aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/traceback.go
blob: fa13713637de4d9c4a17acdf059bd835252c4eb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import "unsafe"

// The code in this file implements stack trace walking for all architectures.
// The most important fact about a given architecture is whether it uses a link register.
// On systems with link registers, the prologue for a non-leaf function stores the
// incoming value of LR at the bottom of the newly allocated stack frame.
// On systems without link registers, the architecture pushes a return PC during
// the call instruction, so the return PC ends up above the stack frame.
// In this file, the return PC is always called LR, no matter how it was found.
//
// To date, the opposite of a link register architecture is an x86 architecture.
// This code may need to change if some other kind of non-link-register
// architecture comes along.
//
// The other important fact is the size of a pointer: on 32-bit systems the LR
// takes up only 4 bytes on the stack, while on 64-bit systems it takes up 8 bytes.
// Typically this is ptrSize.
//
// As an exception, amd64p32 has ptrSize == 4 but the CALL instruction still
// stores an 8-byte return PC onto the stack. To accommodate this, we use regSize
// as the size of the architecture-pushed return PC.
//
// usesLR is defined below. ptrSize and regSize are defined in stubs.go.

const usesLR = GOARCH != "amd64" && GOARCH != "amd64p32" && GOARCH != "386"

var (
	// initialized in tracebackinit
	goexitPC             uintptr
	jmpdeferPC           uintptr
	mcallPC              uintptr
	morestackPC          uintptr
	mstartPC             uintptr
	rt0_goPC             uintptr
	sigpanicPC           uintptr
	runfinqPC            uintptr
	backgroundgcPC       uintptr
	bgsweepPC            uintptr
	forcegchelperPC      uintptr
	timerprocPC          uintptr
	gcBgMarkWorkerPC     uintptr
	systemstack_switchPC uintptr
	systemstackPC        uintptr
	stackBarrierPC       uintptr
	cgocallback_gofuncPC uintptr

	gogoPC uintptr

	externalthreadhandlerp uintptr // initialized elsewhere
)

func tracebackinit() {
	// Go variable initialization happens late during runtime startup.
	// Instead of initializing the variables above in the declarations,
	// schedinit calls this function so that the variables are
	// initialized and available earlier in the startup sequence.
	goexitPC = funcPC(goexit)
	jmpdeferPC = funcPC(jmpdefer)
	mcallPC = funcPC(mcall)
	morestackPC = funcPC(morestack)
	mstartPC = funcPC(mstart)
	rt0_goPC = funcPC(rt0_go)
	sigpanicPC = funcPC(sigpanic)
	runfinqPC = funcPC(runfinq)
	backgroundgcPC = funcPC(backgroundgc)
	bgsweepPC = funcPC(bgsweep)
	forcegchelperPC = funcPC(forcegchelper)
	timerprocPC = funcPC(timerproc)
	gcBgMarkWorkerPC = funcPC(gcBgMarkWorker)
	systemstack_switchPC = funcPC(systemstack_switch)
	systemstackPC = funcPC(systemstack)
	stackBarrierPC = funcPC(stackBarrier)
	cgocallback_gofuncPC = funcPC(cgocallback_gofunc)

	// used by sigprof handler
	gogoPC = funcPC(gogo)
}

// Traceback over the deferred function calls.
// Report them like calls that have been invoked but not started executing yet.
func tracebackdefers(gp *g, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer) {
	var frame stkframe
	for d := gp._defer; d != nil; d = d.link {
		fn := d.fn
		if fn == nil {
			// Defer of nil function. Args don't matter.
			frame.pc = 0
			frame.fn = nil
			frame.argp = 0
			frame.arglen = 0
			frame.argmap = nil
		} else {
			frame.pc = uintptr(fn.fn)
			f := findfunc(frame.pc)
			if f == nil {
				print("runtime: unknown pc in defer ", hex(frame.pc), "\n")
				throw("unknown pc")
			}
			frame.fn = f
			frame.argp = uintptr(deferArgs(d))
			setArgInfo(&frame, f, true)
		}
		frame.continpc = frame.pc
		if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
			return
		}
	}
}

