aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/export_test.go
blob: 79f13d1b4b0fcf5a2cfc2ed38ff2a88702976fa1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Export guts for testing.

package runtime

import (
	"runtime/internal/atomic"
	"runtime/internal/sys"
	"unsafe"
)

var Fadd64 = fadd64
var Fsub64 = fsub64
var Fmul64 = fmul64
var Fdiv64 = fdiv64
var F64to32 = f64to32
var F32to64 = f32to64
var Fcmp64 = fcmp64
var Fintto64 = fintto64
var F64toint = f64toint

var Entersyscall = entersyscall
var Exitsyscall = exitsyscall
var LockedOSThread = lockedOSThread
var Xadduintptr = atomic.Xadduintptr

var FuncPC = funcPC

var Fastlog2 = fastlog2

var Atoi = atoi
var Atoi32 = atoi32

var Nanotime = nanotime
var NetpollBreak = netpollBreak
var Usleep = usleep

var PhysPageSize = physPageSize
var PhysHugePageSize = physHugePageSize

var NetpollGenericInit = netpollGenericInit

var Memmove = memmove
var MemclrNoHeapPointers = memclrNoHeapPointers

const PreemptMSupported = preemptMSupported

type LFNode struct {
	Next    uint64
	Pushcnt uintptr
}

func LFStackPush(head *uint64, node *LFNode) {
	(*lfstack)(head).push((*lfnode)(unsafe.Pointer(node)))
}

func LFStackPop(head *uint64) *LFNode {
	return (*LFNode)(unsafe.Pointer((*lfstack)(head).pop()))
}

func Netpoll(delta int64) {
	systemstack(func() {
		netpoll(delta)
	})
}

func GCMask(x interface{}) (ret []byte) {
	systemstack(func() {
		ret = getgcmask(x)
	})
	return
}

func RunSchedLocalQueueTest() {
	_p_ := new(p)
	gs := make([]g, len(_p_.runq))
	for i := 0; i < len(_p_.runq); i++ {
		if g, _ := runqget(_p_); g != nil {
			throw("runq is not empty initially")
		}
		for j := 0; j < i; j++ {
			runqput(_p_, &gs[i], false)
		}
		for j := 0; j < i; j++ {
			if g, _ := runqget(_p_); g != &gs[i] {
				print("bad element at iter ", i, "/", j, "\n")
				throw("bad element")
			}
		}
		if g, _ := runqget(_p_); g != nil {
			throw("runq is not empty afterwards")
		}
	}
}

func RunSchedLocalQueueStealTest() {
	p1 := new(p)
	p2 := new(p)
	gs := make([]g, len(p1.runq))
	for i := 0; i < len(p1.runq); i++ {
		for j := 0; j < i; j++ {
			gs[j].sig = 0
			runqput(p1, &gs[j], false)
		}
		gp := runqsteal(p2, p1, true)
		s := 0
		if gp != nil {
			s++
			gp.sig++
		}
		for {
			gp, _ = runqget(p2)
			if gp == nil {
				break
			}
			s++
			gp.sig++
		}
		for {
			gp, _ = runqget(p1)
			if gp == nil {
				break
			}
			gp.sig++
		}
		for j := 0; j < i; j++ {
			if gs[j].sig != 1 {
				print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
				throw("bad element")
			}
		}
		if s != i/2 && s != i/2+1 {
			print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
			throw("bad steal")
		}
	}
}

func RunSchedLocalQueueEmptyTest(iters int) {
	// Test that runq is not spuriously reported as empty.
	// Runq emptiness affects scheduling decisions and spurious emptiness
	// can lead to underutilization (both runnable Gs and idle Ps coexist
	// for arbitrary long time).
	done := make(chan bool, 1)
	p := new(p)
	gs := make([]g, 2)
	ready := new(uint32)
	for i := 0; i < iters; i++ {
		*ready = 0
		next0 := (i & 1) == 0
		next1 := (i & 2) == 0
		runqput(p, &gs[0], next0)
		go func() {
			for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
			}
			if runqempty(p) {
				println("next:", next0, next1)
				throw("queue is empty")
			}
			done <- true
		}()
		for atomic.Xadd(ready, 1); atomic.Load(ready) != 2; {
		}
		runqput(p, &gs[1], next1)
		runqget(p)
		<-done
		runqget(p)
	}
}

var (
	StringHash = stringHash
	BytesHash  = bytesHash
	Int32Hash  = int32Hash
	Int64Hash  = int64Hash
	MemHash    = memhash
	MemHash32  = memhash32
	MemHash64  = memhash64
	EfaceHash  = efaceHash
	IfaceHash  = ifaceHash
)

var UseAeshash = &useAeshash

func MemclrBytes(b []byte) {
	s := (*slice)(unsafe.Pointer(&b))
	memclrNoHeapPointers(s.array, uintptr(s.len))
}

var HashLoad = &hashLoad

// entry point for testing
func GostringW(w []uint16) (s string) {
	systemstack(func() {
		s = gostringw(&w[0])
	})
	return
}

type Uintreg sys.Uintreg

var Open = open
var Close = closefd
var Read = read
var Write = write

func Envs() []string     { return envs }
func SetEnvs(e []string) { envs = e }

var BigEndian = sys.BigEndian

// For benchmarking.

