aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/pprof/proto.go
blob: db9384eb214e6352f2c2844c6acaa48f1fb572e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package pprof

import (
	"bytes"
	"compress/gzip"
	"fmt"
	"internal/abi"
	"io"
	"runtime"
	"strconv"
	"strings"
	"time"
	"unsafe"
)

// lostProfileEvent is the function to which lost profiling
// events are attributed.
// (The name shows up in the pprof graphs.)
func lostProfileEvent() { lostProfileEvent() }

// A profileBuilder writes a profile incrementally from a
// stream of profile samples delivered by the runtime.
type profileBuilder struct {
	start      time.Time
	end        time.Time
	havePeriod bool
	period     int64
	m          profMap

	// encoding state
	w         io.Writer
	zw        *gzip.Writer
	pb        protobuf
	strings   []string
	stringMap map[string]int
	locs      map[uintptr]locInfo // list of locInfo starting with the given PC.
	funcs     map[string]int      // Package path-qualified function name to Function.ID
	mem       []memMap
	deck      pcDeck
}

type memMap struct {
	// initialized as reading mapping
	start   uintptr // Address at which the binary (or DLL) is loaded into memory.
	end     uintptr // The limit of the address range occupied by this mapping.
	offset  uint64  // Offset in the binary that corresponds to the first mapped address.
	file    string  // The object this entry is loaded from.
	buildID string  // A string that uniquely identifies a particular program version with high probability.

	funcs symbolizeFlag
	fake  bool // map entry was faked; /proc/self/maps wasn't available
}

// symbolizeFlag keeps track of symbolization result.
//
//	0                  : no symbol lookup was performed
//	1<<0 (lookupTried) : symbol lookup was performed
//	1<<1 (lookupFailed): symbol lookup was performed but failed
type symbolizeFlag uint8

const (
	lookupTried  symbolizeFlag = 1 << iota
	lookupFailed symbolizeFlag = 1 << iota
)

const (
	// message Profile
	tagProfile_SampleType        = 1  // repeated ValueType
	tagProfile_Sample            = 2  // repeated Sample
	tagProfile_Mapping           = 3  // repeated Mapping
	tagProfile_Location          = 4  // repeated Location
	tagProfile_Function          = 5  // repeated Function
	tagProfile_StringTable       = 6  // repeated string
	tagProfile_DropFrames        = 7  // int64 (string table index)
	tagProfile_KeepFrames        = 8  // int64 (string table index)
	tagProfile_TimeNanos         = 9  // int64
	tagProfile_DurationNanos     = 10 // int64
	tagProfile_PeriodType        = 11 // ValueType (really optional string???)
	tagProfile_Period            = 12 // int64
	tagProfile_Comment           = 13 // repeated int64
	tagProfile_DefaultSampleType = 14 // int64

	// message ValueType
	tagValueType_Type = 1 // int64 (string table index)
	tagValueType_Unit = 2 // int64 (string table index)

	// message Sample
	tagSample_Location = 1 // repeated uint64
	tagSample_Value    = 2 // repeated int64
	tagSample_Label    = 3 // repeated Label

	// message Label
	tagLabel_Key = 1 // int64 (string table index)
	tagLabel_Str = 2 // int64 (string table index)
	tagLabel_Num = 3 // int64

	// message Mapping
	tagMapping_ID              = 1  // uint64
	tagMapping_Start           = 2  // uint64
	tagMapping_Limit           = 3  // uint64
	tagMapping_Offset          = 4  // uint64
	tagMapping_Filename        = 5  // int64 (string table index)
	tagMapping_BuildID         = 6  // int64 (string table index)
	tagMapping_HasFunctions    = 7  // bool
	tagMapping_HasFilenames    = 8  // bool
	tagMapping_HasLineNumbers  = 9  // bool
	tagMapping_HasInlineFrames = 10 // bool

	// message Location
	tagLocation_ID        = 1 // uint64
	tagLocation_MappingID = 2 // uint64
	tagLocation_Address   = 3 // uint64
	tagLocation_Line      = 4 // repeated Line

	// message Line
	tagLine_FunctionID = 1 // uint64
	tagLine_Line       = 2 // int64

