aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/mgclarge.go
blob: 2a04d4a7933fac93b73a4eea003ebd76d42866b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Page heap.
//
// See malloc.go for the general overview.
//
// Large spans are the subject of this file. Spans consisting of less than
// _MaxMHeapLists are held in lists of like sized spans. Larger spans
// are held in a treap. See https://en.wikipedia.org/wiki/Treap or
// https://faculty.washington.edu/aragon/pubs/rst89.pdf for an overview.
// sema.go also holds an implementation of a treap.
//
// Each treapNode holds a single span. The treap is sorted by page size
// and for spans of the same size a secondary sort based on start address
// is done.
// Spans are returned based on a best fit algorithm and for spans of the same
// size the one at the lowest address is selected.
//
// The primary routines are
// insert: adds a span to the treap
// remove: removes the span from that treap that best fits the required size
// removeSpan: which removes a specific span from the treap
//
// _mheap.lock must be held when manipulating this data structure.

package runtime

import (
	"unsafe"
)

//go:notinheap
type mTreap struct {
	treap *treapNode
}

//go:notinheap
type treapNode struct {
	right     *treapNode // all treapNodes > this treap node
	left      *treapNode // all treapNodes < this treap node
	parent    *treapNode // direct parent of this node, nil if root
	npagesKey uintptr    // number of pages in spanKey, used as primary sort key
	spanKey   *mspan     // span of size npagesKey, used as secondary sort key
	priority  uint32     // random number used by treap algorithm to keep tree probabilistically balanced
}

func (t *treapNode) pred() *treapNode {
	if t.left != nil {
		// If it has a left child, its predecessor will be
		// its right most left (grand)child.
		t = t.left
		for t.right != nil {
			t = t.right
		}
		return t
	}
	// If it has no left child, its predecessor will be
	// the first grandparent who's right child is its
	// ancestor.
	//
	// We compute this by walking up the treap until the
	// current node's parent is its parent's right child.
	//
	// If we find at any point walking up the treap
	// that the current node doesn't have a parent,
	// we've hit the root. This means that t is already
	// the left-most node in the treap and therefore
	// has no predecessor.
	for t.parent != nil && t.parent.right != t {
		if t.parent.left != t {
			println("runtime: predecessor t=", t, "t.spanKey=", t.spanKey)
			throw("node is not its parent's child")
		}
		t = t.parent
	}
	return t.parent
}

func (t *treapNode) succ() *treapNode {
	if t.right != nil {
		// If it has a right child, its successor will be
		// its left-most right (grand)child.
		t = t.right
		for t.left != nil {
			t = t.left
		}
		return t
	}
	// See pred.
	for t.parent != nil && t.parent.left != t {
		if t.parent.right != t {
			println("runtime: predecessor t=", t, "t.spanKey=", t.spanKey)
			throw("node is not its parent's child")
		}
		t = t.parent
	}
	return t.parent
}

// isSpanInTreap is handy for debugging. One should hold the heap lock, usually
// mheap_.lock().
func (t *treapNode) isSpanInTreap(s *mspan) bool {
	if t == nil {
		return false
	}
	return t.spanKey == s || t.left.isSpanInTreap(s) || t.right.isSpanInTreap(s)
}

// walkTreap is handy for debugging.
// Starting at some treapnode t, for example the root, do a depth first preorder walk of
// the tree executing fn at each treap node. One should hold the heap lock, usually
// mheap_.lock().
func (t *treapNode) walkTreap(fn func(tn *treapNode)) {
	if t == nil {
		return
	}
	fn(t)
	t.left.walkTreap(fn)
	t.right.walkTreap(fn)
}

