reflect.Type) bool {
	switch typ.Kind() {
	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
		return true
	case reflect.Struct:
		return typ == reflectValueType
	}
	return false
}

// validateType guarantees that the value is valid and assignable to the type.
func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
	if !value.IsValid() {
		if typ == nil {
			// An untyped nil interface{}. Accept as a proper nil value.
			return reflect.ValueOf(nil)
		}
		if canBeNil(typ) {
			// Like above, but use the zero value of the non-nil type.
			return reflect.Zero(typ)
		}
		s.errorf("invalid value; expected %s", typ)
	}
	if typ == reflectValueType && value.Type() != typ {
		return reflect.ValueOf(value)
	}
	if typ != nil && !value.Type().AssignableTo(typ) {
		if value.Kind() == reflect.Interface && !value.IsNil() {
			value = value.Elem()
			if value.Type().AssignableTo(typ) {
				return value
			}
			// fallthrough
		}
		// Does one dereference or indirection work? We could do more, as we
		// do with method receivers, but that gets messy and method receivers
		// are much more constrained, so it makes more sense there than here.
		// Besides, one is almost always all you need.
		switch {
		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
			value = value.Elem()
			if !value.IsValid() {
				s.errorf("dereference of nil pointer of type %s", typ)
			}
		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
			value = value.Addr()
		default:
			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
		}
	}
	return value
}

func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
	s.at(n)
	switch arg := n.(type) {
	case *parse.DotNode:
		return s.validateType(dot, typ)
	case *parse.NilNode:
		if canBeNil(typ) {
			return reflect.Zero(typ)
		}
		s.errorf("cannot assign nil to %s", typ)
	case *parse.FieldNode:
		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, missingVal), typ)
	case *parse.VariableNode:
		return s.validateType(s.evalVariableNode(dot, arg, nil, missingVal), typ)
	case *parse.PipeNode:
		return s.validateType(s.evalPipeline(dot, arg), typ)
	case *parse.IdentifierNode:
		return s.validateType(s.evalFunction(dot, arg, arg, nil, missingVal), typ)
	case *parse.ChainNode:
		return s.validateType(s.evalChainNode(dot, arg, nil, missingVal), typ)
	}
	switch typ.Kind() {
	case reflect.Bool:
		return s.evalBool(typ, n)
	case reflect.Complex64, reflect.Complex128:
		return s.evalComplex(typ, n)
	case reflect.Float32, reflect.Float64:
		return s.evalFloat(typ, n)
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		return s.evalInteger(typ, n)
	case reflect.Interface:
		if typ.NumMethod() == 0 {
			return s.evalEmptyInterface(dot, n)
		}
	case reflect.Struct:
		if typ == reflectValueType {
			return reflect.ValueOf(s.evalEmptyInterface(dot, n))
		}
	case reflect.String:
		return s.evalString(typ, n)
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		return s.evalUnsignedInteger(typ, n)
	}
	s.errorf("can't handle %s for arg of type %s", n, typ)
	panic("not reached")
}

func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
	s.at(n)
	if n, ok := n.(*parse.BoolNode); ok {
		value := reflect.New(typ).Elem()
		value.SetBool(n.True)
		return value
	}
	s.errorf("expected bool; found %s", n)
	panic("not reached")
}

func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
	s.at(n)
	if n, ok := n.(*parse.StringNode); ok {
		value := reflect.New(typ).Elem()
		value.SetString(n.Text)
		return value
	}
	s.errorf("expected string; found %s", n)
	panic("not reached")
}

func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
	s.at(n)
	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
		value := reflect.New(typ).Elem()
		value.SetInt(n.Int64)
		return value
	}
	s.errorf("expected integer; found %s", n)
	panic("not reached")
}

func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
	s.at(n)
	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
		value := reflect.New(typ).Elem()
		value.SetUint(n.Uint64)
		return value
	}
	s.errorf("expected unsigned integer; found %s", n)
	panic("not reached")
}

func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
	s.at(n)
	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
		value := reflect.New(typ).Elem()
		value.SetFloat(n.Float64)
		return value
	}
	s.errorf("expected float; found %s", n)
	panic("not reached")
}

func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
		value := reflect.New(typ).Elem()
		value.SetComplex(n.Complex128)
		return value
	}
	s.errorf("expected complex; found %s", n)
	panic("not reached")
}

func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
	s.at(n)
	switch n := n.(type) {
	case *parse.BoolNode:
		return reflect.ValueOf(n.True)
	case *parse.DotNode:
		return dot
	case *parse.FieldNode:
		return s.evalFieldNode(dot, n, nil, missingVal)
	case *parse.IdentifierNode:
		return s.evalFunction(dot, n, n, nil, missingVal)
	case *parse.NilNode:
		// NilNode is handled in evalArg, the only place that calls here.
		s.errorf("evalEmptyInterface: nil (can't happen)")
	case *parse.NumberNode:
		return s.idealConstant(n)
	case *parse.StringNode:
		return reflect.ValueOf(n.Text)
	case *parse.VariableNode:
		return s.evalVariableNode(dot, n, nil, missingVal)
	case *parse.PipeNode:
		return s.evalPipeline(dot, n)
	}
	s.errorf("can't handle assignment of %s to empty interface argument", n)
	panic("not reached")
}

// indirect returns the item at the end of indirection, and a bool to indicate
// if it's nil. If the returned bool is true, the returned value's kind will be
// either a pointer or interface.
func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
		if v.IsNil() {
			return v, true
		}
	}
	return v, false
}

// indirectInterface returns the concrete value in an interface value,
// or else the zero reflect.Value.
// That is, if v represents the interface value x, the result is the same as reflect.ValueOf(x):
// the fact that x was an interface value is forgotten.
func indirectInterface(v reflect.Value) reflect.Value {
	if v.Kind() != reflect.Interface {
		return v
	}
	if v.IsNil() {
		return reflect.Value{}
	}
	return v.Elem()
}

// printValue writes the textual representation of the value to the output of
// the template.
func (s *state) printValue(n parse.Node, v reflect.Value) {
	s.at(n)
	iface, ok := printableValue(v)
	if !ok {
		s.errorf("can't print %s of type %s", n, v.Type())
	}
	_, err := fmt.Fprint(s.wr, iface)
	if err != nil {
		s.writeError(err)
	}
}

// printableValue returns the, possibly indirected, interface value inside v that
// is best for a call to formatted printer.
func printableValue(v reflect.Value) (interface{}, bool) {
	if v.Kind() == reflect.Ptr {
		v, _ = indirect(v) // fmt.Fprint handles nil.
	}
	if !v.IsValid() {
		return "<no value>", true
	}

	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
			v = v.Addr()
		} else {
			switch v.Kind() {
			case reflect.Chan, reflect.Func:
				return nil, false
			}
		}
	}
	return v.Interface(), true
}