	// message Function
	tagFunction_ID         = 1 // uint64
	tagFunction_Name       = 2 // int64 (string table index)
	tagFunction_SystemName = 3 // int64 (string table index)
	tagFunction_Filename   = 4 // int64 (string table index)
	tagFunction_StartLine  = 5 // int64
)

// stringIndex adds s to the string table if not already present
// and returns the index of s in the string table.
func (b *profileBuilder) stringIndex(s string) int64 {
	id, ok := b.stringMap[s]
	if !ok {
		id = len(b.strings)
		b.strings = append(b.strings, s)
		b.stringMap[s] = id
	}
	return int64(id)
}

func (b *profileBuilder) flush() {
	const dataFlush = 4096
	if b.pb.nest == 0 && len(b.pb.data) > dataFlush {
		b.zw.Write(b.pb.data)
		b.pb.data = b.pb.data[:0]
	}
}

// pbValueType encodes a ValueType message to b.pb.
func (b *profileBuilder) pbValueType(tag int, typ, unit string) {
	start := b.pb.startMessage()
	b.pb.int64(tagValueType_Type, b.stringIndex(typ))
	b.pb.int64(tagValueType_Unit, b.stringIndex(unit))
	b.pb.endMessage(tag, start)
}

// pbSample encodes a Sample message to b.pb.
func (b *profileBuilder) pbSample(values []int64, locs []uint64, labels func()) {
	start := b.pb.startMessage()
	b.pb.int64s(tagSample_Value, values)
	b.pb.uint64s(tagSample_Location, locs)
	if labels != nil {
		labels()
	}
	b.pb.endMessage(tagProfile_Sample, start)
	b.flush()
}

// pbLabel encodes a Label message to b.pb.
func (b *profileBuilder) pbLabel(tag int, key, str string, num int64) {
	start := b.pb.startMessage()
	b.pb.int64Opt(tagLabel_Key, b.stringIndex(key))
	b.pb.int64Opt(tagLabel_Str, b.stringIndex(str))
	b.pb.int64Opt(tagLabel_Num, num)
	b.pb.endMessage(tag, start)
}

// pbLine encodes a Line message to b.pb.
func (b *profileBuilder) pbLine(tag int, funcID uint64, line int64) {
	start := b.pb.startMessage()
	b.pb.uint64Opt(tagLine_FunctionID, funcID)
	b.pb.int64Opt(tagLine_Line, line)
	b.pb.endMessage(tag, start)
}

// pbMapping encodes a Mapping message to b.pb.
func (b *profileBuilder) pbMapping(tag int, id, base, limit, offset uint64, file, buildID string, hasFuncs bool) {
	start := b.pb.startMessage()
	b.pb.uint64Opt(tagMapping_ID, id)
	b.pb.uint64Opt(tagMapping_Start, base)
	b.pb.uint64Opt(tagMapping_Limit, limit)
	b.pb.uint64Opt(tagMapping_Offset, offset)
	b.pb.int64Opt(tagMapping_Filename, b.stringIndex(file))
	b.pb.int64Opt(tagMapping_BuildID, b.stringIndex(buildID))
	// TODO: we set HasFunctions if all symbols from samples were symbolized (hasFuncs).
	// Decide what to do about HasInlineFrames and HasLineNumbers.
	// Also, another approach to handle the mapping entry with
	// incomplete symbolization results is to duplicate the mapping
	// entry (but with different Has* fields values) and use
	// different entries for symbolized locations and unsymbolized locations.
	if hasFuncs {
		b.pb.bool(tagMapping_HasFunctions, true)
	}
	b.pb.endMessage(tag, start)
}

func allFrames(addr uintptr) ([]runtime.Frame, symbolizeFlag) {
	// Expand this one address using CallersFrames so we can cache
	// each expansion. In general, CallersFrames takes a whole
	// stack, but in this case we know there will be no skips in
	// the stack and we have return PCs anyway.
	frames := runtime.CallersFrames([]uintptr{addr})
	frame, more := frames.Next()
	if frame.Function == "runtime.goexit" {
		// Short-circuit if we see runtime.goexit so the loop
		// below doesn't allocate a useless empty location.
		return nil, 0
	}

	symbolizeResult := lookupTried
	if frame.PC == 0 || frame.Function == "" || frame.File == "" || frame.Line == 0 {
		symbolizeResult |= lookupFailed
	}

