aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/mcentral.go
blob: ed49e016773c59b3201a155d256597363e175c11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Central free lists.
//
// See malloc.go for an overview.
//
// The mcentral doesn't actually contain the list of free objects; the mspan does.
// Each mcentral is two lists of mspans: those with free objects (c->nonempty)
// and those that are completely allocated (c->empty).

package runtime

import "runtime/internal/atomic"

// Central list of free objects of a given size.
//
//go:notinheap
type mcentral struct {
	spanclass spanClass

	// For !go115NewMCentralImpl.
	nonempty mSpanList // list of spans with a free object, ie a nonempty free list
	empty    mSpanList // list of spans with no free objects (or cached in an mcache)

	// partial and full contain two mspan sets: one of swept in-use
	// spans, and one of unswept in-use spans. These two trade
	// roles on each GC cycle. The unswept set is drained either by
	// allocation or by the background sweeper in every GC cycle,
	// so only two roles are necessary.
	//
	// sweepgen is increased by 2 on each GC cycle, so the swept
	// spans are in partial[sweepgen/2%2] and the unswept spans are in
	// partial[1-sweepgen/2%2]. Sweeping pops spans from the
	// unswept set and pushes spans that are still in-use on the
	// swept set. Likewise, allocating an in-use span pushes it
	// on the swept set.
	//
	// Some parts of the sweeper can sweep arbitrary spans, and hence
	// can't remove them from the unswept set, but will add the span
	// to the appropriate swept list. As a result, the parts of the
	// sweeper and mcentral that do consume from the unswept list may
	// encounter swept spans, and these should be ignored.
	partial [2]spanSet // list of spans with a free object
	full    [2]spanSet // list of spans with no free objects

	// nmalloc is the cumulative count of objects allocated from
	// this mcentral, assuming all spans in mcaches are
	// fully-allocated. Written atomically, read under STW.
	nmalloc uint64
}

// Initialize a single central free list.
func (c *mcentral) init(spc spanClass) {
	c.spanclass = spc
	lockInit(&c.partial[0].spineLock, lockRankSpanSetSpine)
	lockInit(&c.partial[1].spineLock, lockRankSpanSetSpine)
	lockInit(&c.full[0].spineLock, lockRankSpanSetSpine)
	lockInit(&c.full[1].spineLock, lockRankSpanSetSpine)
}

// partialUnswept returns the spanSet which holds partially-filled
// unswept spans for this sweepgen.
func (c *mcentral) partialUnswept(sweepgen uint32) *spanSet {
	return &c.partial[1-sweepgen/2%2]
}

// partialSwept returns the spanSet which holds partially-filled
// swept spans for this sweepgen.
func (c *mcentral) partialSwept(sweepgen uint32) *spanSet {
	return &c.partial[sweepgen/2%2]
}

// fullUnswept returns the spanSet which holds unswept spans without any
// free slots for this sweepgen.
func (c *mcentral) fullUnswept(sweepgen uint32) *spanSet {
	return &c.full[1-sweepgen/2%2]
}

// fullSwept returns the spanSet which holds swept spans without any
// free slots for this sweepgen.
func (c *mcentral) fullSwept(sweepgen uint32) *spanSet {
	return &c.full[sweepgen/2%2]
}

// Allocate a span to use in an mcache.
func (c *mcentral) cacheSpan() *mspan {
	// Deduct credit for this span allocation and sweep if necessary.
	spanBytes := uintptr(class_to_allocnpages[c.spanclass.sizeclass()]) * _PageSize
	deductSweepCredit(spanBytes, 0)

	sg := mheap_.sweepgen

	traceDone := false
	if trace.enabled {
		traceGCSweepStart()
	}

	// If we sweep spanBudget spans without finding any free
	// space, just allocate a fresh span. This limits the amount
	// of time we can spend trying to find free space and
	// amortizes the cost of small object sweeping over the
	// benefit of having a full free span to allocate from. By
	// setting this to 100, we limit the space overhead to 1%.
	//
	// TODO(austin,mknyszek): This still has bad worst-case
	// throughput. For example, this could find just one free slot
	// on the 100th swept span. That limits allocation latency, but
	// still has very poor throughput. We could instead keep a
	// running free-to-used budget and switch to fresh span
	// allocation if the budget runs low.
	spanBudget := 100

	var s *mspan

	// Try partial swept spans first.
	if s = c.partialSwept(sg).pop(); s != nil {
		goto havespan
	}

