aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/symtab.go
blob: 00b0a850e0d4635239d1112f717243238bd6d2a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"runtime/internal/sys"
	"unsafe"
)

// NOTE: Func does not expose the actual unexported fields, because we return *Func
// values to users, and we want to keep them from being able to overwrite the data
// with (say) *f = Func{}.
// All code operating on a *Func must call raw to get the *_func instead.

// A Func represents a Go function in the running binary.
type Func struct {
	opaque struct{} // unexported field to disallow conversions
}

func (f *Func) raw() *_func {
	return (*_func)(unsafe.Pointer(f))
}

// funcdata.h
const (
	_PCDATA_StackMapIndex       = 0
	_FUNCDATA_ArgsPointerMaps   = 0
	_FUNCDATA_LocalsPointerMaps = 1
	_ArgsSizeUnknown            = -0x80000000
)

// moduledata records information about the layout of the executable
// image. It is written by the linker. Any changes here must be
// matched changes to the code in cmd/internal/ld/symtab.go:symtab.
// moduledata is stored in read-only memory; none of the pointers here
// are visible to the garbage collector.
type moduledata struct {
	pclntable    []byte
	ftab         []functab
	filetab      []uint32
	findfunctab  uintptr
	minpc, maxpc uintptr

	text, etext           uintptr
	noptrdata, enoptrdata uintptr
	data, edata           uintptr
	bss, ebss             uintptr
	noptrbss, enoptrbss   uintptr
	end, gcdata, gcbss    uintptr

	typelinks []*_type

	modulename   string
	modulehashes []modulehash

	gcdatamask, gcbssmask bitvector

	next *moduledata
}

// For each shared library a module links against, the linker creates an entry in the
// moduledata.modulehashes slice containing the name of the module, the abi hash seen
// at link time and a pointer to the runtime abi hash. These are checked in
// moduledataverify1 below.
type modulehash struct {
	modulename   string
	linktimehash string
	runtimehash  *string
}

var firstmoduledata moduledata  // linker symbol
var lastmoduledatap *moduledata // linker symbol

type functab struct {
	entry   uintptr
	funcoff uintptr
}

const minfunc = 16                 // minimum function size
const pcbucketsize = 256 * minfunc // size of bucket in the pc->func lookup table

// findfunctab is an array of these structures.
// Each bucket represents 4096 bytes of the text segment.
// Each subbucket represents 256 bytes of the text segment.
// To find a function given a pc, locate the bucket and subbucket for
// that pc.  Add together the idx and subbucket value to obtain a
// function index.  Then scan the functab array starting at that
// index to find the target function.
// This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead.
type findfuncbucket struct {
	idx        uint32
	subbuckets [16]byte
}

func moduledataverify() {
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		moduledataverify1(datap)
	}
}

const debugPcln = false

func moduledataverify1(datap *moduledata) {
	// See golang.org/s/go12symtab for header: 0xfffffffb,
	// two zero bytes, a byte giving the PC quantum,
	// and a byte giving the pointer width in bytes.
	pcln := *(**[8]byte)(unsafe.Pointer(&datap.pclntable))
	pcln32 := *(**[2]uint32)(unsafe.Pointer(&datap.pclntable))
	if pcln32[0] != 0xfffffffb || pcln[4] != 0 || pcln[5] != 0 || pcln[6] != sys.PCQuantum || pcln[7] != sys.PtrSize {
		println("runtime: function symbol table header:", hex(pcln32[0]), hex(pcln[4]), hex(pcln[5]), hex(pcln[6]), hex(pcln[7]))
		throw("invalid function symbol table\n")
	}

	// ftab is lookup table for function by program counter.
	nftab := len(datap.ftab) - 1
	var pcCache pcvalueCache
	for i := 0; i < nftab; i++ {
		// NOTE: ftab[nftab].entry is legal; it is the address beyond the final function.
		if datap.ftab[i].entry > datap.ftab[i+1].entry {
			f1 := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff]))
			f2 := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff]))
			f2name := "end"
			if i+1 < nftab {
				f2name = funcname(f2)
			}
			println("function symbol table not sorted by program counter:", hex(datap.ftab[i].entry), funcname(f1), ">", hex(datap.ftab[i+1].entry), f2name)
			for j := 0; j <= i; j++ {
				print("\t", hex(datap.ftab[j].entry), " ", funcname((*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[j].funcoff]))), "\n")
			}
			throw("invalid runtime symbol table")
		}