	if frame.PC == 0 {
		// If we failed to resolve the frame, at least make up
		// a reasonable call PC. This mostly happens in tests.
		frame.PC = addr - 1
	}
	ret := []runtime.Frame{frame}
	for frame.Function != "runtime.goexit" && more {
		frame, more = frames.Next()
		ret = append(ret, frame)
	}
	return ret, symbolizeResult
}

type locInfo struct {
	// location id assigned by the profileBuilder
	id uint64

	// sequence of PCs, including the fake PCs returned by the traceback
	// to represent inlined functions
	// https://github.com/golang/go/blob/d6f2f833c93a41ec1c68e49804b8387a06b131c5/src/runtime/traceback.go#L347-L368
	pcs []uintptr

	// firstPCFrames and firstPCSymbolizeResult hold the results of the
	// allFrames call for the first (leaf-most) PC this locInfo represents
	firstPCFrames          []runtime.Frame
	firstPCSymbolizeResult symbolizeFlag
}

// newProfileBuilder returns a new profileBuilder.
// CPU profiling data obtained from the runtime can be added
// by calling b.addCPUData, and then the eventual profile
// can be obtained by calling b.finish.
func newProfileBuilder(w io.Writer) *profileBuilder {
	zw, _ := gzip.NewWriterLevel(w, gzip.BestSpeed)
	b := &profileBuilder{
		w:         w,
		zw:        zw,
		start:     time.Now(),
		strings:   []string{""},
		stringMap: map[string]int{"": 0},
		locs:      map[uintptr]locInfo{},
		funcs:     map[string]int{},
	}
	b.readMapping()
	return b
}

// addCPUData adds the CPU profiling data to the profile.
//
// The data must be a whole number of records, as delivered by the runtime.
// len(tags) must be equal to the number of records in data.
func (b *profileBuilder) addCPUData(data []uint64, tags []unsafe.Pointer) error {
	if !b.havePeriod {
		// first record is period
		if len(data) < 3 {
			return fmt.Errorf("truncated profile")
		}
		if data[0] != 3 || data[2] == 0 {
			return fmt.Errorf("malformed profile")
		}
		// data[2] is sampling rate in Hz. Convert to sampling
		// period in nanoseconds.
		b.period = 1e9 / int64(data[2])
		b.havePeriod = true
		data = data[3:]
		// Consume tag slot. Note that there isn't a meaningful tag
		// value for this record.
		tags = tags[1:]
	}

	// Parse CPU samples from the profile.
	// Each sample is 3+n uint64s:
	//	data[0] = 3+n
	//	data[1] = time stamp (ignored)
	//	data[2] = count
	//	data[3:3+n] = stack
	// If the count is 0 and the stack has length 1,
	// that's an overflow record inserted by the runtime
	// to indicate that stack[0] samples were lost.
	// Otherwise the count is usually 1,
	// but in a few special cases like lost non-Go samples
	// there can be larger counts.
	// Because many samples with the same stack arrive,
	// we want to deduplicate immediately, which we do
	// using the b.m profMap.
	for len(data) > 0 {
		if len(data) < 3 || data[0] > uint64(len(data)) {
			return fmt.Errorf("truncated profile")
		}
		if data[0] < 3 || tags != nil && len(tags) < 1 {
			return fmt.Errorf("malformed profile")
		}
		if len(tags) < 1 {
			return fmt.Errorf("mismatched profile records and tags")
		}
		count := data[2]
		stk := data[3:data[0]]
		data = data[data[0]:]
		tag := tags[0]
		tags = tags[1:]

		if count == 0 && len(stk) == 1 {
			// overflow record
			count = uint64(stk[0])
			stk = []uint64{
				// gentraceback guarantees that PCs in the
				// stack can be unconditionally decremented and
				// still be valid, so we must do the same.
				uint64(abi.FuncPCABIInternal(lostProfileEvent) + 1),
			}
		}
		b.m.lookup(stk, tag).count += int64(count)
	}

	if len(tags) != 0 {
		return fmt.Errorf("mismatched profile records and tags")
	}
	return nil
}

