aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/asm_riscv64.s
blob: 00caa9f18a15b480bc23dd21f2641523c8e93f43 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "go_asm.h"
#include "funcdata.h"
#include "textflag.h"

// func rt0_go()
TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0
	// X2 = stack; A0 = argc; A1 = argv
	ADD	$-24, X2
	MOV	A0, 8(X2)	// argc
	MOV	A1, 16(X2)	// argv

	// create istack out of the given (operating system) stack.
	// _cgo_init may update stackguard.
	MOV	$runtime·g0(SB), g
	MOV	$(-64*1024), T0
	ADD	T0, X2, T1
	MOV	T1, g_stackguard0(g)
	MOV	T1, g_stackguard1(g)
	MOV	T1, (g_stack+stack_lo)(g)
	MOV	X2, (g_stack+stack_hi)(g)

	// if there is a _cgo_init, call it using the gcc ABI.
	MOV	_cgo_init(SB), T0
	BEQ	T0, ZERO, nocgo

	MOV	ZERO, A3		// arg 3: not used
	MOV	ZERO, A2		// arg 2: not used
	MOV	$setg_gcc<>(SB), A1	// arg 1: setg
	MOV	g, A0			// arg 0: G
	JALR	RA, T0

nocgo:
	// update stackguard after _cgo_init
	MOV	(g_stack+stack_lo)(g), T0
	ADD	$const__StackGuard, T0
	MOV	T0, g_stackguard0(g)
	MOV	T0, g_stackguard1(g)

	// set the per-goroutine and per-mach "registers"
	MOV	$runtime·m0(SB), T0

	// save m->g0 = g0
	MOV	g, m_g0(T0)
	// save m0 to g0->m
	MOV	T0, g_m(g)

	CALL	runtime·check(SB)

	// args are already prepared
	CALL	runtime·args(SB)
	CALL	runtime·osinit(SB)
	CALL	runtime·schedinit(SB)

	// create a new goroutine to start program
	MOV	$runtime·mainPC(SB), T0		// entry
	ADD	$-16, X2
	MOV	T0, 8(X2)
	MOV	ZERO, 0(X2)
	CALL	runtime·newproc(SB)
	ADD	$16, X2

	// start this M
	CALL	runtime·mstart(SB)

	WORD $0 // crash if reached
	RET

TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0
	CALL	runtime·mstart0(SB)
	RET // not reached

// void setg_gcc(G*); set g called from gcc with g in A0
TEXT setg_gcc<>(SB),NOSPLIT,$0-0
	MOV	A0, g
	CALL	runtime·save_g(SB)
	RET

// func cputicks() int64
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
	// RDTIME to emulate cpu ticks
	// RDCYCLE reads counter that is per HART(core) based
	// according to the riscv manual, see issue 46737
	RDTIME	A0
	MOV	A0, ret+0(FP)
	RET

// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack. We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
	UNDEF
	JALR	RA, ZERO	// make sure this function is not leaf
	RET

// func systemstack(fn func())
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
	MOV	fn+0(FP), CTXT	// CTXT = fn
	MOV	g_m(g), T0	// T0 = m

	MOV	m_gsignal(T0), T1	// T1 = gsignal
	BEQ	g, T1, noswitch

	MOV	m_g0(T0), T1	// T1 = g0
	BEQ	g, T1, noswitch

	MOV	m_curg(T0), T2
	BEQ	g, T2, switch

	// Bad: g is not gsignal, not g0, not curg. What is it?
	// Hide call from linker nosplit analysis.
	MOV	$runtime·badsystemstack(SB), T1
	JALR	RA, T1

switch:
	// save our state in g->sched. Pretend to
	// be systemstack_switch if the G stack is scanned.
	CALL	gosave_systemstack_switch<>(SB)

	// switch to g0
	MOV	T1, g
	CALL	runtime·save_g(SB)
	MOV	(g_sched+gobuf_sp)(g), T0
	MOV	T0, X2

	// call target function
	MOV	0(CTXT), T1	// code pointer
	JALR	RA, T1

	// switch back to g
	MOV	g_m(g), T0
	MOV	m_curg(T0), g
	CALL	runtime·save_g(SB)
	MOV	(g_sched+gobuf_sp)(g), X2
	MOV	ZERO, (g_sched+gobuf_sp)(g)
	RET

noswitch:
	// already on m stack, just call directly
	// Using a tail call here cleans up tracebacks since we won't stop
	// at an intermediate systemstack.
	MOV	0(CTXT), T1	// code pointer
	ADD	$8, X2
	JMP	(T1)

TEXT runtime·getcallerpc(SB),NOSPLIT|NOFRAME,$0-8
	MOV	0(X2), T0		// LR saved by caller
	MOV	T0, ret+0(FP)
	RET

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R1: framesize, R2: argsize, R3: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.