		if debugPcln || nftab-i < 5 {
			// Check a PC near but not at the very end.
			// The very end might be just padding that is not covered by the tables.
			// No architecture rounds function entries to more than 16 bytes,
			// but if one came along we'd need to subtract more here.
			// But don't use the next PC if it corresponds to a foreign object chunk
			// (no pcln table, f2.pcln == 0). That chunk might have an alignment
			// more than 16 bytes.
			f := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff]))
			end := f.entry
			if i+1 < nftab {
				f2 := (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff]))
				if f2.pcln != 0 {
					end = f2.entry - 16
					if end < f.entry {
						end = f.entry
					}
				}
			}
			pcvalue(f, f.pcfile, end, &pcCache, true)
			pcvalue(f, f.pcln, end, &pcCache, true)
			pcvalue(f, f.pcsp, end, &pcCache, true)
		}
	}

	if datap.minpc != datap.ftab[0].entry ||
		datap.maxpc != datap.ftab[nftab].entry {
		throw("minpc or maxpc invalid")
	}

	for _, modulehash := range datap.modulehashes {
		if modulehash.linktimehash != *modulehash.runtimehash {
			println("abi mismatch detected between", datap.modulename, "and", modulehash.modulename)
			throw("abi mismatch")
		}
	}
}

// FuncForPC returns a *Func describing the function that contains the
// given program counter address, or else nil.
func FuncForPC(pc uintptr) *Func {
	return (*Func)(unsafe.Pointer(findfunc(pc)))
}

// Name returns the name of the function.
func (f *Func) Name() string {
	return funcname(f.raw())
}

// Entry returns the entry address of the function.
func (f *Func) Entry() uintptr {
	return f.raw().entry
}

// FileLine returns the file name and line number of the
// source code corresponding to the program counter pc.
// The result will not be accurate if pc is not a program
// counter within f.
func (f *Func) FileLine(pc uintptr) (file string, line int) {
	// Pass strict=false here, because anyone can call this function,
	// and they might just be wrong about targetpc belonging to f.
	file, line32 := funcline1(f.raw(), pc, false)
	return file, int(line32)
}

func findmoduledatap(pc uintptr) *moduledata {
	for datap := &firstmoduledata; datap != nil; datap = datap.next {
		if datap.minpc <= pc && pc <= datap.maxpc {
			return datap
		}
	}
	return nil
}

func findfunc(pc uintptr) *_func {
	datap := findmoduledatap(pc)
	if datap == nil {
		return nil
	}
	const nsub = uintptr(len(findfuncbucket{}.subbuckets))

	x := pc - datap.minpc
	b := x / pcbucketsize
	i := x % pcbucketsize / (pcbucketsize / nsub)

	ffb := (*findfuncbucket)(add(unsafe.Pointer(datap.findfunctab), b*unsafe.Sizeof(findfuncbucket{})))
	idx := ffb.idx + uint32(ffb.subbuckets[i])
	if pc < datap.ftab[idx].entry {
		throw("findfunc: bad findfunctab entry")
	}

	// linear search to find func with pc >= entry.
	for datap.ftab[idx+1].entry <= pc {
		idx++
	}
	return (*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[idx].funcoff]))
}

type pcvalueCache struct {
	entries [16]pcvalueCacheEnt
}

type pcvalueCacheEnt struct {
	// targetpc and off together are the key of this cache entry.
	targetpc uintptr
	off      int32
	// val is the value of this cached pcvalue entry.
	val int32
}

func pcvalue(f *_func, off int32, targetpc uintptr, cache *pcvalueCache, strict bool) int32 {
	if off == 0 {
		return -1
	}

	// Check the cache. This speeds up walks of deep stacks, which
	// tend to have the same recursive functions over and over.
	//
	// This cache is small enough that full associativity is
	// cheaper than doing the hashing for a less associative
	// cache.
	if cache != nil {
		for _, ent := range cache.entries {
			// We check off first because we're more
			// likely to have multiple entries with
			// different offsets for the same targetpc
			// than the other way around, so we'll usually
			// fail in the first clause.
			if ent.off == off && ent.targetpc == targetpc {
				return ent.val
			}
		}
	}

	datap := findmoduledatap(f.entry) // inefficient
	if datap == nil {
		if strict && panicking == 0 {
			print("runtime: no module data for ", hex(f.entry), "\n")
			throw("no module data")
		}
		return -1
	}
	p := datap.pclntable[off:]
	pc := f.entry
	val := int32(-1)
	for {
		var ok bool
		p, ok = step(p, &pc, &val, pc == f.entry)
		if !ok {
			break
		}
		if targetpc < pc {
			// Replace a random entry in the cache. Random
			// replacement prevents a performance cliff if
			// a recursive stack's cycle is slightly
			// larger than the cache.
			if cache != nil {
				ci := fastrand1() % uint32(len(cache.entries))
				cache.entries[ci] = pcvalueCacheEnt{
					targetpc: targetpc,
					off:      off,
					val:      val,
				}
			}

