aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/mgc.go
blob: bd87144355350a489c3b23e534229c65140ff683 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Garbage collector (GC).
//
// The GC runs concurrently with mutator threads, is type accurate (aka precise), allows multiple
// GC thread to run in parallel. It is a concurrent mark and sweep that uses a write barrier. It is
// non-generational and non-compacting. Allocation is done using size segregated per P allocation
// areas to minimize fragmentation while eliminating locks in the common case.
//
// The algorithm decomposes into several steps.
// This is a high level description of the algorithm being used. For an overview of GC a good
// place to start is Richard Jones' gchandbook.org.
//
// The algorithm's intellectual heritage includes Dijkstra's on-the-fly algorithm, see
// Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens. 1978.
// On-the-fly garbage collection: an exercise in cooperation. Commun. ACM 21, 11 (November 1978),
// 966-975.
// For journal quality proofs that these steps are complete, correct, and terminate see
// Hudson, R., and Moss, J.E.B. Copying Garbage Collection without stopping the world.
// Concurrency and Computation: Practice and Experience 15(3-5), 2003.
//
// 1. GC performs sweep termination.
//
//    a. Stop the world. This causes all Ps to reach a GC safe-point.
//
//    b. Sweep any unswept spans. There will only be unswept spans if
//    this GC cycle was forced before the expected time.
//
// 2. GC performs the mark phase.
//
//    a. Prepare for the mark phase by setting gcphase to _GCmark
//    (from _GCoff), enabling the write barrier, enabling mutator
//    assists, and enqueueing root mark jobs. No objects may be
//    scanned until all Ps have enabled the write barrier, which is
//    accomplished using STW.
//
//    b. Start the world. From this point, GC work is done by mark
//    workers started by the scheduler and by assists performed as
//    part of allocation. The write barrier shades both the
//    overwritten pointer and the new pointer value for any pointer
//    writes (see mbarrier.go for details). Newly allocated objects
//    are immediately marked black.
//
//    c. GC performs root marking jobs. This includes scanning all
//    stacks, shading all globals, and shading any heap pointers in
//    off-heap runtime data structures. Scanning a stack stops a
//    goroutine, shades any pointers found on its stack, and then
//    resumes the goroutine.
//
//    d. GC drains the work queue of grey objects, scanning each grey
//    object to black and shading all pointers found in the object
//    (which in turn may add those pointers to the work queue).
//
//    e. Because GC work is spread across local caches, GC uses a
//    distributed termination algorithm to detect when there are no
//    more root marking jobs or grey objects (see gcMarkDone). At this
//    point, GC transitions to mark termination.
//
// 3. GC performs mark termination.
//
//    a. Stop the world.
//
//    b. Set gcphase to _GCmarktermination, and disable workers and
//    assists.
//
//    c. Perform housekeeping like flushing mcaches.
//
// 4. GC performs the sweep phase.
//
//    a. Prepare for the sweep phase by setting gcphase to _GCoff,
//    setting up sweep state and disabling the write barrier.
//
//    b. Start the world. From this point on, newly allocated objects
//    are white, and allocating sweeps spans before use if necessary.
//
//    c. GC does concurrent sweeping in the background and in response
//    to allocation. See description below.
//
// 5. When sufficient allocation has taken place, replay the sequence
// starting with 1 above. See discussion of GC rate below.

// Concurrent sweep.
//
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// At the end of STW mark termination all spans are marked as "needs sweeping".
//
// The background sweeper goroutine simply sweeps spans one-by-one.
//
// To avoid requesting more OS memory while there are unswept spans, when a
// goroutine needs another span, it first attempts to reclaim that much memory
// by sweeping. When a goroutine needs to allocate a new small-object span, it
// sweeps small-object spans for the same object size until it frees at least
// one object. When a goroutine needs to allocate large-object span from heap,
// it sweeps spans until it frees at least that many pages into heap. There is
// one case where this may not suffice: if a goroutine sweeps and frees two
// nonadjacent one-page spans to the heap, it will allocate a new two-page
// span, but there can still be other one-page unswept spans which could be
// combined into a two-page span.
//
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).

// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).

// Oblets
//
// In order to prevent long pauses while scanning large objects and to
// improve parallelism, the garbage collector breaks up scan jobs for
// objects larger than maxObletBytes into "oblets" of at most
// maxObletBytes. When scanning encounters the beginning of a large
// object, it scans only the first oblet and enqueues the remaining
// oblets as new scan jobs.

package runtime

import (
	"internal/cpu"
	"runtime/internal/atomic"
	"unsafe"
)

const (
	_DebugGC         = 0
	_ConcurrentSweep = true
	_FinBlockSize    = 4 * 1024

	// debugScanConservative enables debug logging for stack
	// frames that are scanned conservatively.
	debugScanConservative = false

	// sweepMinHeapDistance is a lower bound on the heap distance
	// (in bytes) reserved for concurrent sweeping between GC
	// cycles.
	sweepMinHeapDistance = 1024 * 1024
)

// heapminimum is the minimum heap size at which to trigger GC.
// For small heaps, this overrides the usual GOGC*live set rule.
//
// When there is a very small live set but a lot of allocation, simply
// collecting when the heap reaches GOGC*live results in many GC
// cycles and high total per-GC overhead. This minimum amortizes this
// per-GC overhead while keeping the heap reasonably small.
//
// During initialization this is set to 4MB*GOGC/100. In the case of
// GOGC==0, this will set heapminimum to 0, resulting in constant
// collection even when the heap size is small, which is useful for
// debugging.
var heapminimum uint64 = defaultHeapMinimum

// defaultHeapMinimum is the value of heapminimum for GOGC==100.
const defaultHeapMinimum = 4 << 20

// Initialized from $GOGC.  GOGC=off means no GC.
var gcpercent int32

func gcinit() {
	if unsafe.Sizeof(workbuf{}) != _WorkbufSize {
		throw("size of Workbuf is suboptimal")
	}

	// No sweep on the first cycle.
	mheap_.sweepdone = 1

	// Set a reasonable initial GC trigger.
	memstats.triggerRatio = 7 / 8.0

	// Fake a heap_marked value so it looks like a trigger at
	// heapminimum is the appropriate growth from heap_marked.
	// This will go into computing the initial GC goal.
	memstats.heap_marked = uint64(float64(heapminimum) / (1 + memstats.triggerRatio))

	// Set gcpercent from the environment. This will also compute
	// and set the GC trigger and goal.
	_ = setGCPercent(readgogc())

	work.startSema = 1
	work.markDoneSema = 1
	lockInit(&work.sweepWaiters.lock, lockRankSweepWaiters)
	lockInit(&work.assistQueue.lock, lockRankAssistQueue)
	lockInit(&work.wbufSpans.lock, lockRankWbufSpans)
}

func readgogc() int32 {
	p := gogetenv("GOGC")
	if p == "off" {
		return -1
	}
	if n, ok := atoi32(p); ok {
		return n
	}
	return 100
}

// gcenable is called after the bulk of the runtime initialization,
// just before we're about to start letting user code run.
// It kicks off the background sweeper goroutine, the background
// scavenger goroutine, and enables GC.
func gcenable() {
	// Kick off sweeping and scavenging.
	c := make(chan int, 2)
	go bgsweep(c)
	go bgscavenge(c)
	<-c
	<-c
	memstats.enablegc = true // now that runtime is initialized, GC is okay
}

//go:linkname setGCPercent runtime/debug.setGCPercent
func setGCPercent(in int32) (out int32) {
	// Run on the system stack since we grab the heap lock.
	systemstack(func() {
		lock(&mheap_.lock)
		out = gcpercent
		if in < 0 {
			in = -1
		}
		gcpercent = in
		heapminimum = defaultHeapMinimum * uint64(gcpercent) / 100
		// Update pacing in response to gcpercent change.
		gcSetTriggerRatio(memstats.triggerRatio)
		unlock(&mheap_.lock)
	})

	// If we just disabled GC, wait for any concurrent GC mark to
	// finish so we always return with no GC running.
	if in < 0 {
		gcWaitOnMark(atomic.Load(&work.cycles))
	}

	return out
}

// Garbage collector phase.
// Indicates to write barrier and synchronization task to perform.
var gcphase uint32

// The compiler knows about this variable.
// If you change it, you must change builtin/runtime.go, too.
// If you change the first four bytes, you must also change the write
// barrier insertion code.
var writeBarrier struct {
	enabled bool    // compiler emits a check of this before calling write barrier
	pad     [3]byte // compiler uses 32-bit load for "enabled" field
	needed  bool    // whether we need a write barrier for current GC phase
	cgo     bool    // whether we need a write barrier for a cgo check
	alignme uint64  // guarantee alignment so that compiler can use a 32 or 64-bit load
}

// gcBlackenEnabled is 1 if mutator assists and background mark
// workers are allowed to blacken objects. This must only be set when
// gcphase == _GCmark.
var gcBlackenEnabled uint32

const (
	_GCoff             = iota // GC not running; sweeping in background, write barrier disabled
	_GCmark                   // GC marking roots and workbufs: allocate black, write barrier ENABLED
	_GCmarktermination        // GC mark termination: allocate black, P's help GC, write barrier ENABLED
)

//go:nosplit
func setGCPhase(x uint32) {
	atomic.Store(&gcphase, x)
	writeBarrier.needed = gcphase == _GCmark || gcphase == _GCmarktermination
	writeBarrier.enabled = writeBarrier.needed || writeBarrier.cgo
}

// gcMarkWorkerMode represents the mode that a concurrent mark worker
// should operate in.
//
// Concurrent marking happens through four different mechanisms. One
// is mutator assists, which happen in response to allocations and are
// not scheduled. The other three are variations in the per-P mark
// workers and are distinguished by gcMarkWorkerMode.
type gcMarkWorkerMode int

const (
	// gcMarkWorkerDedicatedMode indicates that the P of a mark
	// worker is dedicated to running that mark worker. The mark
	// worker should run without preemption.
	gcMarkWorkerDedicatedMode gcMarkWorkerMode = iota