func BenchSetType(n int, x interface{}) {
	e := *efaceOf(&x)
	t := e._type
	var size uintptr
	var p unsafe.Pointer
	switch t.kind & kindMask {
	case kindPtr:
		t = (*ptrtype)(unsafe.Pointer(t)).elem
		size = t.size
		p = e.data
	case kindSlice:
		slice := *(*struct {
			ptr      unsafe.Pointer
			len, cap uintptr
		})(e.data)
		t = (*slicetype)(unsafe.Pointer(t)).elem
		size = t.size * slice.len
		p = slice.ptr
	}
	allocSize := roundupsize(size)
	systemstack(func() {
		for i := 0; i < n; i++ {
			heapBitsSetType(uintptr(p), allocSize, size, t)
		}
	})
}

const PtrSize = sys.PtrSize

var ForceGCPeriod = &forcegcperiod

// SetTracebackEnv is like runtime/debug.SetTraceback, but it raises
// the "environment" traceback level, so later calls to
// debug.SetTraceback (e.g., from testing timeouts) can't lower it.
func SetTracebackEnv(level string) {
	setTraceback(level)
	traceback_env = traceback_cache
}

var ReadUnaligned32 = readUnaligned32
var ReadUnaligned64 = readUnaligned64

func CountPagesInUse() (pagesInUse, counted uintptr) {
	stopTheWorld("CountPagesInUse")

	pagesInUse = uintptr(mheap_.pagesInUse)

	for _, s := range mheap_.allspans {
		if s.state.get() == mSpanInUse {
			counted += s.npages
		}
	}

	startTheWorld()

	return
}

func Fastrand() uint32          { return fastrand() }
func Fastrandn(n uint32) uint32 { return fastrandn(n) }

type ProfBuf profBuf

func NewProfBuf(hdrsize, bufwords, tags int) *ProfBuf {
	return (*ProfBuf)(newProfBuf(hdrsize, bufwords, tags))
}

func (p *ProfBuf) Write(tag *unsafe.Pointer, now int64, hdr []uint64, stk []uintptr) {
	(*profBuf)(p).write(tag, now, hdr, stk)
}

const (
	ProfBufBlocking    = profBufBlocking
	ProfBufNonBlocking = profBufNonBlocking
)

func (p *ProfBuf) Read(mode profBufReadMode) ([]uint64, []unsafe.Pointer, bool) {
	return (*profBuf)(p).read(profBufReadMode(mode))
}

func (p *ProfBuf) Close() {
	(*profBuf)(p).close()
}

func ReadMetricsSlow(memStats *MemStats, samplesp unsafe.Pointer, len, cap int) {
	stopTheWorld("ReadMetricsSlow")

	// Initialize the metrics beforehand because this could
	// allocate and skew the stats.
	semacquire(&metricsSema)
	initMetrics()
	semrelease(&metricsSema)

	systemstack(func() {
		// Read memstats first. It's going to flush
		// the mcaches which readMetrics does not do, so
		// going the other way around may result in
		// inconsistent statistics.
		readmemstats_m(memStats)
	})

	// Read metrics off the system stack.
	//
	// The only part of readMetrics that could allocate
	// and skew the stats is initMetrics.
	readMetrics(samplesp, len, cap)

	startTheWorld()
}

// ReadMemStatsSlow returns both the runtime-computed MemStats and
// MemStats accumulated by scanning the heap.
func ReadMemStatsSlow() (base, slow MemStats) {
	stopTheWorld("ReadMemStatsSlow")

	// Run on the system stack to avoid stack growth allocation.
	systemstack(func() {
		// Make sure stats don't change.
		getg().m.mallocing++

		readmemstats_m(&base)

		// Initialize slow from base and zero the fields we're
		// recomputing.
		slow = base
		slow.Alloc = 0
		slow.TotalAlloc = 0
		slow.Mallocs = 0
		slow.Frees = 0
		slow.HeapReleased = 0
		var bySize [_NumSizeClasses]struct {
			Mallocs, Frees uint64
		}