// build completes and returns the constructed profile.
func (b *profileBuilder) build() {
	b.end = time.Now()

	b.pb.int64Opt(tagProfile_TimeNanos, b.start.UnixNano())
	if b.havePeriod { // must be CPU profile
		b.pbValueType(tagProfile_SampleType, "samples", "count")
		b.pbValueType(tagProfile_SampleType, "cpu", "nanoseconds")
		b.pb.int64Opt(tagProfile_DurationNanos, b.end.Sub(b.start).Nanoseconds())
		b.pbValueType(tagProfile_PeriodType, "cpu", "nanoseconds")
		b.pb.int64Opt(tagProfile_Period, b.period)
	}

	values := []int64{0, 0}
	var locs []uint64

	for e := b.m.all; e != nil; e = e.nextAll {
		values[0] = e.count
		values[1] = e.count * b.period

		var labels func()
		if e.tag != nil {
			labels = func() {
				for k, v := range *(*labelMap)(e.tag) {
					b.pbLabel(tagSample_Label, k, v, 0)
				}
			}
		}

		locs = b.appendLocsForStack(locs[:0], e.stk)

		b.pbSample(values, locs, labels)
	}

	for i, m := range b.mem {
		hasFunctions := m.funcs == lookupTried // lookupTried but not lookupFailed
		b.pbMapping(tagProfile_Mapping, uint64(i+1), uint64(m.start), uint64(m.end), m.offset, m.file, m.buildID, hasFunctions)
	}

	// TODO: Anything for tagProfile_DropFrames?
	// TODO: Anything for tagProfile_KeepFrames?

	b.pb.strings(tagProfile_StringTable, b.strings)
	b.zw.Write(b.pb.data)
	b.zw.Close()
}

// appendLocsForStack appends the location IDs for the given stack trace to the given
// location ID slice, locs. The addresses in the stack are return PCs or 1 + the PC of
// an inline marker as the runtime traceback function returns.
//
// It may return an empty slice even if locs is non-empty, for example if locs consists
// solely of runtime.goexit. We still count these empty stacks in profiles in order to
// get the right cumulative sample count.
//
// It may emit to b.pb, so there must be no message encoding in progress.
func (b *profileBuilder) appendLocsForStack(locs []uint64, stk []uintptr) (newLocs []uint64) {
	b.deck.reset()

	// The last frame might be truncated. Recover lost inline frames.
	stk = runtime_expandFinalInlineFrame(stk)

	for len(stk) > 0 {
		addr := stk[0]
		if l, ok := b.locs[addr]; ok {
			// When generating code for an inlined function, the compiler adds
			// NOP instructions to the outermost function as a placeholder for
			// each layer of inlining. When the runtime generates tracebacks for
			// stacks that include inlined functions, it uses the addresses of
			// those NOPs as "fake" PCs on the stack as if they were regular
			// function call sites. But if a profiling signal arrives while the
			// CPU is executing one of those NOPs, its PC will show up as a leaf
			// in the profile with its own Location entry. So, always check
			// whether addr is a "fake" PC in the context of the current call
			// stack by trying to add it to the inlining deck before assuming
			// that the deck is complete.
			if len(b.deck.pcs) > 0 {
				if added := b.deck.tryAdd(addr, l.firstPCFrames, l.firstPCSymbolizeResult); added {
					stk = stk[1:]
					continue
				}
			}

			// first record the location if there is any pending accumulated info.
			if id := b.emitLocation(); id > 0 {
				locs = append(locs, id)
			}

			// then, record the cached location.
			locs = append(locs, l.id)

			// Skip the matching pcs.
			//
			// Even if stk was truncated due to the stack depth
			// limit, expandFinalInlineFrame above has already
			// fixed the truncation, ensuring it is long enough.
			stk = stk[len(l.pcs):]
			continue
		}

		frames, symbolizeResult := allFrames(addr)
		if len(frames) == 0 { // runtime.goexit.
			if id := b.emitLocation(); id > 0 {
				locs = append(locs, id)
			}
			stk = stk[1:]
			continue
		}

		if added := b.deck.tryAdd(addr, frames, symbolizeResult); added {
			stk = stk[1:]
			continue
		}
		// add failed because this addr is not inlined with the
		// existing PCs in the deck. Flush the deck and retry handling
		// this pc.
		if id := b.emitLocation(); id > 0 {
			locs = append(locs, id)
		}