	// gcMarkWorkerFractionalMode indicates that a P is currently
	// running the "fractional" mark worker. The fractional worker
	// is necessary when GOMAXPROCS*gcBackgroundUtilization is not
	// an integer. The fractional worker should run until it is
	// preempted and will be scheduled to pick up the fractional
	// part of GOMAXPROCS*gcBackgroundUtilization.
	gcMarkWorkerFractionalMode

	// gcMarkWorkerIdleMode indicates that a P is running the mark
	// worker because it has nothing else to do. The idle worker
	// should run until it is preempted and account its time
	// against gcController.idleMarkTime.
	gcMarkWorkerIdleMode
)

// gcMarkWorkerModeStrings are the strings labels of gcMarkWorkerModes
// to use in execution traces.
var gcMarkWorkerModeStrings = [...]string{
	"GC (dedicated)",
	"GC (fractional)",
	"GC (idle)",
}

// gcController implements the GC pacing controller that determines
// when to trigger concurrent garbage collection and how much marking
// work to do in mutator assists and background marking.
//
// It uses a feedback control algorithm to adjust the memstats.gc_trigger
// trigger based on the heap growth and GC CPU utilization each cycle.
// This algorithm optimizes for heap growth to match GOGC and for CPU
// utilization between assist and background marking to be 25% of
// GOMAXPROCS. The high-level design of this algorithm is documented
// at https://golang.org/s/go15gcpacing.
//
// All fields of gcController are used only during a single mark
// cycle.
var gcController gcControllerState

type gcControllerState struct {
	// scanWork is the total scan work performed this cycle. This
	// is updated atomically during the cycle. Updates occur in
	// bounded batches, since it is both written and read
	// throughout the cycle. At the end of the cycle, this is how
	// much of the retained heap is scannable.
	//
	// Currently this is the bytes of heap scanned. For most uses,
	// this is an opaque unit of work, but for estimation the
	// definition is important.
	scanWork int64

	// bgScanCredit is the scan work credit accumulated by the
	// concurrent background scan. This credit is accumulated by
	// the background scan and stolen by mutator assists. This is
	// updated atomically. Updates occur in bounded batches, since
	// it is both written and read throughout the cycle.
	bgScanCredit int64

	// assistTime is the nanoseconds spent in mutator assists
	// during this cycle. This is updated atomically. Updates
	// occur in bounded batches, since it is both written and read
	// throughout the cycle.
	assistTime int64

	// dedicatedMarkTime is the nanoseconds spent in dedicated
	// mark workers during this cycle. This is updated atomically
	// at the end of the concurrent mark phase.
	dedicatedMarkTime int64

	// fractionalMarkTime is the nanoseconds spent in the
	// fractional mark worker during this cycle. This is updated
	// atomically throughout the cycle and will be up-to-date if
	// the fractional mark worker is not currently running.
	fractionalMarkTime int64

	// idleMarkTime is the nanoseconds spent in idle marking
	// during this cycle. This is updated atomically throughout
	// the cycle.
	idleMarkTime int64

	// markStartTime is the absolute start time in nanoseconds
	// that assists and background mark workers started.
	markStartTime int64

	// dedicatedMarkWorkersNeeded is the number of dedicated mark
	// workers that need to be started. This is computed at the
	// beginning of each cycle and decremented atomically as
	// dedicated mark workers get started.
	dedicatedMarkWorkersNeeded int64

	// assistWorkPerByte is the ratio of scan work to allocated
	// bytes that should be performed by mutator assists. This is
	// computed at the beginning of each cycle and updated every
	// time heap_scan is updated.
	assistWorkPerByte float64

	// assistBytesPerWork is 1/assistWorkPerByte.
	assistBytesPerWork float64

	// fractionalUtilizationGoal is the fraction of wall clock
	// time that should be spent in the fractional mark worker on
	// each P that isn't running a dedicated worker.
	//
	// For example, if the utilization goal is 25% and there are
	// no dedicated workers, this will be 0.25. If the goal is
	// 25%, there is one dedicated worker, and GOMAXPROCS is 5,
	// this will be 0.05 to make up the missing 5%.
	//
	// If this is zero, no fractional workers are needed.
	fractionalUtilizationGoal float64

	_ cpu.CacheLinePad
}

// startCycle resets the GC controller's state and computes estimates
// for a new GC cycle. The caller must hold worldsema.
func (c *gcControllerState) startCycle() {
	c.scanWork = 0
	c.bgScanCredit = 0
	c.assistTime = 0
	c.dedicatedMarkTime = 0
	c.fractionalMarkTime = 0
	c.idleMarkTime = 0

	// Ensure that the heap goal is at least a little larger than
	// the current live heap size. This may not be the case if GC
	// start is delayed or if the allocation that pushed heap_live
	// over gc_trigger is large or if the trigger is really close to
	// GOGC. Assist is proportional to this distance, so enforce a
	// minimum distance, even if it means going over the GOGC goal
	// by a tiny bit.
	if memstats.next_gc < memstats.heap_live+1024*1024 {
		memstats.next_gc = memstats.heap_live + 1024*1024
	}

	// Compute the background mark utilization goal. In general,
	// this may not come out exactly. We round the number of
	// dedicated workers so that the utilization is closest to
	// 25%. For small GOMAXPROCS, this would introduce too much
	// error, so we add fractional workers in that case.
	totalUtilizationGoal := float64(gomaxprocs) * gcBackgroundUtilization
	c.dedicatedMarkWorkersNeeded = int64(totalUtilizationGoal + 0.5)
	utilError := float64(c.dedicatedMarkWorkersNeeded)/totalUtilizationGoal - 1
	const maxUtilError = 0.3
	if utilError < -maxUtilError || utilError > maxUtilError {
		// Rounding put us more than 30% off our goal. With
		// gcBackgroundUtilization of 25%, this happens for
		// GOMAXPROCS<=3 or GOMAXPROCS=6. Enable fractional
		// workers to compensate.
		if float64(c.dedicatedMarkWorkersNeeded) > totalUtilizationGoal {
			// Too many dedicated workers.
			c.dedicatedMarkWorkersNeeded--
		}
		c.fractionalUtilizationGoal = (totalUtilizationGoal - float64(c.dedicatedMarkWorkersNeeded)) / float64(gomaxprocs)
	} else {
		c.fractionalUtilizationGoal = 0
	}

	// In STW mode, we just want dedicated workers.
	if debug.gcstoptheworld > 0 {
		c.dedicatedMarkWorkersNeeded = int64(gomaxprocs)
		c.fractionalUtilizationGoal = 0
	}

	// Clear per-P state
	for _, p := range allp {
		p.gcAssistTime = 0
		p.gcFractionalMarkTime = 0
	}

	// Compute initial values for controls that are updated
	// throughout the cycle.
	c.revise()

	if debug.gcpacertrace > 0 {
		print("pacer: assist ratio=", c.assistWorkPerByte,
			" (scan ", memstats.heap_scan>>20, " MB in ",
			work.initialHeapLive>>20, "->",
			memstats.next_gc>>20, " MB)",
			" workers=", c.dedicatedMarkWorkersNeeded,
			"+", c.fractionalUtilizationGoal, "\n")
	}
}

// revise updates the assist ratio during the GC cycle to account for
// improved estimates. This should be called either under STW or
// whenever memstats.heap_scan, memstats.heap_live, or
// memstats.next_gc is updated (with mheap_.lock held).
//
// It should only be called when gcBlackenEnabled != 0 (because this
// is when assists are enabled and the necessary statistics are
// available).
func (c *gcControllerState) revise() {
	gcpercent := gcpercent
	if gcpercent < 0 {
		// If GC is disabled but we're running a forced GC,
		// act like GOGC is huge for the below calculations.
		gcpercent = 100000
	}
	live := atomic.Load64(&memstats.heap_live)

	// Assume we're under the soft goal. Pace GC to complete at
	// next_gc assuming the heap is in steady-state.
	heapGoal := int64(memstats.next_gc)

	// Compute the expected scan work remaining.
	//
	// This is estimated based on the expected
	// steady-state scannable heap. For example, with
	// GOGC=100, only half of the scannable heap is
	// expected to be live, so that's what we target.
	//
	// (This is a float calculation to avoid overflowing on
	// 100*heap_scan.)
	scanWorkExpected := int64(float64(memstats.heap_scan) * 100 / float64(100+gcpercent))

	if live > memstats.next_gc || c.scanWork > scanWorkExpected {
		// We're past the soft goal, or we've already done more scan
		// work than we expected. Pace GC so that in the worst case it
		// will complete by the hard goal.
		const maxOvershoot = 1.1
		heapGoal = int64(float64(memstats.next_gc) * maxOvershoot)

		// Compute the upper bound on the scan work remaining.
		scanWorkExpected = int64(memstats.heap_scan)
	}

	// Compute the remaining scan work estimate.
	//
	// Note that we currently count allocations during GC as both
	// scannable heap (heap_scan) and scan work completed
	// (scanWork), so allocation will change this difference
	// slowly in the soft regime and not at all in the hard
	// regime.
	scanWorkRemaining := scanWorkExpected - c.scanWork
	if scanWorkRemaining < 1000 {
		// We set a somewhat arbitrary lower bound on
		// remaining scan work since if we aim a little high,
		// we can miss by a little.
		//
		// We *do* need to enforce that this is at least 1,
		// since marking is racy and double-scanning objects
		// may legitimately make the remaining scan work
		// negative, even in the hard goal regime.
		scanWorkRemaining = 1000
	}

	// Compute the heap distance remaining.
	heapRemaining := heapGoal - int64(live)
	if heapRemaining <= 0 {
		// This shouldn't happen, but if it does, avoid
		// dividing by zero or setting the assist negative.
		heapRemaining = 1
	}