		// Add up current allocations in spans.
		for _, s := range mheap_.allspans {
			if s.state.get() != mSpanInUse {
				continue
			}
			if sizeclass := s.spanclass.sizeclass(); sizeclass == 0 {
				slow.Mallocs++
				slow.Alloc += uint64(s.elemsize)
			} else {
				slow.Mallocs += uint64(s.allocCount)
				slow.Alloc += uint64(s.allocCount) * uint64(s.elemsize)
				bySize[sizeclass].Mallocs += uint64(s.allocCount)
			}
		}

		// Add in frees by just reading the stats for those directly.
		var m heapStatsDelta
		memstats.heapStats.unsafeRead(&m)

		// Collect per-sizeclass free stats.
		var smallFree uint64
		for i := 0; i < _NumSizeClasses; i++ {
			slow.Frees += uint64(m.smallFreeCount[i])
			bySize[i].Frees += uint64(m.smallFreeCount[i])
			bySize[i].Mallocs += uint64(m.smallFreeCount[i])
			smallFree += uint64(m.smallFreeCount[i]) * uint64(class_to_size[i])
		}
		slow.Frees += memstats.tinyallocs + uint64(m.largeFreeCount)
		slow.Mallocs += slow.Frees

		slow.TotalAlloc = slow.Alloc + uint64(m.largeFree) + smallFree

		for i := range slow.BySize {
			slow.BySize[i].Mallocs = bySize[i].Mallocs
			slow.BySize[i].Frees = bySize[i].Frees
		}

		for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
			chunk := mheap_.pages.tryChunkOf(i)
			if chunk == nil {
				continue
			}
			pg := chunk.scavenged.popcntRange(0, pallocChunkPages)
			slow.HeapReleased += uint64(pg) * pageSize
		}
		for _, p := range allp {
			pg := sys.OnesCount64(p.pcache.scav)
			slow.HeapReleased += uint64(pg) * pageSize
		}

		// Unused space in the current arena also counts as released space.
		slow.HeapReleased += uint64(mheap_.curArena.end - mheap_.curArena.base)

		getg().m.mallocing--
	})

	startTheWorld()
	return
}

// BlockOnSystemStack switches to the system stack, prints "x\n" to
// stderr, and blocks in a stack containing
// "runtime.blockOnSystemStackInternal".
func BlockOnSystemStack() {
	systemstack(blockOnSystemStackInternal)
}

func blockOnSystemStackInternal() {
	print("x\n")
	lock(&deadlock)
	lock(&deadlock)
}

type RWMutex struct {
	rw rwmutex
}

func (rw *RWMutex) RLock() {
	rw.rw.rlock()
}

func (rw *RWMutex) RUnlock() {
	rw.rw.runlock()
}

func (rw *RWMutex) Lock() {
	rw.rw.lock()
}

func (rw *RWMutex) Unlock() {
	rw.rw.unlock()
}

const RuntimeHmapSize = unsafe.Sizeof(hmap{})

func MapBucketsCount(m map[int]int) int {
	h := *(**hmap)(unsafe.Pointer(&m))
	return 1 << h.B
}

func MapBucketsPointerIsNil(m map[int]int) bool {
	h := *(**hmap)(unsafe.Pointer(&m))
	return h.buckets == nil
}

func LockOSCounts() (external, internal uint32) {
	g := getg()
	if g.m.lockedExt+g.m.lockedInt == 0 {
		if g.lockedm != 0 {
			panic("lockedm on non-locked goroutine")
		}
	} else {
		if g.lockedm == 0 {
			panic("nil lockedm on locked goroutine")
		}
	}
	return g.m.lockedExt, g.m.lockedInt
}

//go:noinline
func TracebackSystemstack(stk []uintptr, i int) int {
	if i == 0 {
		pc, sp := getcallerpc(), getcallersp()
		return gentraceback(pc, sp, 0, getg(), 0, &stk[0], len(stk), nil, nil, _TraceJumpStack)
	}
	n := 0
	systemstack(func() {
		n = TracebackSystemstack(stk, i-1)
	})
	return n
}

func KeepNArenaHints(n int) {
	hint := mheap_.arenaHints
	for i := 1; i < n; i++ {
		hint = hint.next
		if hint == nil {
			return
		}
	}
	hint.next = nil
}