// Generic traceback.  Handles runtime stack prints (pcbuf == nil),
// the runtime.Callers function (pcbuf != nil), as well as the garbage
// collector (callback != nil).  A little clunky to merge these, but avoids
// duplicating the code and all its subtlety.
func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int {
	if goexitPC == 0 {
		throw("gentraceback before goexitPC initialization")
	}
	g := getg()
	if g == gp && g == g.m.curg {
		// The starting sp has been passed in as a uintptr, and the caller may
		// have other uintptr-typed stack references as well.
		// If during one of the calls that got us here or during one of the
		// callbacks below the stack must be grown, all these uintptr references
		// to the stack will not be updated, and gentraceback will continue
		// to inspect the old stack memory, which may no longer be valid.
		// Even if all the variables were updated correctly, it is not clear that
		// we want to expose a traceback that begins on one stack and ends
		// on another stack. That could confuse callers quite a bit.
		// Instead, we require that gentraceback and any other function that
		// accepts an sp for the current goroutine (typically obtained by
		// calling getcallersp) must not run on that goroutine's stack but
		// instead on the g0 stack.
		throw("gentraceback cannot trace user goroutine on its own stack")
	}
	gotraceback := gotraceback(nil)

	// Fix up returns to the stack barrier by fetching the
	// original return PC from gp.stkbar.
	stkbarG := gp
	stkbar := stkbarG.stkbar[stkbarG.stkbarPos:]

	if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
		if gp.syscallsp != 0 {
			pc0 = gp.syscallpc
			sp0 = gp.syscallsp
			if usesLR {
				lr0 = 0
			}
		} else {
			pc0 = gp.sched.pc
			sp0 = gp.sched.sp
			if usesLR {
				lr0 = gp.sched.lr
			}
		}
	}

	nprint := 0
	var frame stkframe
	frame.pc = pc0
	frame.sp = sp0
	if usesLR {
		frame.lr = lr0
	}
	waspanic := false
	printing := pcbuf == nil && callback == nil
	_defer := gp._defer

	for _defer != nil && uintptr(_defer.sp) == _NoArgs {
		_defer = _defer.link
	}

	// If the PC is zero, it's likely a nil function call.
	// Start in the caller's frame.
	if frame.pc == 0 {
		if usesLR {
			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
			frame.lr = 0
		} else {
			frame.pc = uintptr(*(*uintreg)(unsafe.Pointer(frame.sp)))
			frame.sp += regSize
		}
	}

	f := findfunc(frame.pc)
	if f != nil && f.entry == stackBarrierPC {
		// We got caught in the middle of a stack barrier
		// (presumably by a signal), so stkbar may be
		// inconsistent with the barriers on the stack.
		// Simulate the completion of the barrier.
		//
		// On x86, SP will be exactly one word above
		// savedLRPtr. On LR machines, SP will be above
		// savedLRPtr by some frame size.
		var stkbarPos uintptr
		if len(stkbar) > 0 && stkbar[0].savedLRPtr < sp0 {
			// stackBarrier has not incremented stkbarPos.
			stkbarPos = gp.stkbarPos
		} else if gp.stkbarPos > 0 && gp.stkbar[gp.stkbarPos-1].savedLRPtr < sp0 {
			// stackBarrier has incremented stkbarPos.
			stkbarPos = gp.stkbarPos - 1
		} else {
			printlock()
			print("runtime: failed to unwind through stackBarrier at SP ", hex(sp0), "; ")
			gcPrintStkbars(gp, int(gp.stkbarPos))
			print("\n")
			throw("inconsistent state in stackBarrier")
		}

		frame.pc = gp.stkbar[stkbarPos].savedLRVal
		stkbar = gp.stkbar[stkbarPos+1:]
		f = findfunc(frame.pc)
	}
	if f == nil {
		if callback != nil {
			print("runtime: unknown pc ", hex(frame.pc), "\n")
			throw("unknown pc")
		}
		return 0
	}
	frame.fn = f

	n := 0
	for n < max {
		// Typically:
		//	pc is the PC of the running function.
		//	sp is the stack pointer at that program counter.
		//	fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown.
		//	stk is the stack containing sp.
		//	The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp.
		f = frame.fn