	// Compute the mutator assist ratio so by the time the mutator
	// allocates the remaining heap bytes up to next_gc, it will
	// have done (or stolen) the remaining amount of scan work.
	c.assistWorkPerByte = float64(scanWorkRemaining) / float64(heapRemaining)
	c.assistBytesPerWork = float64(heapRemaining) / float64(scanWorkRemaining)
}

// endCycle computes the trigger ratio for the next cycle.
func (c *gcControllerState) endCycle() float64 {
	if work.userForced {
		// Forced GC means this cycle didn't start at the
		// trigger, so where it finished isn't good
		// information about how to adjust the trigger.
		// Just leave it where it is.
		return memstats.triggerRatio
	}

	// Proportional response gain for the trigger controller. Must
	// be in [0, 1]. Lower values smooth out transient effects but
	// take longer to respond to phase changes. Higher values
	// react to phase changes quickly, but are more affected by
	// transient changes. Values near 1 may be unstable.
	const triggerGain = 0.5

	// Compute next cycle trigger ratio. First, this computes the
	// "error" for this cycle; that is, how far off the trigger
	// was from what it should have been, accounting for both heap
	// growth and GC CPU utilization. We compute the actual heap
	// growth during this cycle and scale that by how far off from
	// the goal CPU utilization we were (to estimate the heap
	// growth if we had the desired CPU utilization). The
	// difference between this estimate and the GOGC-based goal
	// heap growth is the error.
	goalGrowthRatio := gcEffectiveGrowthRatio()
	actualGrowthRatio := float64(memstats.heap_live)/float64(memstats.heap_marked) - 1
	assistDuration := nanotime() - c.markStartTime

	// Assume background mark hit its utilization goal.
	utilization := gcBackgroundUtilization
	// Add assist utilization; avoid divide by zero.
	if assistDuration > 0 {
		utilization += float64(c.assistTime) / float64(assistDuration*int64(gomaxprocs))
	}

	triggerError := goalGrowthRatio - memstats.triggerRatio - utilization/gcGoalUtilization*(actualGrowthRatio-memstats.triggerRatio)

	// Finally, we adjust the trigger for next time by this error,
	// damped by the proportional gain.
	triggerRatio := memstats.triggerRatio + triggerGain*triggerError

	if debug.gcpacertrace > 0 {
		// Print controller state in terms of the design
		// document.
		H_m_prev := memstats.heap_marked
		h_t := memstats.triggerRatio
		H_T := memstats.gc_trigger
		h_a := actualGrowthRatio
		H_a := memstats.heap_live
		h_g := goalGrowthRatio
		H_g := int64(float64(H_m_prev) * (1 + h_g))
		u_a := utilization
		u_g := gcGoalUtilization
		W_a := c.scanWork
		print("pacer: H_m_prev=", H_m_prev,
			" h_t=", h_t, " H_T=", H_T,
			" h_a=", h_a, " H_a=", H_a,
			" h_g=", h_g, " H_g=", H_g,
			" u_a=", u_a, " u_g=", u_g,
			" W_a=", W_a,
			" goalΔ=", goalGrowthRatio-h_t,
			" actualΔ=", h_a-h_t,
			" u_a/u_g=", u_a/u_g,
			"\n")
	}

	return triggerRatio
}

// enlistWorker encourages another dedicated mark worker to start on
// another P if there are spare worker slots. It is used by putfull
// when more work is made available.
//
//go:nowritebarrier
func (c *gcControllerState) enlistWorker() {
	// If there are idle Ps, wake one so it will run an idle worker.
	// NOTE: This is suspected of causing deadlocks. See golang.org/issue/19112.
	//
	//	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
	//		wakep()
	//		return
	//	}

	// There are no idle Ps. If we need more dedicated workers,
	// try to preempt a running P so it will switch to a worker.
	if c.dedicatedMarkWorkersNeeded <= 0 {
		return
	}
	// Pick a random other P to preempt.
	if gomaxprocs <= 1 {
		return
	}
	gp := getg()
	if gp == nil || gp.m == nil || gp.m.p == 0 {
		return
	}
	myID := gp.m.p.ptr().id
	for tries := 0; tries < 5; tries++ {
		id := int32(fastrandn(uint32(gomaxprocs - 1)))
		if id >= myID {
			id++
		}
		p := allp[id]
		if p.status != _Prunning {
			continue
		}
		if preemptone(p) {
			return
		}
	}
}

// findRunnableGCWorker returns the background mark worker for _p_ if it
// should be run. This must only be called when gcBlackenEnabled != 0.
func (c *gcControllerState) findRunnableGCWorker(_p_ *p) *g {
	if gcBlackenEnabled == 0 {
		throw("gcControllerState.findRunnable: blackening not enabled")
	}
	if _p_.gcBgMarkWorker == 0 {
		// The mark worker associated with this P is blocked
		// performing a mark transition. We can't run it
		// because it may be on some other run or wait queue.
		return nil
	}

	if !gcMarkWorkAvailable(_p_) {
		// No work to be done right now. This can happen at
		// the end of the mark phase when there are still
		// assists tapering off. Don't bother running a worker
		// now because it'll just return immediately.
		return nil
	}

	decIfPositive := func(ptr *int64) bool {
		if *ptr > 0 {
			if atomic.Xaddint64(ptr, -1) >= 0 {
				return true
			}
			// We lost a race
			atomic.Xaddint64(ptr, +1)
		}
		return false
	}

	if decIfPositive(&c.dedicatedMarkWorkersNeeded) {
		// This P is now dedicated to marking until the end of
		// the concurrent mark phase.
		_p_.gcMarkWorkerMode = gcMarkWorkerDedicatedMode
	} else if c.fractionalUtilizationGoal == 0 {
		// No need for fractional workers.
		return nil
	} else {
		// Is this P behind on the fractional utilization
		// goal?
		//
		// This should be kept in sync with pollFractionalWorkerExit.
		delta := nanotime() - gcController.markStartTime
		if delta > 0 && float64(_p_.gcFractionalMarkTime)/float64(delta) > c.fractionalUtilizationGoal {
			// Nope. No need to run a fractional worker.
			return nil
		}
		// Run a fractional worker.
		_p_.gcMarkWorkerMode = gcMarkWorkerFractionalMode
	}

	// Run the background mark worker
	gp := _p_.gcBgMarkWorker.ptr()
	casgstatus(gp, _Gwaiting, _Grunnable)
	if trace.enabled {
		traceGoUnpark(gp, 0)
	}
	return gp
}

// pollFractionalWorkerExit reports whether a fractional mark worker
// should self-preempt. It assumes it is called from the fractional
// worker.
func pollFractionalWorkerExit() bool {
	// This should be kept in sync with the fractional worker
	// scheduler logic in findRunnableGCWorker.
	now := nanotime()
	delta := now - gcController.markStartTime
	if delta <= 0 {
		return true
	}
	p := getg().m.p.ptr()
	selfTime := p.gcFractionalMarkTime + (now - p.gcMarkWorkerStartTime)
	// Add some slack to the utilization goal so that the
	// fractional worker isn't behind again the instant it exits.
	return float64(selfTime)/float64(delta) > 1.2*gcController.fractionalUtilizationGoal
}

// gcSetTriggerRatio sets the trigger ratio and updates everything
// derived from it: the absolute trigger, the heap goal, mark pacing,
// and sweep pacing.
//
// This can be called any time. If GC is the in the middle of a
// concurrent phase, it will adjust the pacing of that phase.
//
// This depends on gcpercent, memstats.heap_marked, and
// memstats.heap_live. These must be up to date.
//
// mheap_.lock must be held or the world must be stopped.
func gcSetTriggerRatio(triggerRatio float64) {
	// Compute the next GC goal, which is when the allocated heap
	// has grown by GOGC/100 over the heap marked by the last
	// cycle.
	goal := ^uint64(0)
	if gcpercent >= 0 {
		goal = memstats.heap_marked + memstats.heap_marked*uint64(gcpercent)/100
	}

	// Set the trigger ratio, capped to reasonable bounds.
	if gcpercent >= 0 {
		scalingFactor := float64(gcpercent) / 100
		// Ensure there's always a little margin so that the
		// mutator assist ratio isn't infinity.
		maxTriggerRatio := 0.95 * scalingFactor
		if triggerRatio > maxTriggerRatio {
			triggerRatio = maxTriggerRatio
		}

		// If we let triggerRatio go too low, then if the application
		// is allocating very rapidly we might end up in a situation
		// where we're allocating black during a nearly always-on GC.
		// The result of this is a growing heap and ultimately an
		// increase in RSS. By capping us at a point >0, we're essentially
		// saying that we're OK using more CPU during the GC to prevent
		// this growth in RSS.
		//
		// The current constant was chosen empirically: given a sufficiently
		// fast/scalable allocator with 48 Ps that could drive the trigger ratio
		// to <0.05, this constant causes applications to retain the same peak
		// RSS compared to not having this allocator.
		minTriggerRatio := 0.6 * scalingFactor
		if triggerRatio < minTriggerRatio {
			triggerRatio = minTriggerRatio
		}
	} else if triggerRatio < 0 {
		// gcpercent < 0, so just make sure we're not getting a negative
		// triggerRatio. This case isn't expected to happen in practice,
		// and doesn't really matter because if gcpercent < 0 then we won't
		// ever consume triggerRatio further on in this function, but let's
		// just be defensive here; the triggerRatio being negative is almost
		// certainly undesirable.
		triggerRatio = 0
	}
	memstats.triggerRatio = triggerRatio