// MapNextArenaHint reserves a page at the next arena growth hint,
// preventing the arena from growing there, and returns the range of
// addresses that are no longer viable.
func MapNextArenaHint() (start, end uintptr) {
	hint := mheap_.arenaHints
	addr := hint.addr
	if hint.down {
		start, end = addr-heapArenaBytes, addr
		addr -= physPageSize
	} else {
		start, end = addr, addr+heapArenaBytes
	}
	sysReserve(unsafe.Pointer(addr), physPageSize)
	return
}

func GetNextArenaHint() uintptr {
	return mheap_.arenaHints.addr
}

type G = g

type Sudog = sudog

func Getg() *G {
	return getg()
}

//go:noinline
func PanicForTesting(b []byte, i int) byte {
	return unexportedPanicForTesting(b, i)
}

//go:noinline
func unexportedPanicForTesting(b []byte, i int) byte {
	return b[i]
}

func G0StackOverflow() {
	systemstack(func() {
		stackOverflow(nil)
	})
}

func stackOverflow(x *byte) {
	var buf [256]byte
	stackOverflow(&buf[0])
}

func MapTombstoneCheck(m map[int]int) {
	// Make sure emptyOne and emptyRest are distributed correctly.
	// We should have a series of filled and emptyOne cells, followed by
	// a series of emptyRest cells.
	h := *(**hmap)(unsafe.Pointer(&m))
	i := interface{}(m)
	t := *(**maptype)(unsafe.Pointer(&i))

	for x := 0; x < 1<<h.B; x++ {
		b0 := (*bmap)(add(h.buckets, uintptr(x)*uintptr(t.bucketsize)))
		n := 0
		for b := b0; b != nil; b = b.overflow(t) {
			for i := 0; i < bucketCnt; i++ {
				if b.tophash[i] != emptyRest {
					n++
				}
			}
		}
		k := 0
		for b := b0; b != nil; b = b.overflow(t) {
			for i := 0; i < bucketCnt; i++ {
				if k < n && b.tophash[i] == emptyRest {
					panic("early emptyRest")
				}
				if k >= n && b.tophash[i] != emptyRest {
					panic("late non-emptyRest")
				}
				if k == n-1 && b.tophash[i] == emptyOne {
					panic("last non-emptyRest entry is emptyOne")
				}
				k++
			}
		}
	}
}

func RunGetgThreadSwitchTest() {
	// Test that getg works correctly with thread switch.
	// With gccgo, if we generate getg inlined, the backend
	// may cache the address of the TLS variable, which
	// will become invalid after a thread switch. This test
	// checks that the bad caching doesn't happen.

	ch := make(chan int)
	go func(ch chan int) {
		ch <- 5
		LockOSThread()
	}(ch)

	g1 := getg()

	// Block on a receive. This is likely to get us a thread
	// switch. If we yield to the sender goroutine, it will
	// lock the thread, forcing us to resume on a different
	// thread.
	<-ch

	g2 := getg()
	if g1 != g2 {
		panic("g1 != g2")
	}

	// Also test getg after some control flow, as the
	// backend is sensitive to control flow.
	g3 := getg()
	if g1 != g3 {
		panic("g1 != g3")
	}
}

const (
	PageSize         = pageSize
	PallocChunkPages = pallocChunkPages
	PageAlloc64Bit   = pageAlloc64Bit
	PallocSumBytes   = pallocSumBytes
)

// Expose pallocSum for testing.
type PallocSum pallocSum

func PackPallocSum(start, max, end uint) PallocSum { return PallocSum(packPallocSum(start, max, end)) }
func (m PallocSum) Start() uint                    { return pallocSum(m).start() }
func (m PallocSum) Max() uint                      { return pallocSum(m).max() }
func (m PallocSum) End() uint                      { return pallocSum(m).end() }

// Expose pallocBits for testing.
type PallocBits pallocBits

func (b *PallocBits) Find(npages uintptr, searchIdx uint) (uint, uint) {
	return (*pallocBits)(b).find(npages, searchIdx)
}
func (b *PallocBits) AllocRange(i, n uint)       { (*pallocBits)(b).allocRange(i, n) }
func (b *PallocBits) Free(i, n uint)             { (*pallocBits)(b).free(i, n) }
func (b *PallocBits) Summarize() PallocSum       { return PallocSum((*pallocBits)(b).summarize()) }
func (b *PallocBits) PopcntRange(i, n uint) uint { return (*pageBits)(b).popcntRange(i, n) }

// SummarizeSlow is a slow but more obviously correct implementation
// of (*pallocBits).summarize. Used for testing.
func SummarizeSlow(b *PallocBits) PallocSum {
	var start, max, end uint

	const N = uint(len(b)) * 64
	for start < N && (*pageBits)(b).get(start) == 0 {
		start++
	}
	for end < N && (*pageBits)(b).get(N-end-1) == 0 {
		end++
	}
	run := uint(0)
	for i := uint(0); i < N; i++ {
		if (*pageBits)(b).get(i) == 0 {
			run++
		} else {
			run = 0
		}
		if run > max {
			max = run
		}
	}
	return PackPallocSum(start, max, end)
}