// func morestack()
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
	// Cannot grow scheduler stack (m->g0).
	MOV	g_m(g), A0
	MOV	m_g0(A0), A1
	BNE	g, A1, 3(PC)
	CALL	runtime·badmorestackg0(SB)
	CALL	runtime·abort(SB)

	// Cannot grow signal stack (m->gsignal).
	MOV	m_gsignal(A0), A1
	BNE	g, A1, 3(PC)
	CALL	runtime·badmorestackgsignal(SB)
	CALL	runtime·abort(SB)

	// Called from f.
	// Set g->sched to context in f.
	MOV	X2, (g_sched+gobuf_sp)(g)
	MOV	T0, (g_sched+gobuf_pc)(g)
	MOV	RA, (g_sched+gobuf_lr)(g)
	MOV	CTXT, (g_sched+gobuf_ctxt)(g)

	// Called from f.
	// Set m->morebuf to f's caller.
	MOV	RA, (m_morebuf+gobuf_pc)(A0)	// f's caller's PC
	MOV	X2, (m_morebuf+gobuf_sp)(A0)	// f's caller's SP
	MOV	g, (m_morebuf+gobuf_g)(A0)

	// Call newstack on m->g0's stack.
	MOV	m_g0(A0), g
	CALL	runtime·save_g(SB)
	MOV	(g_sched+gobuf_sp)(g), X2
	// Create a stack frame on g0 to call newstack.
	MOV	ZERO, -8(X2)	// Zero saved LR in frame
	ADD	$-8, X2
	CALL	runtime·newstack(SB)

	// Not reached, but make sure the return PC from the call to newstack
	// is still in this function, and not the beginning of the next.
	UNDEF

// func morestack_noctxt()
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
	MOV	ZERO, CTXT
	JMP	runtime·morestack(SB)

// AES hashing not implemented for riscv64
TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32
	JMP	runtime·memhashFallback<ABIInternal>(SB)
TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
	JMP	runtime·strhashFallback<ABIInternal>(SB)
TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
	JMP	runtime·memhash32Fallback<ABIInternal>(SB)
TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24
	JMP	runtime·memhash64Fallback<ABIInternal>(SB)

// func return0()
TEXT runtime·return0(SB), NOSPLIT, $0
	MOV	$0, A0
	RET

// restore state from Gobuf; longjmp

// func gogo(buf *gobuf)
TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8
	MOV	buf+0(FP), T0
	MOV	gobuf_g(T0), T1
	MOV	0(T1), ZERO // make sure g != nil
	JMP	gogo<>(SB)

TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0
	MOV	T1, g
	CALL	runtime·save_g(SB)

	MOV	gobuf_sp(T0), X2
	MOV	gobuf_lr(T0), RA
	MOV	gobuf_ret(T0), A0
	MOV	gobuf_ctxt(T0), CTXT
	MOV	ZERO, gobuf_sp(T0)
	MOV	ZERO, gobuf_ret(T0)
	MOV	ZERO, gobuf_lr(T0)
	MOV	ZERO, gobuf_ctxt(T0)
	MOV	gobuf_pc(T0), T0
	JALR	ZERO, T0

// func procyield(cycles uint32)
TEXT runtime·procyield(SB),NOSPLIT,$0-0
	RET

// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.

// func mcall(fn func(*g))
TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8
#ifdef GOEXPERIMENT_regabiargs
	MOV	X10, CTXT
#else
	MOV	fn+0(FP), CTXT
#endif

	// Save caller state in g->sched
	MOV	X2, (g_sched+gobuf_sp)(g)
	MOV	RA, (g_sched+gobuf_pc)(g)
	MOV	ZERO, (g_sched+gobuf_lr)(g)