	// Compute the absolute GC trigger from the trigger ratio.
	//
	// We trigger the next GC cycle when the allocated heap has
	// grown by the trigger ratio over the marked heap size.
	trigger := ^uint64(0)
	if gcpercent >= 0 {
		trigger = uint64(float64(memstats.heap_marked) * (1 + triggerRatio))
		// Don't trigger below the minimum heap size.
		minTrigger := heapminimum
		if !isSweepDone() {
			// Concurrent sweep happens in the heap growth
			// from heap_live to gc_trigger, so ensure
			// that concurrent sweep has some heap growth
			// in which to perform sweeping before we
			// start the next GC cycle.
			sweepMin := atomic.Load64(&memstats.heap_live) + sweepMinHeapDistance
			if sweepMin > minTrigger {
				minTrigger = sweepMin
			}
		}
		if trigger < minTrigger {
			trigger = minTrigger
		}
		if int64(trigger) < 0 {
			print("runtime: next_gc=", memstats.next_gc, " heap_marked=", memstats.heap_marked, " heap_live=", memstats.heap_live, " initialHeapLive=", work.initialHeapLive, "triggerRatio=", triggerRatio, " minTrigger=", minTrigger, "\n")
			throw("gc_trigger underflow")
		}
		if trigger > goal {
			// The trigger ratio is always less than GOGC/100, but
			// other bounds on the trigger may have raised it.
			// Push up the goal, too.
			goal = trigger
		}
	}

	// Commit to the trigger and goal.
	memstats.gc_trigger = trigger
	memstats.next_gc = goal
	if trace.enabled {
		traceNextGC()
	}

	// Update mark pacing.
	if gcphase != _GCoff {
		gcController.revise()
	}

	// Update sweep pacing.
	if isSweepDone() {
		mheap_.sweepPagesPerByte = 0
	} else {
		// Concurrent sweep needs to sweep all of the in-use
		// pages by the time the allocated heap reaches the GC
		// trigger. Compute the ratio of in-use pages to sweep
		// per byte allocated, accounting for the fact that
		// some might already be swept.
		heapLiveBasis := atomic.Load64(&memstats.heap_live)
		heapDistance := int64(trigger) - int64(heapLiveBasis)
		// Add a little margin so rounding errors and
		// concurrent sweep are less likely to leave pages
		// unswept when GC starts.
		heapDistance -= 1024 * 1024
		if heapDistance < _PageSize {
			// Avoid setting the sweep ratio extremely high
			heapDistance = _PageSize
		}
		pagesSwept := atomic.Load64(&mheap_.pagesSwept)
		pagesInUse := atomic.Load64(&mheap_.pagesInUse)
		sweepDistancePages := int64(pagesInUse) - int64(pagesSwept)
		if sweepDistancePages <= 0 {
			mheap_.sweepPagesPerByte = 0
		} else {
			mheap_.sweepPagesPerByte = float64(sweepDistancePages) / float64(heapDistance)
			mheap_.sweepHeapLiveBasis = heapLiveBasis
			// Write pagesSweptBasis last, since this
			// signals concurrent sweeps to recompute
			// their debt.
			atomic.Store64(&mheap_.pagesSweptBasis, pagesSwept)
		}
	}

	gcPaceScavenger()
}

// gcEffectiveGrowthRatio returns the current effective heap growth
// ratio (GOGC/100) based on heap_marked from the previous GC and
// next_gc for the current GC.
//
// This may differ from gcpercent/100 because of various upper and
// lower bounds on gcpercent. For example, if the heap is smaller than
// heapminimum, this can be higher than gcpercent/100.
//
// mheap_.lock must be held or the world must be stopped.
func gcEffectiveGrowthRatio() float64 {
	egogc := float64(memstats.next_gc-memstats.heap_marked) / float64(memstats.heap_marked)
	if egogc < 0 {
		// Shouldn't happen, but just in case.
		egogc = 0
	}
	return egogc
}

// gcGoalUtilization is the goal CPU utilization for
// marking as a fraction of GOMAXPROCS.
const gcGoalUtilization = 0.30

// gcBackgroundUtilization is the fixed CPU utilization for background
// marking. It must be <= gcGoalUtilization. The difference between
// gcGoalUtilization and gcBackgroundUtilization will be made up by
// mark assists. The scheduler will aim to use within 50% of this
// goal.
//
// Setting this to < gcGoalUtilization avoids saturating the trigger
// feedback controller when there are no assists, which allows it to
// better control CPU and heap growth. However, the larger the gap,
// the more mutator assists are expected to happen, which impact
// mutator latency.
const gcBackgroundUtilization = 0.25

// gcCreditSlack is the amount of scan work credit that can
// accumulate locally before updating gcController.scanWork and,
// optionally, gcController.bgScanCredit. Lower values give a more
// accurate assist ratio and make it more likely that assists will
// successfully steal background credit. Higher values reduce memory
// contention.
const gcCreditSlack = 2000

// gcAssistTimeSlack is the nanoseconds of mutator assist time that
// can accumulate on a P before updating gcController.assistTime.
const gcAssistTimeSlack = 5000

// gcOverAssistWork determines how many extra units of scan work a GC
// assist does when an assist happens. This amortizes the cost of an
// assist by pre-paying for this many bytes of future allocations.
const gcOverAssistWork = 64 << 10

var work struct {
	full  lfstack          // lock-free list of full blocks workbuf
	empty lfstack          // lock-free list of empty blocks workbuf
	pad0  cpu.CacheLinePad // prevents false-sharing between full/empty and nproc/nwait

	wbufSpans struct {
		lock mutex
		// free is a list of spans dedicated to workbufs, but
		// that don't currently contain any workbufs.
		free mSpanList
		// busy is a list of all spans containing workbufs on
		// one of the workbuf lists.
		busy mSpanList
	}

	// Restore 64-bit alignment on 32-bit.
	_ uint32

	// bytesMarked is the number of bytes marked this cycle. This
	// includes bytes blackened in scanned objects, noscan objects
	// that go straight to black, and permagrey objects scanned by
	// markroot during the concurrent scan phase. This is updated
	// atomically during the cycle. Updates may be batched
	// arbitrarily, since the value is only read at the end of the
	// cycle.
	//
	// Because of benign races during marking, this number may not
	// be the exact number of marked bytes, but it should be very
	// close.
	//
	// Put this field here because it needs 64-bit atomic access
	// (and thus 8-byte alignment even on 32-bit architectures).
	bytesMarked uint64

	markrootNext uint32 // next markroot job
	markrootJobs uint32 // number of markroot jobs

	nproc  uint32
	tstart int64
	nwait  uint32
	ndone  uint32

	// Number of roots of various root types. Set by gcMarkRootPrepare.
	nFlushCacheRoots                               int
	nDataRoots, nBSSRoots, nSpanRoots, nStackRoots int

	// Each type of GC state transition is protected by a lock.
	// Since multiple threads can simultaneously detect the state
	// transition condition, any thread that detects a transition
	// condition must acquire the appropriate transition lock,
	// re-check the transition condition and return if it no
	// longer holds or perform the transition if it does.
	// Likewise, any transition must invalidate the transition
	// condition before releasing the lock. This ensures that each
	// transition is performed by exactly one thread and threads
	// that need the transition to happen block until it has
	// happened.
	//
	// startSema protects the transition from "off" to mark or
	// mark termination.
	startSema uint32
	// markDoneSema protects transitions from mark to mark termination.
	markDoneSema uint32

	bgMarkReady note   // signal background mark worker has started
	bgMarkDone  uint32 // cas to 1 when at a background mark completion point
	// Background mark completion signaling

	// mode is the concurrency mode of the current GC cycle.
	mode gcMode

	// userForced indicates the current GC cycle was forced by an
	// explicit user call.
	userForced bool

	// totaltime is the CPU nanoseconds spent in GC since the
	// program started if debug.gctrace > 0.
	totaltime int64

	// initialHeapLive is the value of memstats.heap_live at the
	// beginning of this GC cycle.
	initialHeapLive uint64

	// assistQueue is a queue of assists that are blocked because
	// there was neither enough credit to steal or enough work to
	// do.
	assistQueue struct {
		lock mutex
		q    gQueue
	}

	// sweepWaiters is a list of blocked goroutines to wake when
	// we transition from mark termination to sweep.
	sweepWaiters struct {
		lock mutex
		list gList
	}

	// cycles is the number of completed GC cycles, where a GC
	// cycle is sweep termination, mark, mark termination, and
	// sweep. This differs from memstats.numgc, which is
	// incremented at mark termination.
	cycles uint32

	// Timing/utilization stats for this cycle.
	stwprocs, maxprocs                 int32
	tSweepTerm, tMark, tMarkTerm, tEnd int64 // nanotime() of phase start

	pauseNS    int64 // total STW time this cycle
	pauseStart int64 // nanotime() of last STW

	// debug.gctrace heap sizes for this cycle.
	heap0, heap1, heap2, heapGoal uint64
}

// GC runs a garbage collection and blocks the caller until the
// garbage collection is complete. It may also block the entire
// program.
func GC() {
	// We consider a cycle to be: sweep termination, mark, mark
	// termination, and sweep. This function shouldn't return
	// until a full cycle has been completed, from beginning to
	// end. Hence, we always want to finish up the current cycle
	// and start a new one. That means:
	//
	// 1. In sweep termination, mark, or mark termination of cycle
	// N, wait until mark termination N completes and transitions
	// to sweep N.
	//
	// 2. In sweep N, help with sweep N.
	//
	// At this point we can begin a full cycle N+1.
	//
	// 3. Trigger cycle N+1 by starting sweep termination N+1.
	//
	// 4. Wait for mark termination N+1 to complete.
	//
	// 5. Help with sweep N+1 until it's done.
	//
	// This all has to be written to deal with the fact that the
	// GC may move ahead on its own. For example, when we block
	// until mark termination N, we may wake up in cycle N+2.