// Expose non-trivial helpers for testing.
func FindBitRange64(c uint64, n uint) uint { return findBitRange64(c, n) }

// Given two PallocBits, returns a set of bit ranges where
// they differ.
func DiffPallocBits(a, b *PallocBits) []BitRange {
	ba := (*pageBits)(a)
	bb := (*pageBits)(b)

	var d []BitRange
	base, size := uint(0), uint(0)
	for i := uint(0); i < uint(len(ba))*64; i++ {
		if ba.get(i) != bb.get(i) {
			if size == 0 {
				base = i
			}
			size++
		} else {
			if size != 0 {
				d = append(d, BitRange{base, size})
			}
			size = 0
		}
	}
	if size != 0 {
		d = append(d, BitRange{base, size})
	}
	return d
}

// StringifyPallocBits gets the bits in the bit range r from b,
// and returns a string containing the bits as ASCII 0 and 1
// characters.
func StringifyPallocBits(b *PallocBits, r BitRange) string {
	str := ""
	for j := r.I; j < r.I+r.N; j++ {
		if (*pageBits)(b).get(j) != 0 {
			str += "1"
		} else {
			str += "0"
		}
	}
	return str
}

// Expose pallocData for testing.
type PallocData pallocData

func (d *PallocData) FindScavengeCandidate(searchIdx uint, min, max uintptr) (uint, uint) {
	return (*pallocData)(d).findScavengeCandidate(searchIdx, min, max)
}
func (d *PallocData) AllocRange(i, n uint) { (*pallocData)(d).allocRange(i, n) }
func (d *PallocData) ScavengedSetRange(i, n uint) {
	(*pallocData)(d).scavenged.setRange(i, n)
}
func (d *PallocData) PallocBits() *PallocBits {
	return (*PallocBits)(&(*pallocData)(d).pallocBits)
}
func (d *PallocData) Scavenged() *PallocBits {
	return (*PallocBits)(&(*pallocData)(d).scavenged)
}

// Expose fillAligned for testing.
func FillAligned(x uint64, m uint) uint64 { return fillAligned(x, m) }

// Expose pageCache for testing.
type PageCache pageCache

const PageCachePages = pageCachePages

func NewPageCache(base uintptr, cache, scav uint64) PageCache {
	return PageCache(pageCache{base: base, cache: cache, scav: scav})
}
func (c *PageCache) Empty() bool   { return (*pageCache)(c).empty() }
func (c *PageCache) Base() uintptr { return (*pageCache)(c).base }
func (c *PageCache) Cache() uint64 { return (*pageCache)(c).cache }
func (c *PageCache) Scav() uint64  { return (*pageCache)(c).scav }
func (c *PageCache) Alloc(npages uintptr) (uintptr, uintptr) {
	return (*pageCache)(c).alloc(npages)
}
func (c *PageCache) Flush(s *PageAlloc) {
	cp := (*pageCache)(c)
	sp := (*pageAlloc)(s)

	systemstack(func() {
		// None of the tests need any higher-level locking, so we just
		// take the lock internally.
		lock(sp.mheapLock)
		cp.flush(sp)
		unlock(sp.mheapLock)
	})
}

// Expose chunk index type.
type ChunkIdx chunkIdx

// Expose pageAlloc for testing. Note that because pageAlloc is
// not in the heap, so is PageAlloc.
type PageAlloc pageAlloc

func (p *PageAlloc) Alloc(npages uintptr) (uintptr, uintptr) {
	pp := (*pageAlloc)(p)

	var addr, scav uintptr
	systemstack(func() {
		// None of the tests need any higher-level locking, so we just
		// take the lock internally.
		lock(pp.mheapLock)
		addr, scav = pp.alloc(npages)
		unlock(pp.mheapLock)
	})
	return addr, scav
}
func (p *PageAlloc) AllocToCache() PageCache {
	pp := (*pageAlloc)(p)

	var c PageCache
	systemstack(func() {
		// None of the tests need any higher-level locking, so we just
		// take the lock internally.
		lock(pp.mheapLock)
		c = PageCache(pp.allocToCache())
		unlock(pp.mheapLock)
	})
	return c
}
func (p *PageAlloc) Free(base, npages uintptr) {
	pp := (*pageAlloc)(p)