	// Switch to m->g0 & its stack, call fn.
	MOV	g, X10
	MOV	g_m(g), T1
	MOV	m_g0(T1), g
	CALL	runtime·save_g(SB)
	BNE	g, X10, 2(PC)
	JMP	runtime·badmcall(SB)
	MOV	0(CTXT), T1			// code pointer
	MOV	(g_sched+gobuf_sp)(g), X2	// sp = m->g0->sched.sp
	// we don't need special macro for regabi since arg0(X10) = g
	ADD	$-16, X2
	MOV	X10, 8(X2)			// setup g
	MOV	ZERO, 0(X2)			// clear return address
	JALR	RA, T1
	JMP	runtime·badmcall2(SB)

// Save state of caller into g->sched,
// but using fake PC from systemstack_switch.
// Must only be called from functions with no locals ($0)
// or else unwinding from systemstack_switch is incorrect.
// Smashes X31.
TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0
	MOV	$runtime·systemstack_switch(SB), X31
	ADD	$8, X31	// get past prologue
	MOV	X31, (g_sched+gobuf_pc)(g)
	MOV	X2, (g_sched+gobuf_sp)(g)
	MOV	ZERO, (g_sched+gobuf_lr)(g)
	MOV	ZERO, (g_sched+gobuf_ret)(g)
	// Assert ctxt is zero. See func save.
	MOV	(g_sched+gobuf_ctxt)(g), X31
	BEQ	ZERO, X31, 2(PC)
	CALL	runtime·abort(SB)
	RET

// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
	MOV	fn+0(FP), X5
	MOV	arg+8(FP), X10

	MOV	X2, X8	// save original stack pointer
	MOV	g, X9

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already. Or we might already
	// be on the m->gsignal stack.
	MOV	g_m(g), X6
	MOV	m_gsignal(X6), X7
	BEQ	X7, g, g0
	MOV	m_g0(X6), X7
	BEQ	X7, g, g0

	CALL	gosave_systemstack_switch<>(SB)
	MOV	X7, g
	CALL	runtime·save_g(SB)
	MOV	(g_sched+gobuf_sp)(g), X2

	// Now on a scheduling stack (a pthread-created stack).
g0:
	// Save room for two of our pointers.
	ADD	$-16, X2
	MOV	X9, 0(X2)	// save old g on stack
	MOV	(g_stack+stack_hi)(X9), X9
	SUB	X8, X9, X8
	MOV	X8, 8(X2)	// save depth in old g stack (can't just save SP, as stack might be copied during a callback)

	JALR	RA, (X5)

	// Restore g, stack pointer. X10 is return value.
	MOV	0(X2), g
	CALL	runtime·save_g(SB)
	MOV	(g_stack+stack_hi)(g), X5
	MOV	8(X2), X6
	SUB	X6, X5, X6
	MOV	X6, X2

	MOVW	X10, ret+16(FP)
	RET

// func asminit()
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
	RET

// reflectcall: call a function with the given argument list
// func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.
// Caution: ugly multiline assembly macros in your future!

#define DISPATCH(NAME,MAXSIZE)	\
	MOV	$MAXSIZE, T1	\
	BLTU	T1, T0, 3(PC)	\
	MOV	$NAME(SB), T2;	\
	JALR	ZERO, T2
// Note: can't just "BR NAME(SB)" - bad inlining results.

// func call(stackArgsType *rtype, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
TEXT reflect·call(SB), NOSPLIT, $0-0
	JMP	·reflectcall(SB)

// func call(stackArgsType *_type, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs).
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48
	MOVWU	frameSize+32(FP), T0
	DISPATCH(runtime·call16, 16)
	DISPATCH(runtime·call32, 32)
	DISPATCH(runtime·call64, 64)
	DISPATCH(runtime·call128, 128)
	DISPATCH(runtime·call256, 256)
	DISPATCH(runtime·call512, 512)
	DISPATCH(runtime·call1024, 1024)
	DISPATCH(runtime·call2048, 2048)
	DISPATCH(runtime·call4096, 4096)
	DISPATCH(runtime·call8192, 8192)
	DISPATCH(runtime·call16384, 16384)
	DISPATCH(runtime·call32768, 32768)
	DISPATCH(runtime·call65536, 65536)
	DISPATCH(runtime·call131072, 131072)
	DISPATCH(runtime·call262144, 262144)
	DISPATCH(runtime·call524288, 524288)
	DISPATCH(runtime·call1048576, 1048576)
	DISPATCH(runtime·call2097152, 2097152)
	DISPATCH(runtime·call4194304, 4194304)
	DISPATCH(runtime·call8388608, 8388608)
	DISPATCH(runtime·call16777216, 16777216)
	DISPATCH(runtime·call33554432, 33554432)
	DISPATCH(runtime·call67108864, 67108864)
	DISPATCH(runtime·call134217728, 134217728)
	DISPATCH(runtime·call268435456, 268435456)
	DISPATCH(runtime·call536870912, 536870912)
	DISPATCH(runtime·call1073741824, 1073741824)
	MOV	$runtime·badreflectcall(SB), T2
	JALR	ZERO, T2