	// Wait until the current sweep termination, mark, and mark
	// termination complete.
	n := atomic.Load(&work.cycles)
	gcWaitOnMark(n)

	// We're now in sweep N or later. Trigger GC cycle N+1, which
	// will first finish sweep N if necessary and then enter sweep
	// termination N+1.
	gcStart(gcTrigger{kind: gcTriggerCycle, n: n + 1})

	// Wait for mark termination N+1 to complete.
	gcWaitOnMark(n + 1)

	// Finish sweep N+1 before returning. We do this both to
	// complete the cycle and because runtime.GC() is often used
	// as part of tests and benchmarks to get the system into a
	// relatively stable and isolated state.
	for atomic.Load(&work.cycles) == n+1 && sweepone() != ^uintptr(0) {
		sweep.nbgsweep++
		Gosched()
	}

	// Callers may assume that the heap profile reflects the
	// just-completed cycle when this returns (historically this
	// happened because this was a STW GC), but right now the
	// profile still reflects mark termination N, not N+1.
	//
	// As soon as all of the sweep frees from cycle N+1 are done,
	// we can go ahead and publish the heap profile.
	//
	// First, wait for sweeping to finish. (We know there are no
	// more spans on the sweep queue, but we may be concurrently
	// sweeping spans, so we have to wait.)
	for atomic.Load(&work.cycles) == n+1 && atomic.Load(&mheap_.sweepers) != 0 {
		Gosched()
	}

	// Now we're really done with sweeping, so we can publish the
	// stable heap profile. Only do this if we haven't already hit
	// another mark termination.
	mp := acquirem()
	cycle := atomic.Load(&work.cycles)
	if cycle == n+1 || (gcphase == _GCmark && cycle == n+2) {
		mProf_PostSweep()
	}
	releasem(mp)
}

// gcWaitOnMark blocks until GC finishes the Nth mark phase. If GC has
// already completed this mark phase, it returns immediately.
func gcWaitOnMark(n uint32) {
	for {
		// Disable phase transitions.
		lock(&work.sweepWaiters.lock)
		nMarks := atomic.Load(&work.cycles)
		if gcphase != _GCmark {
			// We've already completed this cycle's mark.
			nMarks++
		}
		if nMarks > n {
			// We're done.
			unlock(&work.sweepWaiters.lock)
			return
		}

		// Wait until sweep termination, mark, and mark
		// termination of cycle N complete.
		work.sweepWaiters.list.push(getg())
		goparkunlock(&work.sweepWaiters.lock, waitReasonWaitForGCCycle, traceEvGoBlock, 1)
	}
}

// gcMode indicates how concurrent a GC cycle should be.
type gcMode int

const (
	gcBackgroundMode gcMode = iota // concurrent GC and sweep
	gcForceMode                    // stop-the-world GC now, concurrent sweep
	gcForceBlockMode               // stop-the-world GC now and STW sweep (forced by user)
)

// A gcTrigger is a predicate for starting a GC cycle. Specifically,
// it is an exit condition for the _GCoff phase.
type gcTrigger struct {
	kind gcTriggerKind
	now  int64  // gcTriggerTime: current time
	n    uint32 // gcTriggerCycle: cycle number to start
}

type gcTriggerKind int

const (
	// gcTriggerHeap indicates that a cycle should be started when
	// the heap size reaches the trigger heap size computed by the
	// controller.
	gcTriggerHeap gcTriggerKind = iota

	// gcTriggerTime indicates that a cycle should be started when
	// it's been more than forcegcperiod nanoseconds since the
	// previous GC cycle.
	gcTriggerTime

	// gcTriggerCycle indicates that a cycle should be started if
	// we have not yet started cycle number gcTrigger.n (relative
	// to work.cycles).
	gcTriggerCycle
)

// test reports whether the trigger condition is satisfied, meaning
// that the exit condition for the _GCoff phase has been met. The exit
// condition should be tested when allocating.
func (t gcTrigger) test() bool {
	if !memstats.enablegc || panicking != 0 || gcphase != _GCoff {
		return false
	}
	switch t.kind {
	case gcTriggerHeap:
		// Non-atomic access to heap_live for performance. If
		// we are going to trigger on this, this thread just
		// atomically wrote heap_live anyway and we'll see our
		// own write.
		return memstats.heap_live >= memstats.gc_trigger
	case gcTriggerTime:
		if gcpercent < 0 {
			return false
		}
		lastgc := int64(atomic.Load64(&memstats.last_gc_nanotime))
		return lastgc != 0 && t.now-lastgc > forcegcperiod
	case gcTriggerCycle:
		// t.n > work.cycles, but accounting for wraparound.
		return int32(t.n-work.cycles) > 0
	}
	return true
}

// gcStart starts the GC. It transitions from _GCoff to _GCmark (if
// debug.gcstoptheworld == 0) or performs all of GC (if
// debug.gcstoptheworld != 0).
//
// This may return without performing this transition in some cases,
// such as when called on a system stack or with locks held.
func gcStart(trigger gcTrigger) {
	// Since this is called from malloc and malloc is called in
	// the guts of a number of libraries that might be holding
	// locks, don't attempt to start GC in non-preemptible or
	// potentially unstable situations.
	mp := acquirem()
	if gp := getg(); gp == mp.g0 || mp.locks > 1 || mp.preemptoff != "" {
		releasem(mp)
		return
	}
	releasem(mp)
	mp = nil

	// Pick up the remaining unswept/not being swept spans concurrently
	//
	// This shouldn't happen if we're being invoked in background
	// mode since proportional sweep should have just finished
	// sweeping everything, but rounding errors, etc, may leave a
	// few spans unswept. In forced mode, this is necessary since
	// GC can be forced at any point in the sweeping cycle.
	//
	// We check the transition condition continuously here in case
	// this G gets delayed in to the next GC cycle.
	for trigger.test() && sweepone() != ^uintptr(0) {
		sweep.nbgsweep++
	}

	// Perform GC initialization and the sweep termination
	// transition.
	semacquire(&work.startSema)
	// Re-check transition condition under transition lock.
	if !trigger.test() {
		semrelease(&work.startSema)
		return
	}

	// For stats, check if this GC was forced by the user.
	work.userForced = trigger.kind == gcTriggerCycle

	// In gcstoptheworld debug mode, upgrade the mode accordingly.
	// We do this after re-checking the transition condition so
	// that multiple goroutines that detect the heap trigger don't
	// start multiple STW GCs.
	mode := gcBackgroundMode
	if debug.gcstoptheworld == 1 {
		mode = gcForceMode
	} else if debug.gcstoptheworld == 2 {
		mode = gcForceBlockMode
	}

	// Ok, we're doing it! Stop everybody else
	semacquire(&gcsema)
	semacquire(&worldsema)

	if trace.enabled {
		traceGCStart()
	}

	// Check that all Ps have finished deferred mcache flushes.
	for _, p := range allp {
		if fg := atomic.Load(&p.mcache.flushGen); fg != mheap_.sweepgen {
			println("runtime: p", p.id, "flushGen", fg, "!= sweepgen", mheap_.sweepgen)
			throw("p mcache not flushed")
		}
	}

	gcBgMarkStartWorkers()

	systemstack(gcResetMarkState)

	work.stwprocs, work.maxprocs = gomaxprocs, gomaxprocs
	if work.stwprocs > ncpu {
		// This is used to compute CPU time of the STW phases,
		// so it can't be more than ncpu, even if GOMAXPROCS is.
		work.stwprocs = ncpu
	}
	work.heap0 = atomic.Load64(&memstats.heap_live)
	work.pauseNS = 0
	work.mode = mode

	now := nanotime()
	work.tSweepTerm = now
	work.pauseStart = now
	if trace.enabled {
		traceGCSTWStart(1)
	}
	systemstack(stopTheWorldWithSema)
	// Finish sweep before we start concurrent scan.
	systemstack(func() {
		finishsweep_m()
	})

	// clearpools before we start the GC. If we wait they memory will not be
	// reclaimed until the next GC cycle.
	clearpools()

	work.cycles++

	gcController.startCycle()
	work.heapGoal = memstats.next_gc

	// In STW mode, disable scheduling of user Gs. This may also
	// disable scheduling of this goroutine, so it may block as
	// soon as we start the world again.
	if mode != gcBackgroundMode {
		schedEnableUser(false)
	}

	// Enter concurrent mark phase and enable
	// write barriers.
	//
	// Because the world is stopped, all Ps will
	// observe that write barriers are enabled by
	// the time we start the world and begin
	// scanning.
	//
	// Write barriers must be enabled before assists are
	// enabled because they must be enabled before
	// any non-leaf heap objects are marked. Since
	// allocations are blocked until assists can
	// happen, we want enable assists as early as
	// possible.
	setGCPhase(_GCmark)

	gcBgMarkPrepare() // Must happen before assist enable.
	gcMarkRootPrepare()

	// Mark all active tinyalloc blocks. Since we're
	// allocating from these, they need to be black like
	// other allocations. The alternative is to blacken
	// the tiny block on every allocation from it, which
	// would slow down the tiny allocator.
	gcMarkTinyAllocs()

	// At this point all Ps have enabled the write
	// barrier, thus maintaining the no white to
	// black invariant. Enable mutator assists to
	// put back-pressure on fast allocating
	// mutators.
	atomic.Store(&gcBlackenEnabled, 1)

	// Assists and workers can start the moment we start
	// the world.
	gcController.markStartTime = now

	// In STW mode, we could block the instant systemstack
	// returns, so make sure we're not preemptible.
	mp = acquirem()

	// Concurrent mark.
	systemstack(func() {
		now = startTheWorldWithSema(trace.enabled)
		work.pauseNS += now - work.pauseStart
		work.tMark = now
	})

	// Release the world sema before Gosched() in STW mode
	// because we will need to reacquire it later but before
	// this goroutine becomes runnable again, and we could
	// self-deadlock otherwise.
	semrelease(&worldsema)
	releasem(mp)

	// Make sure we block instead of returning to user code
	// in STW mode.
	if mode != gcBackgroundMode {
		Gosched()
	}

	semrelease(&work.startSema)
}

// gcMarkDoneFlushed counts the number of P's with flushed work.
//
// Ideally this would be a captured local in gcMarkDone, but forEachP
// escapes its callback closure, so it can't capture anything.
//
// This is protected by markDoneSema.
var gcMarkDoneFlushed uint32

// debugCachedWork enables extra checks for debugging premature mark
// termination.
//
// For debugging issue #27993.
const debugCachedWork = false