	systemstack(func() {
		// None of the tests need any higher-level locking, so we just
		// take the lock internally.
		lock(pp.mheapLock)
		pp.free(base, npages)
		unlock(pp.mheapLock)
	})
}
func (p *PageAlloc) Bounds() (ChunkIdx, ChunkIdx) {
	return ChunkIdx((*pageAlloc)(p).start), ChunkIdx((*pageAlloc)(p).end)
}
func (p *PageAlloc) Scavenge(nbytes uintptr, mayUnlock bool) (r uintptr) {
	pp := (*pageAlloc)(p)
	systemstack(func() {
		// None of the tests need any higher-level locking, so we just
		// take the lock internally.
		lock(pp.mheapLock)
		r = pp.scavenge(nbytes, mayUnlock)
		unlock(pp.mheapLock)
	})
	return
}
func (p *PageAlloc) InUse() []AddrRange {
	ranges := make([]AddrRange, 0, len(p.inUse.ranges))
	for _, r := range p.inUse.ranges {
		ranges = append(ranges, AddrRange{r})
	}
	return ranges
}

// Returns nil if the PallocData's L2 is missing.
func (p *PageAlloc) PallocData(i ChunkIdx) *PallocData {
	ci := chunkIdx(i)
	return (*PallocData)((*pageAlloc)(p).tryChunkOf(ci))
}

// AddrRange is a wrapper around addrRange for testing.
type AddrRange struct {
	addrRange
}

// MakeAddrRange creates a new address range.
func MakeAddrRange(base, limit uintptr) AddrRange {
	return AddrRange{makeAddrRange(base, limit)}
}

// Base returns the virtual base address of the address range.
func (a AddrRange) Base() uintptr {
	return a.addrRange.base.addr()
}

// Base returns the virtual address of the limit of the address range.
func (a AddrRange) Limit() uintptr {
	return a.addrRange.limit.addr()
}

// Equals returns true if the two address ranges are exactly equal.
func (a AddrRange) Equals(b AddrRange) bool {
	return a == b
}

// Size returns the size in bytes of the address range.
func (a AddrRange) Size() uintptr {
	return a.addrRange.size()
}

// AddrRanges is a wrapper around addrRanges for testing.
type AddrRanges struct {
	addrRanges
	mutable bool
}

// NewAddrRanges creates a new empty addrRanges.
//
// Note that this initializes addrRanges just like in the
// runtime, so its memory is persistentalloc'd. Call this
// function sparingly since the memory it allocates is
// leaked.
//
// This AddrRanges is mutable, so we can test methods like
// Add.
func NewAddrRanges() AddrRanges {
	r := addrRanges{}
	r.init(new(sysMemStat))
	return AddrRanges{r, true}
}

// MakeAddrRanges creates a new addrRanges populated with
// the ranges in a.
//
// The returned AddrRanges is immutable, so methods like
// Add will fail.
func MakeAddrRanges(a ...AddrRange) AddrRanges {
	// Methods that manipulate the backing store of addrRanges.ranges should
	// not be used on the result from this function (e.g. add) since they may
	// trigger reallocation. That would normally be fine, except the new
	// backing store won't come from the heap, but from persistentalloc, so
	// we'll leak some memory implicitly.
	ranges := make([]addrRange, 0, len(a))
	total := uintptr(0)
	for _, r := range a {
		ranges = append(ranges, r.addrRange)
		total += r.Size()
	}
	return AddrRanges{addrRanges{
		ranges:     ranges,
		totalBytes: total,
		sysStat:    new(sysMemStat),
	}, false}
}

// Ranges returns a copy of the ranges described by the
// addrRanges.
func (a *AddrRanges) Ranges() []AddrRange {
	result := make([]AddrRange, 0, len(a.addrRanges.ranges))
	for _, r := range a.addrRanges.ranges {
		result = append(result, AddrRange{r})
	}
	return result
}

// FindSucc returns the successor to base. See addrRanges.findSucc
// for more details.
func (a *AddrRanges) FindSucc(base uintptr) int {
	return a.findSucc(base)
}

// Add adds a new AddrRange to the AddrRanges.
//
// The AddrRange must be mutable (i.e. created by NewAddrRanges),
// otherwise this method will throw.
func (a *AddrRanges) Add(r AddrRange) {
	if !a.mutable {
		throw("attempt to mutate immutable AddrRanges")
	}
	a.add(r.addrRange)
}

// TotalBytes returns the totalBytes field of the addrRanges.
func (a *AddrRanges) TotalBytes() uintptr {
	return a.addrRanges.totalBytes
}

// BitRange represents a range over a bitmap.
type BitRange struct {
	I, N uint // bit index and length in bits
}