		// Found an actual function.
		// Derive frame pointer and link register.
		if frame.fp == 0 {
			// We want to jump over the systemstack switch. If we're running on the
			// g0, this systemstack is at the top of the stack.
			// if we're not on g0 or there's a no curg, then this is a regular call.
			sp := frame.sp
			if flags&_TraceJumpStack != 0 && f.entry == systemstackPC && gp == g.m.g0 && gp.m.curg != nil {
				sp = gp.m.curg.sched.sp
				stkbarG = gp.m.curg
				stkbar = stkbarG.stkbar[stkbarG.stkbarPos:]
			}
			frame.fp = sp + uintptr(funcspdelta(f, frame.pc))
			if !usesLR {
				// On x86, call instruction pushes return PC before entering new function.
				frame.fp += regSize
			}
		}
		var flr *_func
		if topofstack(f) {
			frame.lr = 0
			flr = nil
		} else if usesLR && f.entry == jmpdeferPC {
			// jmpdefer modifies SP/LR/PC non-atomically.
			// If a profiling interrupt arrives during jmpdefer,
			// the stack unwind may see a mismatched register set
			// and get confused. Stop if we see PC within jmpdefer
			// to avoid that confusion.
			// See golang.org/issue/8153.
			if callback != nil {
				throw("traceback_arm: found jmpdefer when tracing with callback")
			}
			frame.lr = 0
		} else {
			var lrPtr uintptr
			if usesLR {
				if n == 0 && frame.sp < frame.fp || frame.lr == 0 {
					lrPtr = frame.sp
					frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
				}
			} else {
				if frame.lr == 0 {
					lrPtr = frame.fp - regSize
					frame.lr = uintptr(*(*uintreg)(unsafe.Pointer(lrPtr)))
				}
			}
			if frame.lr == stackBarrierPC {
				// Recover original PC.
				if len(stkbar) == 0 || stkbar[0].savedLRPtr != lrPtr {
					print("found next stack barrier at ", hex(lrPtr), "; expected ")
					gcPrintStkbars(stkbarG, len(stkbarG.stkbar)-len(stkbar))
					print("\n")
					throw("missed stack barrier")
				}
				frame.lr = stkbar[0].savedLRVal
				stkbar = stkbar[1:]
			}
			flr = findfunc(frame.lr)
			if flr == nil {
				// This happens if you get a profiling interrupt at just the wrong time.
				// In that context it is okay to stop early.
				// But if callback is set, we're doing a garbage collection and must
				// get everything, so crash loudly.
				if callback != nil {
					print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
					throw("unknown caller pc")
				}
			}
		}

		frame.varp = frame.fp
		if !usesLR {
			// On x86, call instruction pushes return PC before entering new function.
			frame.varp -= regSize
		}

		// If framepointer_enabled and there's a frame, then
		// there's a saved bp here.
		if framepointer_enabled && GOARCH == "amd64" && frame.varp > frame.sp {
			frame.varp -= regSize
		}

		// Derive size of arguments.
		// Most functions have a fixed-size argument block,
		// so we can use metadata about the function f.
		// Not all, though: there are some variadic functions
		// in package runtime and reflect, and for those we use call-specific
		// metadata recorded by f's caller.
		if callback != nil || printing {
			frame.argp = frame.fp
			if usesLR {
				frame.argp += ptrSize
			}
			setArgInfo(&frame, f, callback != nil)
		}

		// Determine frame's 'continuation PC', where it can continue.
		// Normally this is the return address on the stack, but if sigpanic
		// is immediately below this function on the stack, then the frame
		// stopped executing due to a trap, and frame.pc is probably not
		// a safe point for looking up liveness information. In this panicking case,
		// the function either doesn't return at all (if it has no defers or if the
		// defers do not recover) or it returns from one of the calls to
		// deferproc a second time (if the corresponding deferred func recovers).
		// It suffices to assume that the most recent deferproc is the one that
		// returns; everything live at earlier deferprocs is still live at that one.
		frame.continpc = frame.pc
		if waspanic {
			if _defer != nil && _defer.sp == frame.sp {
				frame.continpc = _defer.pc
			} else {
				frame.continpc = 0
			}
		}