// gcWorkPauseGen is for debugging the mark completion algorithm.
// gcWork put operations spin while gcWork.pauseGen == gcWorkPauseGen.
// Only used if debugCachedWork is true.
//
// For debugging issue #27993.
var gcWorkPauseGen uint32 = 1

// gcMarkDone transitions the GC from mark to mark termination if all
// reachable objects have been marked (that is, there are no grey
// objects and can be no more in the future). Otherwise, it flushes
// all local work to the global queues where it can be discovered by
// other workers.
//
// This should be called when all local mark work has been drained and
// there are no remaining workers. Specifically, when
//
//   work.nwait == work.nproc && !gcMarkWorkAvailable(p)
//
// The calling context must be preemptible.
//
// Flushing local work is important because idle Ps may have local
// work queued. This is the only way to make that work visible and
// drive GC to completion.
//
// It is explicitly okay to have write barriers in this function. If
// it does transition to mark termination, then all reachable objects
// have been marked, so the write barrier cannot shade any more
// objects.
func gcMarkDone() {
	// Ensure only one thread is running the ragged barrier at a
	// time.
	semacquire(&work.markDoneSema)

top:
	// Re-check transition condition under transition lock.
	//
	// It's critical that this checks the global work queues are
	// empty before performing the ragged barrier. Otherwise,
	// there could be global work that a P could take after the P
	// has passed the ragged barrier.
	if !(gcphase == _GCmark && work.nwait == work.nproc && !gcMarkWorkAvailable(nil)) {
		semrelease(&work.markDoneSema)
		return
	}

	// forEachP needs worldsema to execute, and we'll need it to
	// stop the world later, so acquire worldsema now.
	semacquire(&worldsema)

	// Flush all local buffers and collect flushedWork flags.
	gcMarkDoneFlushed = 0
	systemstack(func() {
		gp := getg().m.curg
		// Mark the user stack as preemptible so that it may be scanned.
		// Otherwise, our attempt to force all P's to a safepoint could
		// result in a deadlock as we attempt to preempt a worker that's
		// trying to preempt us (e.g. for a stack scan).
		casgstatus(gp, _Grunning, _Gwaiting)
		forEachP(func(_p_ *p) {
			// Flush the write barrier buffer, since this may add
			// work to the gcWork.
			wbBufFlush1(_p_)
			// For debugging, shrink the write barrier
			// buffer so it flushes immediately.
			// wbBuf.reset will keep it at this size as
			// long as throwOnGCWork is set.
			if debugCachedWork {
				b := &_p_.wbBuf
				b.end = uintptr(unsafe.Pointer(&b.buf[wbBufEntryPointers]))
				b.debugGen = gcWorkPauseGen
			}
			// Flush the gcWork, since this may create global work
			// and set the flushedWork flag.
			//
			// TODO(austin): Break up these workbufs to
			// better distribute work.
			_p_.gcw.dispose()
			// Collect the flushedWork flag.
			if _p_.gcw.flushedWork {
				atomic.Xadd(&gcMarkDoneFlushed, 1)
				_p_.gcw.flushedWork = false
			} else if debugCachedWork {
				// For debugging, freeze the gcWork
				// until we know whether we've reached
				// completion or not. If we think
				// we've reached completion, but
				// there's a paused gcWork, then
				// that's a bug.
				_p_.gcw.pauseGen = gcWorkPauseGen
				// Capture the G's stack.
				for i := range _p_.gcw.pauseStack {
					_p_.gcw.pauseStack[i] = 0
				}
				callers(1, _p_.gcw.pauseStack[:])
			}
		})
		casgstatus(gp, _Gwaiting, _Grunning)
	})

	if gcMarkDoneFlushed != 0 {
		if debugCachedWork {
			// Release paused gcWorks.
			atomic.Xadd(&gcWorkPauseGen, 1)
		}
		// More grey objects were discovered since the
		// previous termination check, so there may be more
		// work to do. Keep going. It's possible the
		// transition condition became true again during the
		// ragged barrier, so re-check it.
		semrelease(&worldsema)
		goto top
	}

	if debugCachedWork {
		throwOnGCWork = true
		// Release paused gcWorks. If there are any, they
		// should now observe throwOnGCWork and panic.
		atomic.Xadd(&gcWorkPauseGen, 1)
	}

	// There was no global work, no local work, and no Ps
	// communicated work since we took markDoneSema. Therefore
	// there are no grey objects and no more objects can be
	// shaded. Transition to mark termination.
	now := nanotime()
	work.tMarkTerm = now
	work.pauseStart = now
	getg().m.preemptoff = "gcing"
	if trace.enabled {
		traceGCSTWStart(0)
	}
	systemstack(stopTheWorldWithSema)
	// The gcphase is _GCmark, it will transition to _GCmarktermination
	// below. The important thing is that the wb remains active until
	// all marking is complete. This includes writes made by the GC.

	if debugCachedWork {
		// For debugging, double check that no work was added after we
		// went around above and disable write barrier buffering.
		for _, p := range allp {
			gcw := &p.gcw
			if !gcw.empty() {
				printlock()
				print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
				if gcw.wbuf1 == nil {
					print(" wbuf1=<nil>")
				} else {
					print(" wbuf1.n=", gcw.wbuf1.nobj)
				}
				if gcw.wbuf2 == nil {
					print(" wbuf2=<nil>")
				} else {
					print(" wbuf2.n=", gcw.wbuf2.nobj)
				}
				print("\n")
				if gcw.pauseGen == gcw.putGen {
					println("runtime: checkPut already failed at this generation")
				}
				throw("throwOnGCWork")
			}
		}
	} else {
		// For unknown reasons (see issue #27993), there is
		// sometimes work left over when we enter mark
		// termination. Detect this and resume concurrent
		// mark. This is obviously unfortunate.
		//
		// Switch to the system stack to call wbBufFlush1,
		// though in this case it doesn't matter because we're
		// non-preemptible anyway.
		restart := false
		systemstack(func() {
			for _, p := range allp {
				wbBufFlush1(p)
				if !p.gcw.empty() {
					restart = true
					break
				}
			}
		})
		if restart {
			getg().m.preemptoff = ""
			systemstack(func() {
				now := startTheWorldWithSema(true)
				work.pauseNS += now - work.pauseStart
			})
			semrelease(&worldsema)
			goto top
		}
	}

	// Disable assists and background workers. We must do
	// this before waking blocked assists.
	atomic.Store(&gcBlackenEnabled, 0)

	// Wake all blocked assists. These will run when we
	// start the world again.
	gcWakeAllAssists()

	// Likewise, release the transition lock. Blocked
	// workers and assists will run when we start the
	// world again.
	semrelease(&work.markDoneSema)

	// In STW mode, re-enable user goroutines. These will be
	// queued to run after we start the world.
	schedEnableUser(true)

	// endCycle depends on all gcWork cache stats being flushed.
	// The termination algorithm above ensured that up to
	// allocations since the ragged barrier.
	nextTriggerRatio := gcController.endCycle()

	// Perform mark termination. This will restart the world.
	gcMarkTermination(nextTriggerRatio)
}

func gcMarkTermination(nextTriggerRatio float64) {
	// World is stopped.
	// Start marktermination which includes enabling the write barrier.
	atomic.Store(&gcBlackenEnabled, 0)
	setGCPhase(_GCmarktermination)

	work.heap1 = memstats.heap_live
	startTime := nanotime()

	mp := acquirem()
	mp.preemptoff = "gcing"
	_g_ := getg()
	_g_.m.traceback = 2
	gp := _g_.m.curg
	casgstatus(gp, _Grunning, _Gwaiting)
	gp.waitreason = waitReasonGarbageCollection

	// Run gc on the g0 stack. We do this so that the g stack
	// we're currently running on will no longer change. Cuts
	// the root set down a bit (g0 stacks are not scanned, and
	// we don't need to scan gc's internal state).  We also
	// need to switch to g0 so we can shrink the stack.
	systemstack(func() {
		gcMark(startTime)
		// Must return immediately.
		// The outer function's stack may have moved
		// during gcMark (it shrinks stacks, including the
		// outer function's stack), so we must not refer
		// to any of its variables. Return back to the
		// non-system stack to pick up the new addresses
		// before continuing.
	})

	systemstack(func() {
		work.heap2 = work.bytesMarked
		if debug.gccheckmark > 0 {
			// Run a full non-parallel, stop-the-world
			// mark using checkmark bits, to check that we
			// didn't forget to mark anything during the
			// concurrent mark process.
			startCheckmarks()
			gcResetMarkState()
			gcw := &getg().m.p.ptr().gcw
			gcDrain(gcw, 0)
			wbBufFlush1(getg().m.p.ptr())
			gcw.dispose()
			endCheckmarks()
		}

		// marking is complete so we can turn the write barrier off
		setGCPhase(_GCoff)
		gcSweep(work.mode)
	})

	_g_.m.traceback = 0
	casgstatus(gp, _Gwaiting, _Grunning)

	if trace.enabled {
		traceGCDone()
	}

	// all done
	mp.preemptoff = ""

	if gcphase != _GCoff {
		throw("gc done but gcphase != _GCoff")
	}

	// Record next_gc and heap_inuse for scavenger.
	memstats.last_next_gc = memstats.next_gc
	memstats.last_heap_inuse = memstats.heap_inuse

	// Update GC trigger and pacing for the next cycle.
	gcSetTriggerRatio(nextTriggerRatio)

	// Update timing memstats
	now := nanotime()
	sec, nsec, _ := time_now()
	unixNow := sec*1e9 + int64(nsec)
	work.pauseNS += now - work.pauseStart
	work.tEnd = now
	atomic.Store64(&memstats.last_gc_unix, uint64(unixNow)) // must be Unix time to make sense to user
	atomic.Store64(&memstats.last_gc_nanotime, uint64(now)) // monotonic time for us
	memstats.pause_ns[memstats.numgc%uint32(len(memstats.pause_ns))] = uint64(work.pauseNS)
	memstats.pause_end[memstats.numgc%uint32(len(memstats.pause_end))] = uint64(unixNow)
	memstats.pause_total_ns += uint64(work.pauseNS)