// checkTreapNode when used in conjunction with walkTreap can usually detect a
// poorly formed treap.
func checkTreapNode(t *treapNode) {
	// lessThan is used to order the treap.
	// npagesKey and npages are the primary keys.
	// spanKey and span are the secondary keys.
	// span == nil (0) will always be lessThan all
	// spans of the same size.
	lessThan := func(npages uintptr, s *mspan) bool {
		if t.npagesKey != npages {
			return t.npagesKey < npages
		}
		// t.npagesKey == npages
		return uintptr(unsafe.Pointer(t.spanKey)) < uintptr(unsafe.Pointer(s))
	}

	if t == nil {
		return
	}
	if t.spanKey.npages != t.npagesKey || t.spanKey.next != nil {
		println("runtime: checkTreapNode treapNode t=", t, "     t.npagesKey=", t.npagesKey,
			"t.spanKey.npages=", t.spanKey.npages)
		throw("why does span.npages and treap.ngagesKey do not match?")
	}
	if t.left != nil && lessThan(t.left.npagesKey, t.left.spanKey) {
		throw("t.lessThan(t.left.npagesKey, t.left.spanKey) is not false")
	}
	if t.right != nil && !lessThan(t.right.npagesKey, t.right.spanKey) {
		throw("!t.lessThan(t.left.npagesKey, t.left.spanKey) is not false")
	}
}

// treapIter is a unidirectional iterator type which may be used to iterate over a
// an mTreap in-order forwards (increasing order) or backwards (decreasing order).
// Its purpose is to hide details about the treap from users when trying to iterate
// over it.
//
// To create iterators over the treap, call iter or rev on an mTreap.
type treapIter struct {
	t   *treapNode
	inc bool // if true, iterate in increasing order, otherwise decreasing order.
}

// span returns the span at the current position in the treap.
// If the treap is not valid, span will panic.
func (i *treapIter) span() *mspan {
	return i.t.spanKey
}

// valid returns whether the iterator represents a valid position
// in the mTreap.
func (i *treapIter) valid() bool {
	return i.t != nil
}

// next moves the iterator forward by one. Once the iterator
// ceases to be valid, calling next will panic.
func (i treapIter) next() treapIter {
	if i.inc {
		i.t = i.t.succ()
	} else {
		i.t = i.t.pred()
	}
	return i
}

// iter returns an iterator which may be used to iterate over the treap
// in increasing order of span size ("forwards").
func (root *mTreap) iter() treapIter {
	i := treapIter{inc: true}
	t := root.treap
	if t == nil {
		return i
	}
	for t.left != nil {
		t = t.left
	}
	i.t = t
	return i
}

// rev returns an iterator which may be used to iterate over the treap
// in decreasing order of span size ("reverse").
func (root *mTreap) rev() treapIter {
	i := treapIter{inc: false}
	t := root.treap
	if t == nil {
		return i
	}
	for t.right != nil {
		t = t.right
	}
	i.t = t
	return i
}

// insert adds span to the large span treap.
func (root *mTreap) insert(span *mspan) {
	npages := span.npages
	var last *treapNode
	pt := &root.treap
	for t := *pt; t != nil; t = *pt {
		last = t
		if t.npagesKey < npages {
			pt = &t.right
		} else if t.npagesKey > npages {
			pt = &t.left
		} else if t.spanKey.base() < span.base() {
			// t.npagesKey == npages, so sort on span addresses.
			pt = &t.right
		} else if t.spanKey.base() > span.base() {
			pt = &t.left
		} else {
			throw("inserting span already in treap")
		}
	}

	// Add t as new leaf in tree of span size and unique addrs.
	// The balanced tree is a treap using priority as the random heap priority.
	// That is, it is a binary tree ordered according to the npagesKey,
	// but then among the space of possible binary trees respecting those
	// npagesKeys, it is kept balanced on average by maintaining a heap ordering
	// on the priority: s.priority <= both s.right.priority and s.right.priority.
	// https://en.wikipedia.org/wiki/Treap
	// https://faculty.washington.edu/aragon/pubs/rst89.pdf

	t := (*treapNode)(mheap_.treapalloc.alloc())
	t.npagesKey = span.npages
	t.priority = fastrand()
	t.spanKey = span
	t.parent = last
	*pt = t // t now at a leaf.
	// Rotate up into tree according to priority.
	for t.parent != nil && t.parent.priority > t.priority {
		if t != nil && t.spanKey.npages != t.npagesKey {
			println("runtime: insert t=", t, "t.npagesKey=", t.npagesKey)
			println("runtime:      t.spanKey=", t.spanKey, "t.spanKey.npages=", t.spanKey.npages)
			throw("span and treap sizes do not match?")
		}
		if t.parent.left == t {
			root.rotateRight(t.parent)
		} else {
			if t.parent.right != t {
				throw("treap insert finds a broken treap")
			}
			root.rotateLeft(t.parent)
		}
	}
}