		// Unwind our local defer stack past this frame.
		for _defer != nil && (_defer.sp == frame.sp || _defer.sp == _NoArgs) {
			_defer = _defer.link
		}

		if skip > 0 {
			skip--
			goto skipped
		}

		if pcbuf != nil {
			(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = frame.pc
		}
		if callback != nil {
			if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
				return n
			}
		}
		if printing {
			if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp) {
				// Print during crash.
				//	main(0x1, 0x2, 0x3)
				//		/home/rsc/go/src/runtime/x.go:23 +0xf
				//
				tracepc := frame.pc // back up to CALL instruction for funcline.
				if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry && !waspanic {
					tracepc--
				}
				print(funcname(f), "(")
				argp := (*[100]uintptr)(unsafe.Pointer(frame.argp))
				for i := uintptr(0); i < frame.arglen/ptrSize; i++ {
					if i >= 10 {
						print(", ...")
						break
					}
					if i != 0 {
						print(", ")
					}
					print(hex(argp[i]))
				}
				print(")\n")
				file, line := funcline(f, tracepc)
				print("\t", file, ":", line)
				if frame.pc > f.entry {
					print(" +", hex(frame.pc-f.entry))
				}
				if g.m.throwing > 0 && gp == g.m.curg || gotraceback >= 2 {
					print(" fp=", hex(frame.fp), " sp=", hex(frame.sp))
				}
				print("\n")
				nprint++
			}
		}
		n++

	skipped:
		waspanic = f.entry == sigpanicPC

		// Do not unwind past the bottom of the stack.
		if flr == nil {
			break
		}

		// Unwind to next frame.
		frame.fn = flr
		frame.pc = frame.lr
		frame.lr = 0
		frame.sp = frame.fp
		frame.fp = 0
		frame.argmap = nil

		// On link register architectures, sighandler saves the LR on stack
		// before faking a call to sigpanic.
		if usesLR && waspanic {
			x := *(*uintptr)(unsafe.Pointer(frame.sp))
			frame.sp += ptrSize
			if GOARCH == "arm64" {
				// arm64 needs 16-byte aligned SP, always
				frame.sp += ptrSize
			}
			f = findfunc(frame.pc)
			frame.fn = f
			if f == nil {
				frame.pc = x
			} else if funcspdelta(f, frame.pc) == 0 {
				frame.lr = x
			}
		}
	}

	if printing {
		n = nprint
	}

	// If callback != nil, we're being called to gather stack information during
	// garbage collection or stack growth. In that context, require that we used
	// up the entire defer stack. If not, then there is a bug somewhere and the
	// garbage collection or stack growth may not have seen the correct picture
	// of the stack. Crash now instead of silently executing the garbage collection
	// or stack copy incorrectly and setting up for a mysterious crash later.
	//
	// Note that panic != nil is okay here: there can be leftover panics,
	// because the defers on the panic stack do not nest in frame order as
	// they do on the defer stack. If you have:
	//
	//	frame 1 defers d1
	//	frame 2 defers d2
	//	frame 3 defers d3
	//	frame 4 panics
	//	frame 4's panic starts running defers
	//	frame 5, running d3, defers d4
	//	frame 5 panics
	//	frame 5's panic starts running defers
	//	frame 6, running d4, garbage collects
	//	frame 6, running d2, garbage collects
	//
	// During the execution of d4, the panic stack is d4 -> d3, which
	// is nested properly, and we'll treat frame 3 as resumable, because we
	// can find d3. (And in fact frame 3 is resumable. If d4 recovers
	// and frame 5 continues running, d3, d3 can recover and we'll
	// resume execution in (returning from) frame 3.)
	//
	// During the execution of d2, however, the panic stack is d2 -> d3,
	// which is inverted. The scan will match d2 to frame 2 but having
	// d2 on the stack until then means it will not match d3 to frame 3.
	// This is okay: if we're running d2, then all the defers after d2 have
	// completed and their corresponding frames are dead. Not finding d3
	// for frame 3 means we'll set frame 3's continpc == 0, which is correct
	// (frame 3 is dead). At the end of the walk the panic stack can thus
	// contain defers (d3 in this case) for dead frames. The inversion here
	// always indicates a dead frame, and the effect of the inversion on the
	// scan is to hide those dead frames, so the scan is still okay:
	// what's left on the panic stack are exactly (and only) the dead frames.
	//
	// We require callback != nil here because only when callback != nil
	// do we know that gentraceback is being called in a "must be correct"
	// context as opposed to a "best effort" context. The tracebacks with
	// callbacks only happen when everything is stopped nicely.
	// At other times, such as when gathering a stack for a profiling signal
	// or when printing a traceback during a crash, everything may not be
	// stopped nicely, and the stack walk may not be able to complete.
	// It's okay in those situations not to use up the entire defer stack:
	// incomplete information then is still better than nothing.
	if callback != nil && n < max && _defer != nil {
		if _defer != nil {
			print("runtime: g", gp.goid, ": leftover defer sp=", hex(_defer.sp), " pc=", hex(_defer.pc), "\n")
		}
		for _defer = gp._defer; _defer != nil; _defer = _defer.link {
			print("\tdefer ", _defer, " sp=", hex(_defer.sp), " pc=", hex(_defer.pc), "\n")
		}
		throw("traceback has leftover defers")
	}