	// Update work.totaltime.
	sweepTermCpu := int64(work.stwprocs) * (work.tMark - work.tSweepTerm)
	// We report idle marking time below, but omit it from the
	// overall utilization here since it's "free".
	markCpu := gcController.assistTime + gcController.dedicatedMarkTime + gcController.fractionalMarkTime
	markTermCpu := int64(work.stwprocs) * (work.tEnd - work.tMarkTerm)
	cycleCpu := sweepTermCpu + markCpu + markTermCpu
	work.totaltime += cycleCpu

	// Compute overall GC CPU utilization.
	totalCpu := sched.totaltime + (now-sched.procresizetime)*int64(gomaxprocs)
	memstats.gc_cpu_fraction = float64(work.totaltime) / float64(totalCpu)

	// Reset sweep state.
	sweep.nbgsweep = 0
	sweep.npausesweep = 0

	if work.userForced {
		memstats.numforcedgc++
	}

	// Bump GC cycle count and wake goroutines waiting on sweep.
	lock(&work.sweepWaiters.lock)
	memstats.numgc++
	injectglist(&work.sweepWaiters.list)
	unlock(&work.sweepWaiters.lock)

	// Finish the current heap profiling cycle and start a new
	// heap profiling cycle. We do this before starting the world
	// so events don't leak into the wrong cycle.
	mProf_NextCycle()

	systemstack(func() { startTheWorldWithSema(true) })

	// Flush the heap profile so we can start a new cycle next GC.
	// This is relatively expensive, so we don't do it with the
	// world stopped.
	mProf_Flush()

	// Prepare workbufs for freeing by the sweeper. We do this
	// asynchronously because it can take non-trivial time.
	prepareFreeWorkbufs()

	// Free stack spans. This must be done between GC cycles.
	systemstack(freeStackSpans)

	// Ensure all mcaches are flushed. Each P will flush its own
	// mcache before allocating, but idle Ps may not. Since this
	// is necessary to sweep all spans, we need to ensure all
	// mcaches are flushed before we start the next GC cycle.
	systemstack(func() {
		forEachP(func(_p_ *p) {
			_p_.mcache.prepareForSweep()
		})
	})

	// Print gctrace before dropping worldsema. As soon as we drop
	// worldsema another cycle could start and smash the stats
	// we're trying to print.
	if debug.gctrace > 0 {
		util := int(memstats.gc_cpu_fraction * 100)

		var sbuf [24]byte
		printlock()
		print("gc ", memstats.numgc,
			" @", string(itoaDiv(sbuf[:], uint64(work.tSweepTerm-runtimeInitTime)/1e6, 3)), "s ",
			util, "%: ")
		prev := work.tSweepTerm
		for i, ns := range []int64{work.tMark, work.tMarkTerm, work.tEnd} {
			if i != 0 {
				print("+")
			}
			print(string(fmtNSAsMS(sbuf[:], uint64(ns-prev))))
			prev = ns
		}
		print(" ms clock, ")
		for i, ns := range []int64{sweepTermCpu, gcController.assistTime, gcController.dedicatedMarkTime + gcController.fractionalMarkTime, gcController.idleMarkTime, markTermCpu} {
			if i == 2 || i == 3 {
				// Separate mark time components with /.
				print("/")
			} else if i != 0 {
				print("+")
			}
			print(string(fmtNSAsMS(sbuf[:], uint64(ns))))
		}
		print(" ms cpu, ",
			work.heap0>>20, "->", work.heap1>>20, "->", work.heap2>>20, " MB, ",
			work.heapGoal>>20, " MB goal, ",
			work.maxprocs, " P")
		if work.userForced {
			print(" (forced)")
		}
		print("\n")
		printunlock()
	}

	semrelease(&worldsema)
	semrelease(&gcsema)
	// Careful: another GC cycle may start now.

	releasem(mp)
	mp = nil

	// now that gc is done, kick off finalizer thread if needed
	if !concurrentSweep {
		// give the queued finalizers, if any, a chance to run
		Gosched()
	}
}

// gcBgMarkStartWorkers prepares background mark worker goroutines.
// These goroutines will not run until the mark phase, but they must
// be started while the work is not stopped and from a regular G
// stack. The caller must hold worldsema.
func gcBgMarkStartWorkers() {
	// Background marking is performed by per-P G's. Ensure that
	// each P has a background GC G.
	for _, p := range allp {
		if p.gcBgMarkWorker == 0 {
			go gcBgMarkWorker(p)
			notetsleepg(&work.bgMarkReady, -1)
			noteclear(&work.bgMarkReady)
		}
	}
}

// gcBgMarkPrepare sets up state for background marking.
// Mutator assists must not yet be enabled.
func gcBgMarkPrepare() {
	// Background marking will stop when the work queues are empty
	// and there are no more workers (note that, since this is
	// concurrent, this may be a transient state, but mark
	// termination will clean it up). Between background workers
	// and assists, we don't really know how many workers there
	// will be, so we pretend to have an arbitrarily large number
	// of workers, almost all of which are "waiting". While a
	// worker is working it decrements nwait. If nproc == nwait,
	// there are no workers.
	work.nproc = ^uint32(0)
	work.nwait = ^uint32(0)
}

func gcBgMarkWorker(_p_ *p) {
	gp := getg()

	type parkInfo struct {
		m      muintptr // Release this m on park.
		attach puintptr // If non-nil, attach to this p on park.
	}
	// We pass park to a gopark unlock function, so it can't be on
	// the stack (see gopark). Prevent deadlock from recursively
	// starting GC by disabling preemption.
	gp.m.preemptoff = "GC worker init"
	park := new(parkInfo)
	gp.m.preemptoff = ""

	park.m.set(acquirem())
	park.attach.set(_p_)
	// Inform gcBgMarkStartWorkers that this worker is ready.
	// After this point, the background mark worker is scheduled
	// cooperatively by gcController.findRunnable. Hence, it must
	// never be preempted, as this would put it into _Grunnable
	// and put it on a run queue. Instead, when the preempt flag
	// is set, this puts itself into _Gwaiting to be woken up by
	// gcController.findRunnable at the appropriate time.
	notewakeup(&work.bgMarkReady)

	for {
		// Go to sleep until woken by gcController.findRunnable.
		// We can't releasem yet since even the call to gopark
		// may be preempted.
		gopark(func(g *g, parkp unsafe.Pointer) bool {
			park := (*parkInfo)(parkp)

			// The worker G is no longer running, so it's
			// now safe to allow preemption.
			releasem(park.m.ptr())

			// If the worker isn't attached to its P,
			// attach now. During initialization and after
			// a phase change, the worker may have been
			// running on a different P. As soon as we
			// attach, the owner P may schedule the
			// worker, so this must be done after the G is
			// stopped.
			if park.attach != 0 {
				p := park.attach.ptr()
				park.attach.set(nil)
				// cas the worker because we may be
				// racing with a new worker starting
				// on this P.
				if !p.gcBgMarkWorker.cas(0, guintptr(unsafe.Pointer(g))) {
					// The P got a new worker.
					// Exit this worker.
					return false
				}
			}
			return true
		}, unsafe.Pointer(park), waitReasonGCWorkerIdle, traceEvGoBlock, 0)

		// Loop until the P dies and disassociates this
		// worker (the P may later be reused, in which case
		// it will get a new worker) or we failed to associate.
		if _p_.gcBgMarkWorker.ptr() != gp {
			break
		}

		// Disable preemption so we can use the gcw. If the
		// scheduler wants to preempt us, we'll stop draining,
		// dispose the gcw, and then preempt.
		park.m.set(acquirem())

		if gcBlackenEnabled == 0 {
			throw("gcBgMarkWorker: blackening not enabled")
		}

		startTime := nanotime()
		_p_.gcMarkWorkerStartTime = startTime

		decnwait := atomic.Xadd(&work.nwait, -1)
		if decnwait == work.nproc {
			println("runtime: work.nwait=", decnwait, "work.nproc=", work.nproc)
			throw("work.nwait was > work.nproc")
		}

		systemstack(func() {
			// Mark our goroutine preemptible so its stack
			// can be scanned. This lets two mark workers
			// scan each other (otherwise, they would
			// deadlock). We must not modify anything on
			// the G stack. However, stack shrinking is
			// disabled for mark workers, so it is safe to
			// read from the G stack.
			casgstatus(gp, _Grunning, _Gwaiting)
			switch _p_.gcMarkWorkerMode {
			default:
				throw("gcBgMarkWorker: unexpected gcMarkWorkerMode")
			case gcMarkWorkerDedicatedMode:
				gcDrain(&_p_.gcw, gcDrainUntilPreempt|gcDrainFlushBgCredit)
				if gp.preempt {
					// We were preempted. This is
					// a useful signal to kick
					// everything out of the run
					// queue so it can run
					// somewhere else.
					lock(&sched.lock)
					for {
						gp, _ := runqget(_p_)
						if gp == nil {
							break
						}
						globrunqput(gp)
					}
					unlock(&sched.lock)
				}
				// Go back to draining, this time
				// without preemption.
				gcDrain(&_p_.gcw, gcDrainFlushBgCredit)
			case gcMarkWorkerFractionalMode:
				gcDrain(&_p_.gcw, gcDrainFractional|gcDrainUntilPreempt|gcDrainFlushBgCredit)
			case gcMarkWorkerIdleMode:
				gcDrain(&_p_.gcw, gcDrainIdle|gcDrainUntilPreempt|gcDrainFlushBgCredit)
			}
			casgstatus(gp, _Gwaiting, _Grunning)
		})