// NewPageAlloc creates a new page allocator for testing and
// initializes it with the scav and chunks maps. Each key in these maps
// represents a chunk index and each value is a series of bit ranges to
// set within each bitmap's chunk.
//
// The initialization of the pageAlloc preserves the invariant that if a
// scavenged bit is set the alloc bit is necessarily unset, so some
// of the bits described by scav may be cleared in the final bitmap if
// ranges in chunks overlap with them.
//
// scav is optional, and if nil, the scavenged bitmap will be cleared
// (as opposed to all 1s, which it usually is). Furthermore, every
// chunk index in scav must appear in chunks; ones that do not are
// ignored.
func NewPageAlloc(chunks, scav map[ChunkIdx][]BitRange) *PageAlloc {
	p := new(pageAlloc)

	// We've got an entry, so initialize the pageAlloc.
	p.init(new(mutex), nil)
	lockInit(p.mheapLock, lockRankMheap)
	p.test = true

	for i, init := range chunks {
		addr := chunkBase(chunkIdx(i))

		// Mark the chunk's existence in the pageAlloc.
		systemstack(func() {
			lock(p.mheapLock)
			p.grow(addr, pallocChunkBytes)
			unlock(p.mheapLock)
		})

		// Initialize the bitmap and update pageAlloc metadata.
		chunk := p.chunkOf(chunkIndex(addr))

		// Clear all the scavenged bits which grow set.
		chunk.scavenged.clearRange(0, pallocChunkPages)

		// Apply scavenge state if applicable.
		if scav != nil {
			if scvg, ok := scav[i]; ok {
				for _, s := range scvg {
					// Ignore the case of s.N == 0. setRange doesn't handle
					// it and it's a no-op anyway.
					if s.N != 0 {
						chunk.scavenged.setRange(s.I, s.N)
					}
				}
			}
		}

		// Apply alloc state.
		for _, s := range init {
			// Ignore the case of s.N == 0. allocRange doesn't handle
			// it and it's a no-op anyway.
			if s.N != 0 {
				chunk.allocRange(s.I, s.N)
			}
		}

		// Update heap metadata for the allocRange calls above.
		systemstack(func() {
			lock(p.mheapLock)
			p.update(addr, pallocChunkPages, false, false)
			unlock(p.mheapLock)
		})
	}

	systemstack(func() {
		lock(p.mheapLock)
		p.scavengeStartGen()
		unlock(p.mheapLock)
	})

	return (*PageAlloc)(p)
}

// FreePageAlloc releases hard OS resources owned by the pageAlloc. Once this
// is called the pageAlloc may no longer be used. The object itself will be
// collected by the garbage collector once it is no longer live.
func FreePageAlloc(pp *PageAlloc) {
	p := (*pageAlloc)(pp)

	// Free all the mapped space for the summary levels.
	if pageAlloc64Bit != 0 {
		for l := 0; l < summaryLevels; l++ {
			sysFree(unsafe.Pointer(&p.summary[l][0]), uintptr(cap(p.summary[l]))*pallocSumBytes, nil)
		}
	} else {
		resSize := uintptr(0)
		for _, s := range p.summary {
			resSize += uintptr(cap(s)) * pallocSumBytes
		}
		sysFree(unsafe.Pointer(&p.summary[0][0]), alignUp(resSize, physPageSize), nil)
	}

	// Free the mapped space for chunks.
	for i := range p.chunks {
		if x := p.chunks[i]; x != nil {
			p.chunks[i] = nil
			// This memory comes from sysAlloc and will always be page-aligned.
			sysFree(unsafe.Pointer(x), unsafe.Sizeof(*p.chunks[0]), nil)
		}
	}
}

// BaseChunkIdx is a convenient chunkIdx value which works on both
// 64 bit and 32 bit platforms, allowing the tests to share code
// between the two.
//
// This should not be higher than 0x100*pallocChunkBytes to support
// mips and mipsle, which only have 31-bit address spaces.
var BaseChunkIdx = func() ChunkIdx {
	var prefix uintptr
	if pageAlloc64Bit != 0 {
		prefix = 0xc000
	} else {
		prefix = 0x100
	}
	baseAddr := prefix * pallocChunkBytes
	if sys.GoosAix != 0 {
		baseAddr += arenaBaseOffset
	}
	return ChunkIdx(chunkIndex(baseAddr))
}()

// PageBase returns an address given a chunk index and a page index
// relative to that chunk.
func PageBase(c ChunkIdx, pageIdx uint) uintptr {
	return chunkBase(chunkIdx(c)) + uintptr(pageIdx)*pageSize
}

type BitsMismatch struct {
	Base      uintptr
	Got, Want uint64
}

func CheckScavengedBitsCleared(mismatches []BitsMismatch) (n int, ok bool) {
	ok = true