#define CALLFN(NAME,MAXSIZE)			\
TEXT NAME(SB), WRAPPER, $MAXSIZE-48;		\
	NO_LOCAL_POINTERS;			\
	/* copy arguments to stack */		\
	MOV	stackArgs+16(FP), A1;			\
	MOVWU	stackArgsSize+24(FP), A2;		\
	MOV	X2, A3;				\
	ADD	$8, A3;				\
	ADD	A3, A2;				\
	BEQ	A3, A2, 6(PC);			\
	MOVBU	(A1), A4;			\
	ADD	$1, A1;				\
	MOVB	A4, (A3);			\
	ADD	$1, A3;				\
	JMP	-5(PC);				\
	/* set up argument registers */		\
	MOV	regArgs+40(FP), X25;		\
	CALL	·unspillArgs(SB);		\
	/* call function */			\
	MOV	f+8(FP), CTXT;			\
	MOV	(CTXT), X25;			\
	PCDATA  $PCDATA_StackMapIndex, $0;	\
	JALR	RA, X25;				\
	/* copy return values back */		\
	MOV	regArgs+40(FP), X25;		\
	CALL	·spillArgs(SB);		\
	MOV	stackArgsType+0(FP), A5;		\
	MOV	stackArgs+16(FP), A1;			\
	MOVWU	stackArgsSize+24(FP), A2;			\
	MOVWU	stackRetOffset+28(FP), A4;		\
	ADD	$8, X2, A3;			\
	ADD	A4, A3; 			\
	ADD	A4, A1;				\
	SUB	A4, A2;				\
	CALL	callRet<>(SB);			\
	RET

// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $40-0
	NO_LOCAL_POINTERS
	MOV	A5, 8(X2)
	MOV	A1, 16(X2)
	MOV	A3, 24(X2)
	MOV	A2, 32(X2)
	MOV	X25, 40(X2)
	CALL	runtime·reflectcallmove(SB)
	RET

CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)

// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT,$8
	// g (X27) and REG_TMP (X31) might be clobbered by load_g.
	// X27 is callee-save in the gcc calling convention, so save it.
	MOV	g, savedX27-8(SP)

	CALL	runtime·load_g(SB)
	MOV	g_m(g), X5
	MOV	m_curg(X5), X5
	MOV	(g_stack+stack_hi)(X5), X10 // return value in X10

	MOV	savedX27-8(SP), g
	RET

// func goexit(neverCallThisFunction)
// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
	MOV	ZERO, ZERO	// NOP
	JMP	runtime·goexit1(SB)	// does not return
	// traceback from goexit1 must hit code range of goexit
	MOV	ZERO, ZERO	// NOP

// func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
// See cgocall.go for more details.
TEXT ·cgocallback(SB),NOSPLIT,$24-24
	NO_LOCAL_POINTERS

	// Load m and g from thread-local storage.
	MOVBU	runtime·iscgo(SB), X5
	BEQ	ZERO, X5, nocgo
	CALL	runtime·load_g(SB)
nocgo:

	// If g is nil, Go did not create the current thread.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call.
	BEQ	ZERO, g, needm

	MOV	g_m(g), X5
	MOV	X5, savedm-8(SP)
	JMP	havem

needm:
	MOV	g, savedm-8(SP) // g is zero, so is m.
	MOV	$runtime·needm(SB), X6
	JALR	RA, X6