	// Now try partial unswept spans.
	for ; spanBudget >= 0; spanBudget-- {
		s = c.partialUnswept(sg).pop()
		if s == nil {
			break
		}
		if atomic.Load(&s.sweepgen) == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
			// We got ownership of the span, so let's sweep it and use it.
			s.sweep(true)
			goto havespan
		}
		// We failed to get ownership of the span, which means it's being or
		// has been swept by an asynchronous sweeper that just couldn't remove it
		// from the unswept list. That sweeper took ownership of the span and
		// responsibility for either freeing it to the heap or putting it on the
		// right swept list. Either way, we should just ignore it (and it's unsafe
		// for us to do anything else).
	}
	// Now try full unswept spans, sweeping them and putting them into the
	// right list if we fail to get a span.
	for ; spanBudget >= 0; spanBudget-- {
		s = c.fullUnswept(sg).pop()
		if s == nil {
			break
		}
		if atomic.Load(&s.sweepgen) == sg-2 && atomic.Cas(&s.sweepgen, sg-2, sg-1) {
			// We got ownership of the span, so let's sweep it.
			s.sweep(true)
			// Check if there's any free space.
			freeIndex := s.nextFreeIndex()
			if freeIndex != s.nelems {
				s.freeindex = freeIndex
				goto havespan
			}
			// Add it to the swept list, because sweeping didn't give us any free space.
			c.fullSwept(sg).push(s)
		}
		// See comment for partial unswept spans.
	}
	if trace.enabled {
		traceGCSweepDone()
		traceDone = true
	}

	// We failed to get a span from the mcentral so get one from mheap.
	s = c.grow()
	if s == nil {
		return nil
	}

	// At this point s is a span that should have free slots.
havespan:
	if trace.enabled && !traceDone {
		traceGCSweepDone()
	}
	n := int(s.nelems) - int(s.allocCount)
	if n == 0 || s.freeindex == s.nelems || uintptr(s.allocCount) == s.nelems {
		throw("span has no free objects")
	}
	// Assume all objects from this span will be allocated in the
	// mcache. If it gets uncached, we'll adjust this.
	atomic.Xadd64(&c.nmalloc, int64(n))
	usedBytes := uintptr(s.allocCount) * s.elemsize
	atomic.Xadd64(&memstats.heap_live, int64(spanBytes)-int64(usedBytes))
	if trace.enabled {
		// heap_live changed.
		traceHeapAlloc()
	}
	if gcBlackenEnabled != 0 {
		// heap_live changed.
		gcController.revise()
	}
	freeByteBase := s.freeindex &^ (64 - 1)
	whichByte := freeByteBase / 8
	// Init alloc bits cache.
	s.refillAllocCache(whichByte)

	// Adjust the allocCache so that s.freeindex corresponds to the low bit in
	// s.allocCache.
	s.allocCache >>= s.freeindex % 64

	return s
}

// Return span from an mcache.
//
// s must have a span class corresponding to this
// mcentral and it must not be empty.
func (c *mcentral) uncacheSpan(s *mspan) {
	if s.allocCount == 0 {
		throw("uncaching span but s.allocCount == 0")
	}

	sg := mheap_.sweepgen
	stale := s.sweepgen == sg+1

	// Fix up sweepgen.
	if stale {
		// Span was cached before sweep began. It's our
		// responsibility to sweep it.
		//
		// Set sweepgen to indicate it's not cached but needs
		// sweeping and can't be allocated from. sweep will
		// set s.sweepgen to indicate s is swept.
		atomic.Store(&s.sweepgen, sg-1)
	} else {
		// Indicate that s is no longer cached.
		atomic.Store(&s.sweepgen, sg)
	}
	n := int(s.nelems) - int(s.allocCount)

	// Fix up statistics.
	if n > 0 {
		// cacheSpan updated alloc assuming all objects on s
		// were going to be allocated. Adjust for any that
		// weren't. We must do this before potentially
		// sweeping the span.
		atomic.Xadd64(&c.nmalloc, -int64(n))

		if !stale {
			// (*mcentral).cacheSpan conservatively counted
			// unallocated slots in heap_live. Undo this.
			//
			// If this span was cached before sweep, then
			// heap_live was totally recomputed since
			// caching this span, so we don't do this for
			// stale spans.
			atomic.Xadd64(&memstats.heap_live, -int64(n)*int64(s.elemsize))
		}
	}

	// Put the span in the appropriate place.
	if stale {
		// It's stale, so just sweep it. Sweeping will put it on
		// the right list.
		s.sweep(false)
	} else {
		if n > 0 {
			// Put it back on the partial swept list.
			c.partialSwept(sg).push(s)
		} else {
			// There's no free space and it's not stale, so put it on the
			// full swept list.
			c.fullSwept(sg).push(s)
		}
	}
}

// grow allocates a new empty span from the heap and initializes it for c's size class.
func (c *mcentral) grow() *mspan {
	npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()])
	size := uintptr(class_to_size[c.spanclass.sizeclass()])

	s := mheap_.alloc(npages, c.spanclass, true)
	if s == nil {
		return nil
	}

	// Use division by multiplication and shifts to quickly compute:
	// n := (npages << _PageShift) / size
	n := (npages << _PageShift) >> s.divShift * uintptr(s.divMul) >> s.divShift2
	s.limit = s.base() + size*n
	heapBitsForAddr(s.base()).initSpan(s)
	return s
}