func (root *mTreap) removeNode(t *treapNode) {
	if t.spanKey.npages != t.npagesKey {
		throw("span and treap node npages do not match")
	}
	// Rotate t down to be leaf of tree for removal, respecting priorities.
	for t.right != nil || t.left != nil {
		if t.right == nil || t.left != nil && t.left.priority < t.right.priority {
			root.rotateRight(t)
		} else {
			root.rotateLeft(t)
		}
	}
	// Remove t, now a leaf.
	if t.parent != nil {
		if t.parent.left == t {
			t.parent.left = nil
		} else {
			t.parent.right = nil
		}
	} else {
		root.treap = nil
	}
	// Return the found treapNode's span after freeing the treapNode.
	mheap_.treapalloc.free(unsafe.Pointer(t))
}

// find searches for, finds, and returns the treap node containing the
// smallest span that can hold npages. If no span has at least npages
// it returns nil.
// This is slightly more complicated than a simple binary tree search
// since if an exact match is not found the next larger node is
// returned.
func (root *mTreap) find(npages uintptr) *treapNode {
	t := root.treap
	for t != nil {
		if t.spanKey == nil {
			throw("treap node with nil spanKey found")
		}
		if t.npagesKey < npages {
			t = t.right
		} else if t.left != nil && t.left.npagesKey >= npages {
			t = t.left
		} else {
			return t
		}
	}
	return nil
}

// removeSpan searches for, finds, deletes span along with
// the associated treap node. If the span is not in the treap
// then t will eventually be set to nil and the t.spanKey
// will throw.
func (root *mTreap) removeSpan(span *mspan) {
	npages := span.npages
	t := root.treap
	for t.spanKey != span {
		if t.npagesKey < npages {
			t = t.right
		} else if t.npagesKey > npages {
			t = t.left
		} else if t.spanKey.base() < span.base() {
			t = t.right
		} else if t.spanKey.base() > span.base() {
			t = t.left
		}
	}
	root.removeNode(t)
}

// erase removes the element referred to by the current position of the
// iterator and returns i.next(). This operation consumes the given
// iterator, so it should no longer be used and iteration should continue
// from the returned iterator.
func (root *mTreap) erase(i treapIter) treapIter {
	n := i.next()
	root.removeNode(i.t)
	return n
}

// rotateLeft rotates the tree rooted at node x.
// turning (x a (y b c)) into (y (x a b) c).
func (root *mTreap) rotateLeft(x *treapNode) {
	// p -> (x a (y b c))
	p := x.parent
	a, y := x.left, x.right
	b, c := y.left, y.right

	y.left = x
	x.parent = y
	y.right = c
	if c != nil {
		c.parent = y
	}
	x.left = a
	if a != nil {
		a.parent = x
	}
	x.right = b
	if b != nil {
		b.parent = x
	}

	y.parent = p
	if p == nil {
		root.treap = y
	} else if p.left == x {
		p.left = y
	} else {
		if p.right != x {
			throw("large span treap rotateLeft")
		}
		p.right = y
	}
}

// rotateRight rotates the tree rooted at node y.
// turning (y (x a b) c) into (x a (y b c)).
func (root *mTreap) rotateRight(y *treapNode) {
	// p -> (y (x a b) c)
	p := y.parent
	x, c := y.left, y.right
	a, b := x.left, x.right

	x.left = a
	if a != nil {
		a.parent = x
	}
	x.right = y
	y.parent = x
	y.left = b
	if b != nil {
		b.parent = y
	}
	y.right = c
	if c != nil {
		c.parent = y
	}

	x.parent = p
	if p == nil {
		root.treap = x
	} else if p.left == y {
		p.left = x
	} else {
		if p.right != y {
			throw("large span treap rotateRight")
		}
		p.right = x
	}
}