	// Set m->sched.sp = SP, so that if a panic happens
	// during the function we are about to execute, it will
	// have a valid SP to run on the g0 stack.
	// The next few lines (after the havem label)
	// will save this SP onto the stack and then write
	// the same SP back to m->sched.sp. That seems redundant,
	// but if an unrecovered panic happens, unwindm will
	// restore the g->sched.sp from the stack location
	// and then systemstack will try to use it. If we don't set it here,
	// that restored SP will be uninitialized (typically 0) and
	// will not be usable.
	MOV	g_m(g), X5
	MOV	m_g0(X5), X6
	MOV	X2, (g_sched+gobuf_sp)(X6)

havem:
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	// NOTE: unwindm knows that the saved g->sched.sp is at 8(X2) aka savedsp-24(SP).
	MOV	m_g0(X5), X6
	MOV	(g_sched+gobuf_sp)(X6), X7
	MOV	X7, savedsp-24(SP)	// must match frame size
	MOV	X2, (g_sched+gobuf_sp)(X6)

	// Switch to m->curg stack and call runtime.cgocallbackg.
	// Because we are taking over the execution of m->curg
	// but *not* resuming what had been running, we need to
	// save that information (m->curg->sched) so we can restore it.
	// We can restore m->curg->sched.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->sched.pc, we push it onto the curg stack and
	// open a frame the same size as cgocallback's g0 frame.
	// Once we switch to the curg stack, the pushed PC will appear
	// to be the return PC of cgocallback, so that the traceback
	// will seamlessly trace back into the earlier calls.
	MOV	m_curg(X5), g
	CALL	runtime·save_g(SB)
	MOV	(g_sched+gobuf_sp)(g), X6 // prepare stack as X6
	MOV	(g_sched+gobuf_pc)(g), X7
	MOV	X7, -(24+8)(X6)		// "saved LR"; must match frame size
	// Gather our arguments into registers.
	MOV	fn+0(FP), X7
	MOV	frame+8(FP), X8
	MOV	ctxt+16(FP), X9
	MOV	$-(24+8)(X6), X2	// switch stack; must match frame size
	MOV	X7, 8(X2)
	MOV	X8, 16(X2)
	MOV	X9, 24(X2)
	CALL	runtime·cgocallbackg(SB)

	// Restore g->sched (== m->curg->sched) from saved values.
	MOV	0(X2), X7
	MOV	X7, (g_sched+gobuf_pc)(g)
	MOV	$(24+8)(X2), X6		// must match frame size
	MOV	X6, (g_sched+gobuf_sp)(g)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOV	g_m(g), X5
	MOV	m_g0(X5), g
	CALL	runtime·save_g(SB)
	MOV	(g_sched+gobuf_sp)(g), X2
	MOV	savedsp-24(SP), X6	// must match frame size
	MOV	X6, (g_sched+gobuf_sp)(g)

	// If the m on entry was nil, we called needm above to borrow an m
	// for the duration of the call. Since the call is over, return it with dropm.
	MOV	savedm-8(SP), X5
	BNE	ZERO, X5, droppedm
	MOV	$runtime·dropm(SB), X6
	JALR	RA, X6
droppedm:

	// Done!
	RET

TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
	EBREAK
	RET

TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
	EBREAK
	RET

// void setg(G*); set g. for use by needm.
TEXT runtime·setg(SB), NOSPLIT, $0-8
	MOV	gg+0(FP), g
	// This only happens if iscgo, so jump straight to save_g
	CALL	runtime·save_g(SB)
	RET

TEXT ·checkASM(SB),NOSPLIT,$0-1
	MOV	$1, T0
	MOV	T0, ret+0(FP)
	RET

#ifdef GOEXPERIMENT_regabiargs
// spillArgs stores return values from registers to a *internal/abi.RegArgs in X25.
TEXT ·spillArgs(SB),NOSPLIT,$0-0
	MOV	X10, (0*8)(X25)
	MOV	X11, (1*8)(X25)
	MOV	X12, (2*8)(X25)
	MOV	X13, (3*8)(X25)
	MOV	X14, (4*8)(X25)
	MOV	X15, (5*8)(X25)
	MOV	X16, (6*8)(X25)
	MOV	X17, (7*8)(X25)
	MOV	X8,  (8*8)(X25)
	MOV	X9,  (9*8)(X25)
	MOV	X18, (10*8)(X25)
	MOV	X19, (11*8)(X25)
	MOV	X20, (12*8)(X25)
	MOV	X21, (13*8)(X25)
	MOV	X22, (14*8)(X25)
	MOV	X23, (15*8)(X25)
	MOVD	F10, (16*8)(X25)
	MOVD	F11, (17*8)(X25)
	MOVD	F12, (18*8)(X25)
	MOVD	F13, (19*8)(X25)
	MOVD	F14, (20*8)(X25)
	MOVD	F15, (21*8)(X25)
	MOVD	F16, (22*8)(X25)
	MOVD	F17, (23*8)(X25)
	MOVD	F8,  (24*8)(X25)
	MOVD	F9,  (25*8)(X25)
	MOVD	F18, (26*8)(X25)
	MOVD	F19, (27*8)(X25)
	MOVD	F20, (28*8)(X25)
	MOVD	F21, (29*8)(X25)
	MOVD	F22, (30*8)(X25)
	MOVD	F23, (31*8)(X25)
	RET