		// check cache again - previous emitLocation added a new entry
		if l, ok := b.locs[addr]; ok {
			locs = append(locs, l.id)
			stk = stk[len(l.pcs):] // skip the matching pcs.
		} else {
			b.deck.tryAdd(addr, frames, symbolizeResult) // must succeed.
			stk = stk[1:]
		}
	}
	if id := b.emitLocation(); id > 0 { // emit remaining location.
		locs = append(locs, id)
	}
	return locs
}

// Here's an example of how Go 1.17 writes out inlined functions, compiled for
// linux/amd64. The disassembly of main.main shows two levels of inlining: main
// calls b, b calls a, a does some work.
//
//   inline.go:9   0x4553ec  90              NOPL                 // func main()    { b(v) }
//   inline.go:6   0x4553ed  90              NOPL                 // func b(v *int) { a(v) }
//   inline.go:5   0x4553ee  48c7002a000000  MOVQ $0x2a, 0(AX)    // func a(v *int) { *v = 42 }
//
// If a profiling signal arrives while executing the MOVQ at 0x4553ee (for line
// 5), the runtime will report the stack as the MOVQ frame being called by the
// NOPL at 0x4553ed (for line 6) being called by the NOPL at 0x4553ec (for line
// 9).
//
// The role of pcDeck is to collapse those three frames back into a single
// location at 0x4553ee, with file/line/function symbolization info representing
// the three layers of calls. It does that via sequential calls to pcDeck.tryAdd
// starting with the leaf-most address. The fourth call to pcDeck.tryAdd will be
// for the caller of main.main. Because main.main was not inlined in its caller,
// the deck will reject the addition, and the fourth PC on the stack will get
// its own location.

// pcDeck is a helper to detect a sequence of inlined functions from
// a stack trace returned by the runtime.
//
// The stack traces returned by runtime's trackback functions are fully
// expanded (at least for Go functions) and include the fake pcs representing
// inlined functions. The profile proto expects the inlined functions to be
// encoded in one Location message.
// https://github.com/google/pprof/blob/5e965273ee43930341d897407202dd5e10e952cb/proto/profile.proto#L177-L184
//
// Runtime does not directly expose whether a frame is for an inlined function
// and looking up debug info is not ideal, so we use a heuristic to filter
// the fake pcs and restore the inlined and entry functions. Inlined functions
// have the following properties:
//
//	Frame's Func is nil (note: also true for non-Go functions), and
//	Frame's Entry matches its entry function frame's Entry (note: could also be true for recursive calls and non-Go functions), and
//	Frame's Name does not match its entry function frame's name (note: inlined functions cannot be directly recursive).
//
// As reading and processing the pcs in a stack trace one by one (from leaf to the root),
// we use pcDeck to temporarily hold the observed pcs and their expanded frames
// until we observe the entry function frame.
type pcDeck struct {
	pcs             []uintptr
	frames          []runtime.Frame
	symbolizeResult symbolizeFlag

	// firstPCFrames indicates the number of frames associated with the first
	// (leaf-most) PC in the deck
	firstPCFrames int
	// firstPCSymbolizeResult holds the results of the allFrames call for the
	// first (leaf-most) PC in the deck
	firstPCSymbolizeResult symbolizeFlag
}

func (d *pcDeck) reset() {
	d.pcs = d.pcs[:0]
	d.frames = d.frames[:0]
	d.symbolizeResult = 0
	d.firstPCFrames = 0
	d.firstPCSymbolizeResult = 0
}

// tryAdd tries to add the pc and Frames expanded from it (most likely one,
// since the stack trace is already fully expanded) and the symbolizeResult
// to the deck. If it fails the caller needs to flush the deck and retry.
func (d *pcDeck) tryAdd(pc uintptr, frames []runtime.Frame, symbolizeResult symbolizeFlag) (success bool) {
	if existing := len(d.frames); existing > 0 {
		// 'd.frames' are all expanded from one 'pc' and represent all
		// inlined functions so we check only the last one.
		newFrame := frames[0]
		last := d.frames[existing-1]
		if last.Func != nil { // the last frame can't be inlined. Flush.
			return false
		}
		if last.Entry == 0 || newFrame.Entry == 0 { // Possibly not a Go function. Don't try to merge.
			return false
		}

		if last.Entry != newFrame.Entry { // newFrame is for a different function.
			return false
		}
		if last.Function == newFrame.Function { // maybe recursion.
			return false
		}
	}
	d.pcs = append(d.pcs, pc)
	d.frames = append(d.frames, frames...)
	d.symbolizeResult |= symbolizeResult
	if len(d.pcs) == 1 {
		d.firstPCFrames = len(d.frames)
		d.firstPCSymbolizeResult = symbolizeResult
	}
	return true
}