			return val
		}
	}

	// If there was a table, it should have covered all program counters.
	// If not, something is wrong.
	if panicking != 0 || !strict {
		return -1
	}

	print("runtime: invalid pc-encoded table f=", funcname(f), " pc=", hex(pc), " targetpc=", hex(targetpc), " tab=", p, "\n")

	p = datap.pclntable[off:]
	pc = f.entry
	val = -1
	for {
		var ok bool
		p, ok = step(p, &pc, &val, pc == f.entry)
		if !ok {
			break
		}
		print("\tvalue=", val, " until pc=", hex(pc), "\n")
	}

	throw("invalid runtime symbol table")
	return -1
}

func cfuncname(f *_func) *byte {
	if f == nil || f.nameoff == 0 {
		return nil
	}
	datap := findmoduledatap(f.entry) // inefficient
	if datap == nil {
		return nil
	}
	return &datap.pclntable[f.nameoff]
}

func funcname(f *_func) string {
	return gostringnocopy(cfuncname(f))
}

func funcline1(f *_func, targetpc uintptr, strict bool) (file string, line int32) {
	datap := findmoduledatap(f.entry) // inefficient
	if datap == nil {
		return "?", 0
	}
	fileno := int(pcvalue(f, f.pcfile, targetpc, nil, strict))
	line = pcvalue(f, f.pcln, targetpc, nil, strict)
	if fileno == -1 || line == -1 || fileno >= len(datap.filetab) {
		// print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n")
		return "?", 0
	}
	file = gostringnocopy(&datap.pclntable[datap.filetab[fileno]])
	return
}

func funcline(f *_func, targetpc uintptr) (file string, line int32) {
	return funcline1(f, targetpc, true)
}

func funcspdelta(f *_func, targetpc uintptr, cache *pcvalueCache) int32 {
	x := pcvalue(f, f.pcsp, targetpc, cache, true)
	if x&(sys.PtrSize-1) != 0 {
		print("invalid spdelta ", funcname(f), " ", hex(f.entry), " ", hex(targetpc), " ", hex(f.pcsp), " ", x, "\n")
	}
	return x
}

func pcdatavalue(f *_func, table int32, targetpc uintptr, cache *pcvalueCache) int32 {
	if table < 0 || table >= f.npcdata {
		return -1
	}
	off := *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4))
	return pcvalue(f, off, targetpc, cache, true)
}

func funcdata(f *_func, i int32) unsafe.Pointer {
	if i < 0 || i >= f.nfuncdata {
		return nil
	}
	p := add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(f.npcdata)*4)
	if sys.PtrSize == 8 && uintptr(p)&4 != 0 {
		if uintptr(unsafe.Pointer(f))&4 != 0 {
			println("runtime: misaligned func", f)
		}
		p = add(p, 4)
	}
	return *(*unsafe.Pointer)(add(p, uintptr(i)*sys.PtrSize))
}

// step advances to the next pc, value pair in the encoded table.
func step(p []byte, pc *uintptr, val *int32, first bool) (newp []byte, ok bool) {
	p, uvdelta := readvarint(p)
	if uvdelta == 0 && !first {
		return nil, false
	}
	if uvdelta&1 != 0 {
		uvdelta = ^(uvdelta >> 1)
	} else {
		uvdelta >>= 1
	}
	vdelta := int32(uvdelta)
	p, pcdelta := readvarint(p)
	*pc += uintptr(pcdelta * sys.PCQuantum)
	*val += vdelta
	return p, true
}

// readvarint reads a varint from p.
func readvarint(p []byte) (newp []byte, val uint32) {
	var v, shift uint32
	for {
		b := p[0]
		p = p[1:]
		v |= (uint32(b) & 0x7F) << shift
		if b&0x80 == 0 {
			break
		}
		shift += 7
	}
	return p, v
}

type stackmap struct {
	n        int32   // number of bitmaps
	nbit     int32   // number of bits in each bitmap
	bytedata [1]byte // bitmaps, each starting on a 32-bit boundary
}

//go:nowritebarrier
func stackmapdata(stkmap *stackmap, n int32) bitvector {
	if n < 0 || n >= stkmap.n {
		throw("stackmapdata: index out of range")
	}
	return bitvector{stkmap.nbit, (*byte)(add(unsafe.Pointer(&stkmap.bytedata), uintptr(n*((stkmap.nbit+31)/32*4))))}
}