		// Account for time.
		duration := nanotime() - startTime
		switch _p_.gcMarkWorkerMode {
		case gcMarkWorkerDedicatedMode:
			atomic.Xaddint64(&gcController.dedicatedMarkTime, duration)
			atomic.Xaddint64(&gcController.dedicatedMarkWorkersNeeded, 1)
		case gcMarkWorkerFractionalMode:
			atomic.Xaddint64(&gcController.fractionalMarkTime, duration)
			atomic.Xaddint64(&_p_.gcFractionalMarkTime, duration)
		case gcMarkWorkerIdleMode:
			atomic.Xaddint64(&gcController.idleMarkTime, duration)
		}

		// Was this the last worker and did we run out
		// of work?
		incnwait := atomic.Xadd(&work.nwait, +1)
		if incnwait > work.nproc {
			println("runtime: p.gcMarkWorkerMode=", _p_.gcMarkWorkerMode,
				"work.nwait=", incnwait, "work.nproc=", work.nproc)
			throw("work.nwait > work.nproc")
		}

		// If this worker reached a background mark completion
		// point, signal the main GC goroutine.
		if incnwait == work.nproc && !gcMarkWorkAvailable(nil) {
			// Make this G preemptible and disassociate it
			// as the worker for this P so
			// findRunnableGCWorker doesn't try to
			// schedule it.
			_p_.gcBgMarkWorker.set(nil)
			releasem(park.m.ptr())

			gcMarkDone()

			// Disable preemption and prepare to reattach
			// to the P.
			//
			// We may be running on a different P at this
			// point, so we can't reattach until this G is
			// parked.
			park.m.set(acquirem())
			park.attach.set(_p_)
		}
	}
}

// gcMarkWorkAvailable reports whether executing a mark worker
// on p is potentially useful. p may be nil, in which case it only
// checks the global sources of work.
func gcMarkWorkAvailable(p *p) bool {
	if p != nil && !p.gcw.empty() {
		return true
	}
	if !work.full.empty() {
		return true // global work available
	}
	if work.markrootNext < work.markrootJobs {
		return true // root scan work available
	}
	return false
}

// gcMark runs the mark (or, for concurrent GC, mark termination)
// All gcWork caches must be empty.
// STW is in effect at this point.
func gcMark(start_time int64) {
	if debug.allocfreetrace > 0 {
		tracegc()
	}

	if gcphase != _GCmarktermination {
		throw("in gcMark expecting to see gcphase as _GCmarktermination")
	}
	work.tstart = start_time

	// Check that there's no marking work remaining.
	if work.full != 0 || work.markrootNext < work.markrootJobs {
		print("runtime: full=", hex(work.full), " next=", work.markrootNext, " jobs=", work.markrootJobs, " nDataRoots=", work.nDataRoots, " nBSSRoots=", work.nBSSRoots, " nSpanRoots=", work.nSpanRoots, " nStackRoots=", work.nStackRoots, "\n")
		panic("non-empty mark queue after concurrent mark")
	}

	if debug.gccheckmark > 0 {
		// This is expensive when there's a large number of
		// Gs, so only do it if checkmark is also enabled.
		gcMarkRootCheck()
	}
	if work.full != 0 {
		throw("work.full != 0")
	}

	// Clear out buffers and double-check that all gcWork caches
	// are empty. This should be ensured by gcMarkDone before we
	// enter mark termination.
	//
	// TODO: We could clear out buffers just before mark if this
	// has a non-negligible impact on STW time.
	for _, p := range allp {
		// The write barrier may have buffered pointers since
		// the gcMarkDone barrier. However, since the barrier
		// ensured all reachable objects were marked, all of
		// these must be pointers to black objects. Hence we
		// can just discard the write barrier buffer.
		if debug.gccheckmark > 0 || throwOnGCWork {
			// For debugging, flush the buffer and make
			// sure it really was all marked.
			wbBufFlush1(p)
		} else {
			p.wbBuf.reset()
		}

		gcw := &p.gcw
		if !gcw.empty() {
			printlock()
			print("runtime: P ", p.id, " flushedWork ", gcw.flushedWork)
			if gcw.wbuf1 == nil {
				print(" wbuf1=<nil>")
			} else {
				print(" wbuf1.n=", gcw.wbuf1.nobj)
			}
			if gcw.wbuf2 == nil {
				print(" wbuf2=<nil>")
			} else {
				print(" wbuf2.n=", gcw.wbuf2.nobj)
			}
			print("\n")
			throw("P has cached GC work at end of mark termination")
		}
		// There may still be cached empty buffers, which we
		// need to flush since we're going to free them. Also,
		// there may be non-zero stats because we allocated
		// black after the gcMarkDone barrier.
		gcw.dispose()
	}

	throwOnGCWork = false

	cachestats()

	// Update the marked heap stat.
	memstats.heap_marked = work.bytesMarked

	// Update other GC heap size stats. This must happen after
	// cachestats (which flushes local statistics to these) and
	// flushallmcaches (which modifies heap_live).
	memstats.heap_live = work.bytesMarked
	memstats.heap_scan = uint64(gcController.scanWork)

	if trace.enabled {
		traceHeapAlloc()
	}
}

// gcSweep must be called on the system stack because it acquires the heap
// lock. See mheap for details.
//
// The world must be stopped.
//
//go:systemstack
func gcSweep(mode gcMode) {
	if gcphase != _GCoff {
		throw("gcSweep being done but phase is not GCoff")
	}

	lock(&mheap_.lock)
	mheap_.sweepgen += 2
	mheap_.sweepdone = 0
	mheap_.pagesSwept = 0
	mheap_.sweepArenas = mheap_.allArenas
	mheap_.reclaimIndex = 0
	mheap_.reclaimCredit = 0
	unlock(&mheap_.lock)

	sweep.centralIndex.clear()

	if !_ConcurrentSweep || mode == gcForceBlockMode {
		// Special case synchronous sweep.
		// Record that no proportional sweeping has to happen.
		lock(&mheap_.lock)
		mheap_.sweepPagesPerByte = 0
		unlock(&mheap_.lock)
		// Sweep all spans eagerly.
		for sweepone() != ^uintptr(0) {
			sweep.npausesweep++
		}
		// Free workbufs eagerly.
		prepareFreeWorkbufs()
		for freeSomeWbufs(false) {
		}
		// All "free" events for this mark/sweep cycle have
		// now happened, so we can make this profile cycle
		// available immediately.
		mProf_NextCycle()
		mProf_Flush()
		return
	}

	// Background sweep.
	lock(&sweep.lock)
	if sweep.parked {
		sweep.parked = false
		ready(sweep.g, 0, true)
	}
	unlock(&sweep.lock)
}

// gcResetMarkState resets global state prior to marking (concurrent
// or STW) and resets the stack scan state of all Gs.
//
// This is safe to do without the world stopped because any Gs created
// during or after this will start out in the reset state.
//
// gcResetMarkState must be called on the system stack because it acquires
// the heap lock. See mheap for details.
//
//go:systemstack
func gcResetMarkState() {
	// This may be called during a concurrent phase, so make sure
	// allgs doesn't change.
	lock(&allglock)
	for _, gp := range allgs {
		gp.gcscandone = false // set to true in gcphasework
		gp.gcAssistBytes = 0
	}
	unlock(&allglock)

	// Clear page marks. This is just 1MB per 64GB of heap, so the
	// time here is pretty trivial.
	lock(&mheap_.lock)
	arenas := mheap_.allArenas
	unlock(&mheap_.lock)
	for _, ai := range arenas {
		ha := mheap_.arenas[ai.l1()][ai.l2()]
		for i := range ha.pageMarks {
			ha.pageMarks[i] = 0
		}
	}

	work.bytesMarked = 0
	work.initialHeapLive = atomic.Load64(&memstats.heap_live)
}

// Hooks for other packages

var poolcleanup func()

//go:linkname sync_runtime_registerPoolCleanup sync.runtime_registerPoolCleanup
func sync_runtime_registerPoolCleanup(f func()) {
	poolcleanup = f
}

func clearpools() {
	// clear sync.Pools
	if poolcleanup != nil {
		poolcleanup()
	}

	// Clear central sudog cache.
	// Leave per-P caches alone, they have strictly bounded size.
	// Disconnect cached list before dropping it on the floor,
	// so that a dangling ref to one entry does not pin all of them.
	lock(&sched.sudoglock)
	var sg, sgnext *sudog
	for sg = sched.sudogcache; sg != nil; sg = sgnext {
		sgnext = sg.next
		sg.next = nil
	}
	sched.sudogcache = nil
	unlock(&sched.sudoglock)

	// Clear central defer pools.
	// Leave per-P pools alone, they have strictly bounded size.
	lock(&sched.deferlock)
	for i := range sched.deferpool {
		// disconnect cached list before dropping it on the floor,
		// so that a dangling ref to one entry does not pin all of them.
		var d, dlink *_defer
		for d = sched.deferpool[i]; d != nil; d = dlink {
			dlink = d.link
			d.link = nil
		}
		sched.deferpool[i] = nil
	}
	unlock(&sched.deferlock)
}

// Timing

// itoaDiv formats val/(10**dec) into buf.
func itoaDiv(buf []byte, val uint64, dec int) []byte {
	i := len(buf) - 1
	idec := i - dec
	for val >= 10 || i >= idec {
		buf[i] = byte(val%10 + '0')
		i--
		if i == idec {
			buf[i] = '.'
			i--
		}
		val /= 10
	}
	buf[i] = byte(val + '0')
	return buf[i:]
}

// fmtNSAsMS nicely formats ns nanoseconds as milliseconds.
func fmtNSAsMS(buf []byte, ns uint64) []byte {
	if ns >= 10e6 {
		// Format as whole milliseconds.
		return itoaDiv(buf, ns/1e6, 0)
	}
	// Format two digits of precision, with at most three decimal places.
	x := ns / 1e3
	if x == 0 {
		buf[0] = '0'
		return buf[:1]
	}
	dec := 3
	for x >= 100 {
		x /= 10
		dec--
	}
	return itoaDiv(buf, x, dec)
}