	// Run on the system stack to avoid stack growth allocation.
	systemstack(func() {
		getg().m.mallocing++

		// Lock so that we can safely access the bitmap.
		lock(&mheap_.lock)
	chunkLoop:
		for i := mheap_.pages.start; i < mheap_.pages.end; i++ {
			chunk := mheap_.pages.tryChunkOf(i)
			if chunk == nil {
				continue
			}
			for j := 0; j < pallocChunkPages/64; j++ {
				// Run over each 64-bit bitmap section and ensure
				// scavenged is being cleared properly on allocation.
				// If a used bit and scavenged bit are both set, that's
				// an error, and could indicate a larger problem, or
				// an accounting problem.
				want := chunk.scavenged[j] &^ chunk.pallocBits[j]
				got := chunk.scavenged[j]
				if want != got {
					ok = false
					if n >= len(mismatches) {
						break chunkLoop
					}
					mismatches[n] = BitsMismatch{
						Base: chunkBase(i) + uintptr(j)*64*pageSize,
						Got:  got,
						Want: want,
					}
					n++
				}
			}
		}
		unlock(&mheap_.lock)

		getg().m.mallocing--
	})
	return
}

func PageCachePagesLeaked() (leaked uintptr) {
	stopTheWorld("PageCachePagesLeaked")

	// Walk over destroyed Ps and look for unflushed caches.
	deadp := allp[len(allp):cap(allp)]
	for _, p := range deadp {
		// Since we're going past len(allp) we may see nil Ps.
		// Just ignore them.
		if p != nil {
			leaked += uintptr(sys.OnesCount64(p.pcache.cache))
		}
	}

	startTheWorld()
	return
}

var Semacquire = semacquire
var Semrelease1 = semrelease1

func SemNwait(addr *uint32) uint32 {
	root := semroot(addr)
	return atomic.Load(&root.nwait)
}

// MapHashCheck computes the hash of the key k for the map m, twice.
// Method 1 uses the built-in hasher for the map.
// Method 2 uses the typehash function (the one used by reflect).
// Returns the two hash values, which should always be equal.
func MapHashCheck(m interface{}, k interface{}) (uintptr, uintptr) {
	// Unpack m.
	mt := (*maptype)(unsafe.Pointer(efaceOf(&m)._type))
	mh := (*hmap)(efaceOf(&m).data)

	// Unpack k.
	kt := efaceOf(&k)._type
	var p unsafe.Pointer
	if isDirectIface(kt) {
		q := efaceOf(&k).data
		p = unsafe.Pointer(&q)
	} else {
		p = efaceOf(&k).data
	}

	// Compute the hash functions.
	x := mt.hasher(noescape(p), uintptr(mh.hash0))
	y := typehash(kt, noescape(p), uintptr(mh.hash0))
	return x, y
}

// mspan wrapper for testing.
//go:notinheap
type MSpan mspan

// Allocate an mspan for testing.
func AllocMSpan() *MSpan {
	var s *mspan
	systemstack(func() {
		lock(&mheap_.lock)
		s = (*mspan)(mheap_.spanalloc.alloc())
		unlock(&mheap_.lock)
	})
	return (*MSpan)(s)
}

// Free an allocated mspan.
func FreeMSpan(s *MSpan) {
	systemstack(func() {
		lock(&mheap_.lock)
		mheap_.spanalloc.free(unsafe.Pointer(s))
		unlock(&mheap_.lock)
	})
}

func MSpanCountAlloc(ms *MSpan, bits []byte) int {
	s := (*mspan)(ms)
	s.nelems = uintptr(len(bits) * 8)
	s.gcmarkBits = (*gcBits)(unsafe.Pointer(&bits[0]))
	result := s.countAlloc()
	s.gcmarkBits = nil
	return result
}

const (
	TimeHistSubBucketBits   = timeHistSubBucketBits
	TimeHistNumSubBuckets   = timeHistNumSubBuckets
	TimeHistNumSuperBuckets = timeHistNumSuperBuckets
)

type TimeHistogram timeHistogram

// Counts returns the counts for the given bucket, subBucket indices.
// Returns true if the bucket was valid, otherwise returns the counts
// for the underflow bucket and false.
func (th *TimeHistogram) Count(bucket, subBucket uint) (uint64, bool) {
	t := (*timeHistogram)(th)
	i := bucket*TimeHistNumSubBuckets + subBucket
	if i >= uint(len(t.counts)) {
		return t.underflow, false
	}
	return t.counts[i], true
}

func (th *TimeHistogram) Record(duration int64) {
	(*timeHistogram)(th).record(duration)
}

var TimeHistogramMetricsBuckets = timeHistogramMetricsBuckets