// emitLocation emits the new location and function information recorded in the deck
// and returns the location ID encoded in the profile protobuf.
// It emits to b.pb, so there must be no message encoding in progress.
// It resets the deck.
func (b *profileBuilder) emitLocation() uint64 {
	if len(b.deck.pcs) == 0 {
		return 0
	}
	defer b.deck.reset()

	addr := b.deck.pcs[0]
	firstFrame := b.deck.frames[0]

	// We can't write out functions while in the middle of the
	// Location message, so record new functions we encounter and
	// write them out after the Location.
	type newFunc struct {
		id         uint64
		name, file string
		startLine  int64
	}
	newFuncs := make([]newFunc, 0, 8)

	id := uint64(len(b.locs)) + 1
	b.locs[addr] = locInfo{
		id:                     id,
		pcs:                    append([]uintptr{}, b.deck.pcs...),
		firstPCSymbolizeResult: b.deck.firstPCSymbolizeResult,
		firstPCFrames:          append([]runtime.Frame{}, b.deck.frames[:b.deck.firstPCFrames]...),
	}

	start := b.pb.startMessage()
	b.pb.uint64Opt(tagLocation_ID, id)
	b.pb.uint64Opt(tagLocation_Address, uint64(firstFrame.PC))
	for _, frame := range b.deck.frames {
		// Write out each line in frame expansion.
		funcName := runtime_FrameSymbolName(&frame)
		funcID := uint64(b.funcs[funcName])
		if funcID == 0 {
			funcID = uint64(len(b.funcs)) + 1
			b.funcs[funcName] = int(funcID)
			newFuncs = append(newFuncs, newFunc{
				id:        funcID,
				name:      funcName,
				file:      frame.File,
				startLine: int64(runtime_FrameStartLine(&frame)),
			})
		}
		b.pbLine(tagLocation_Line, funcID, int64(frame.Line))
	}
	for i := range b.mem {
		if b.mem[i].start <= addr && addr < b.mem[i].end || b.mem[i].fake {
			b.pb.uint64Opt(tagLocation_MappingID, uint64(i+1))

			m := b.mem[i]
			m.funcs |= b.deck.symbolizeResult
			b.mem[i] = m
			break
		}
	}
	b.pb.endMessage(tagProfile_Location, start)

	// Write out functions we found during frame expansion.
	for _, fn := range newFuncs {
		start := b.pb.startMessage()
		b.pb.uint64Opt(tagFunction_ID, fn.id)
		b.pb.int64Opt(tagFunction_Name, b.stringIndex(fn.name))
		b.pb.int64Opt(tagFunction_SystemName, b.stringIndex(fn.name))
		b.pb.int64Opt(tagFunction_Filename, b.stringIndex(fn.file))
		b.pb.int64Opt(tagFunction_StartLine, fn.startLine)
		b.pb.endMessage(tagProfile_Function, start)
	}

	b.flush()
	return id
}

var space = []byte(" ")
var newline = []byte("\n")