	if callback != nil && n < max && len(stkbar) > 0 {
		print("runtime: g", gp.goid, ": leftover stack barriers ")
		gcPrintStkbars(stkbarG, len(stkbarG.stkbar)-len(stkbar))
		print("\n")
		throw("traceback has leftover stack barriers")
	}

	return n
}

func setArgInfo(frame *stkframe, f *_func, needArgMap bool) {
	frame.arglen = uintptr(f.args)
	if needArgMap && f.args == _ArgsSizeUnknown {
		// Extract argument bitmaps for reflect stubs from the calls they made to reflect.
		switch funcname(f) {
		case "reflect.makeFuncStub", "reflect.methodValueCall":
			arg0 := frame.sp
			if usesLR {
				arg0 += ptrSize
			}
			fn := *(**[2]uintptr)(unsafe.Pointer(arg0))
			if fn[0] != f.entry {
				print("runtime: confused by ", funcname(f), "\n")
				throw("reflect mismatch")
			}
			bv := (*bitvector)(unsafe.Pointer(fn[1]))
			frame.arglen = uintptr(bv.n * ptrSize)
			frame.argmap = bv
		}
	}
}

func printcreatedby(gp *g) {
	// Show what created goroutine, except main goroutine (goid 1).
	pc := gp.gopc
	f := findfunc(pc)
	if f != nil && showframe(f, gp) && gp.goid != 1 {
		print("created by ", funcname(f), "\n")
		tracepc := pc // back up to CALL instruction for funcline.
		if pc > f.entry {
			tracepc -= _PCQuantum
		}
		file, line := funcline(f, tracepc)
		print("\t", file, ":", line)
		if pc > f.entry {
			print(" +", hex(pc-f.entry))
		}
		print("\n")
	}
}

func traceback(pc, sp, lr uintptr, gp *g) {
	traceback1(pc, sp, lr, gp, 0)
}

// tracebacktrap is like traceback but expects that the PC and SP were obtained
// from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
// Because they are from a trap instead of from a saved pair,
// the initial PC must not be rewound to the previous instruction.
// (All the saved pairs record a PC that is a return address, so we
// rewind it into the CALL instruction.)
func tracebacktrap(pc, sp, lr uintptr, gp *g) {
	traceback1(pc, sp, lr, gp, _TraceTrap)
}

func traceback1(pc, sp, lr uintptr, gp *g, flags uint) {
	var n int
	if readgstatus(gp)&^_Gscan == _Gsyscall {
		// Override registers if blocked in system call.
		pc = gp.syscallpc
		sp = gp.syscallsp
		flags &^= _TraceTrap
	}
	// Print traceback. By default, omits runtime frames.
	// If that means we print nothing at all, repeat forcing all frames printed.
	n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags)
	if n == 0 && (flags&_TraceRuntimeFrames) == 0 {
		n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames)
	}
	if n == _TracebackMaxFrames {
		print("...additional frames elided...\n")
	}
	printcreatedby(gp)
}

func callers(skip int, pcbuf []uintptr) int {
	sp := getcallersp(unsafe.Pointer(&skip))
	pc := uintptr(getcallerpc(unsafe.Pointer(&skip)))
	gp := getg()
	var n int
	systemstack(func() {
		n = gentraceback(pc, sp, 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
	})
	return n
}

func gcallers(gp *g, skip int, pcbuf []uintptr) int {
	return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
}

func showframe(f *_func, gp *g) bool {
	g := getg()
	if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) {
		return true
	}
	traceback := gotraceback(nil)
	name := funcname(f)