func parseProcSelfMaps(data []byte, addMapping func(lo, hi, offset uint64, file, buildID string)) {
	// $ cat /proc/self/maps
	// 00400000-0040b000 r-xp 00000000 fc:01 787766                             /bin/cat
	// 0060a000-0060b000 r--p 0000a000 fc:01 787766                             /bin/cat
	// 0060b000-0060c000 rw-p 0000b000 fc:01 787766                             /bin/cat
	// 014ab000-014cc000 rw-p 00000000 00:00 0                                  [heap]
	// 7f7d76af8000-7f7d7797c000 r--p 00000000 fc:01 1318064                    /usr/lib/locale/locale-archive
	// 7f7d7797c000-7f7d77b36000 r-xp 00000000 fc:01 1180226                    /lib/x86_64-linux-gnu/libc-2.19.so
	// 7f7d77b36000-7f7d77d36000 ---p 001ba000 fc:01 1180226                    /lib/x86_64-linux-gnu/libc-2.19.so
	// 7f7d77d36000-7f7d77d3a000 r--p 001ba000 fc:01 1180226                    /lib/x86_64-linux-gnu/libc-2.19.so
	// 7f7d77d3a000-7f7d77d3c000 rw-p 001be000 fc:01 1180226                    /lib/x86_64-linux-gnu/libc-2.19.so
	// 7f7d77d3c000-7f7d77d41000 rw-p 00000000 00:00 0
	// 7f7d77d41000-7f7d77d64000 r-xp 00000000 fc:01 1180217                    /lib/x86_64-linux-gnu/ld-2.19.so
	// 7f7d77f3f000-7f7d77f42000 rw-p 00000000 00:00 0
	// 7f7d77f61000-7f7d77f63000 rw-p 00000000 00:00 0
	// 7f7d77f63000-7f7d77f64000 r--p 00022000 fc:01 1180217                    /lib/x86_64-linux-gnu/ld-2.19.so
	// 7f7d77f64000-7f7d77f65000 rw-p 00023000 fc:01 1180217                    /lib/x86_64-linux-gnu/ld-2.19.so
	// 7f7d77f65000-7f7d77f66000 rw-p 00000000 00:00 0
	// 7ffc342a2000-7ffc342c3000 rw-p 00000000 00:00 0                          [stack]
	// 7ffc34343000-7ffc34345000 r-xp 00000000 00:00 0                          [vdso]
	// ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0                  [vsyscall]

	var line []byte
	// next removes and returns the next field in the line.
	// It also removes from line any spaces following the field.
	next := func() []byte {
		var f []byte
		f, line, _ = bytes.Cut(line, space)
		line = bytes.TrimLeft(line, " ")
		return f
	}

	for len(data) > 0 {
		line, data, _ = bytes.Cut(data, newline)
		addr := next()
		loStr, hiStr, ok := strings.Cut(string(addr), "-")
		if !ok {
			continue
		}
		lo, err := strconv.ParseUint(loStr, 16, 64)
		if err != nil {
			continue
		}
		hi, err := strconv.ParseUint(hiStr, 16, 64)
		if err != nil {
			continue
		}
		perm := next()
		if len(perm) < 4 || perm[2] != 'x' {
			// Only interested in executable mappings.
			continue
		}
		offset, err := strconv.ParseUint(string(next()), 16, 64)
		if err != nil {
			continue
		}
		next()          // dev
		inode := next() // inode
		if line == nil {
			continue
		}
		file := string(line)

		// Trim deleted file marker.
		deletedStr := " (deleted)"
		deletedLen := len(deletedStr)
		if len(file) >= deletedLen && file[len(file)-deletedLen:] == deletedStr {
			file = file[:len(file)-deletedLen]
		}

		if len(inode) == 1 && inode[0] == '0' && file == "" {
			// Huge-page text mappings list the initial fragment of
			// mapped but unpopulated memory as being inode 0.
			// Don't report that part.
			// But [vdso] and [vsyscall] are inode 0, so let non-empty file names through.
			continue
		}

		// TODO: pprof's remapMappingIDs makes one adjustment:
		// 1. If there is an /anon_hugepage mapping first and it is
		// consecutive to a next mapping, drop the /anon_hugepage.
		// There's no indication why this is needed.
		// Let's try not doing this and see what breaks.
		// If we do need it, it would go here, before we
		// enter the mappings into b.mem in the first place.

		buildID, _ := elfBuildID(file)
		addMapping(lo, hi, offset, file, buildID)
	}
}

func (b *profileBuilder) addMapping(lo, hi, offset uint64, file, buildID string) {
	b.addMappingEntry(lo, hi, offset, file, buildID, false)
}

func (b *profileBuilder) addMappingEntry(lo, hi, offset uint64, file, buildID string, fake bool) {
	b.mem = append(b.mem, memMap{
		start:   uintptr(lo),
		end:     uintptr(hi),
		offset:  offset,
		file:    file,
		buildID: buildID,
		fake:    fake,
	})
}