	// Special case: always show runtime.panic frame, so that we can
	// see where a panic started in the middle of a stack trace.
	// See golang.org/issue/5832.
	if name == "runtime.panic" {
		return true
	}

	return traceback > 1 || f != nil && contains(name, ".") && (!hasprefix(name, "runtime.") || isExportedRuntime(name))
}

// isExportedRuntime reports whether name is an exported runtime function.
// It is only for runtime functions, so ASCII A-Z is fine.
func isExportedRuntime(name string) bool {
	const n = len("runtime.")
	return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
}

var gStatusStrings = [...]string{
	_Gidle:      "idle",
	_Grunnable:  "runnable",
	_Grunning:   "running",
	_Gsyscall:   "syscall",
	_Gwaiting:   "waiting",
	_Gdead:      "dead",
	_Genqueue:   "enqueue",
	_Gcopystack: "copystack",
}

var gScanStatusStrings = [...]string{
	0:          "scan",
	_Grunnable: "scanrunnable",
	_Grunning:  "scanrunning",
	_Gsyscall:  "scansyscall",
	_Gwaiting:  "scanwaiting",
	_Gdead:     "scandead",
	_Genqueue:  "scanenqueue",
}

func goroutineheader(gp *g) {
	gpstatus := readgstatus(gp)

	// Basic string status
	var status string
	if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
		status = gStatusStrings[gpstatus]
	} else if gpstatus&_Gscan != 0 && 0 <= gpstatus&^_Gscan && gpstatus&^_Gscan < uint32(len(gStatusStrings)) {
		status = gStatusStrings[gpstatus&^_Gscan]
	} else {
		status = "???"
	}

	// Override.
	if (gpstatus == _Gwaiting || gpstatus == _Gscanwaiting) && gp.waitreason != "" {
		status = gp.waitreason
	}

	// approx time the G is blocked, in minutes
	var waitfor int64
	gpstatus &^= _Gscan // drop the scan bit
	if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
		waitfor = (nanotime() - gp.waitsince) / 60e9
	}
	print("goroutine ", gp.goid, " [", status)
	if waitfor >= 1 {
		print(", ", waitfor, " minutes")
	}
	if gp.lockedm != nil {
		print(", locked to thread")
	}
	print("]:\n")
}

func tracebackothers(me *g) {
	level := gotraceback(nil)

	// Show the current goroutine first, if we haven't already.
	g := getg()
	gp := g.m.curg
	if gp != nil && gp != me {
		print("\n")
		goroutineheader(gp)
		traceback(^uintptr(0), ^uintptr(0), 0, gp)
	}

	lock(&allglock)
	for _, gp := range allgs {
		if gp == me || gp == g.m.curg || readgstatus(gp) == _Gdead || isSystemGoroutine(gp) && level < 2 {
			continue
		}
		print("\n")
		goroutineheader(gp)
		// Note: gp.m == g.m occurs when tracebackothers is
		// called from a signal handler initiated during a
		// systemstack call.  The original G is still in the
		// running state, and we want to print its stack.
		if gp.m != g.m && readgstatus(gp)&^_Gscan == _Grunning {
			print("\tgoroutine running on other thread; stack unavailable\n")
			printcreatedby(gp)
		} else {
			traceback(^uintptr(0), ^uintptr(0), 0, gp)
		}
	}
	unlock(&allglock)
}

// Does f mark the top of a goroutine stack?
func topofstack(f *_func) bool {
	pc := f.entry
	return pc == goexitPC ||
		pc == mstartPC ||
		pc == mcallPC ||
		pc == morestackPC ||
		pc == rt0_goPC ||
		externalthreadhandlerp != 0 && pc == externalthreadhandlerp
}

// isSystemGoroutine reports whether the goroutine g must be omitted in
// stack dumps and deadlock detector.
func isSystemGoroutine(gp *g) bool {
	pc := gp.startpc
	return pc == runfinqPC && !fingRunning ||
		pc == backgroundgcPC ||
		pc == bgsweepPC ||
		pc == forcegchelperPC ||
		pc == timerprocPC ||
		pc == gcBgMarkWorkerPC
}