// unspillArgs loads args into registers from a *internal/abi.RegArgs in X25.
TEXT ·unspillArgs(SB),NOSPLIT,$0-0
	MOV	(0*8)(X25), X10
	MOV	(1*8)(X25), X11
	MOV	(2*8)(X25), X12
	MOV	(3*8)(X25), X13
	MOV	(4*8)(X25), X14
	MOV	(5*8)(X25), X15
	MOV	(6*8)(X25), X16
	MOV	(7*8)(X25), X17
	MOV	(8*8)(X25), X8
	MOV	(9*8)(X25), X9
	MOV	(10*8)(X25), X18
	MOV	(11*8)(X25), X19
	MOV	(12*8)(X25), X20
	MOV	(13*8)(X25), X21
	MOV	(14*8)(X25), X22
	MOV	(15*8)(X25), X23
	MOVD	(16*8)(X25), F10
	MOVD	(17*8)(X25), F11
	MOVD	(18*8)(X25), F12
	MOVD	(19*8)(X25), F13
	MOVD	(20*8)(X25), F14
	MOVD	(21*8)(X25), F15
	MOVD	(22*8)(X25), F16
	MOVD	(23*8)(X25), F17
	MOVD	(24*8)(X25), F8
	MOVD	(25*8)(X25), F9
	MOVD	(26*8)(X25), F18
	MOVD	(27*8)(X25), F19
	MOVD	(28*8)(X25), F20
	MOVD	(29*8)(X25), F21
	MOVD	(30*8)(X25), F22
	MOVD	(31*8)(X25), F23
	RET
#else
TEXT ·spillArgs(SB),NOSPLIT,$0-0
	RET

TEXT ·unspillArgs(SB),NOSPLIT,$0-0
	RET
#endif

// gcWriteBarrier performs a heap pointer write and informs the GC.
//
// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
// - T0 is the destination of the write
// - T1 is the value being written at T0.
// It clobbers R30 (the linker temp register - REG_TMP).
// The act of CALLing gcWriteBarrier will clobber RA (LR).
// It does not clobber any other general-purpose registers,
// but may clobber others (e.g., floating point registers).
TEXT runtime·gcWriteBarrier<ABIInternal>(SB),NOSPLIT,$208
	// Save the registers clobbered by the fast path.
	MOV	A0, 24*8(X2)
	MOV	A1, 25*8(X2)
	MOV	g_m(g), A0
	MOV	m_p(A0), A0
	MOV	(p_wbBuf+wbBuf_next)(A0), A1
	// Increment wbBuf.next position.
	ADD	$16, A1
	MOV	A1, (p_wbBuf+wbBuf_next)(A0)
	MOV	(p_wbBuf+wbBuf_end)(A0), A0
	MOV	A0, T6		// T6 is linker temp register (REG_TMP)
	// Record the write.
	MOV	T1, -16(A1)	// Record value
	MOV	(T0), A0	// TODO: This turns bad writes into bad reads.
	MOV	A0, -8(A1)	// Record *slot
	// Is the buffer full?
	BEQ	A1, T6, flush
ret:
	MOV	24*8(X2), A0
	MOV	25*8(X2), A1
	// Do the write.
	MOV	T1, (T0)
	RET

flush:
	// Save all general purpose registers since these could be
	// clobbered by wbBufFlush and were not saved by the caller.
	MOV	T0, 1*8(X2)	// Also first argument to wbBufFlush
	MOV	T1, 2*8(X2)	// Also second argument to wbBufFlush
	// X0 is zero register
	// X1 is LR, saved by prologue
	// X2 is SP
	// X3 is GP
	// X4 is TP
	// X5 is first arg to wbBufFlush (T0)
	// X6 is second arg to wbBufFlush (T1)
	MOV	X7, 3*8(X2)
	MOV	X8, 4*8(X2)
	MOV	X9, 5*8(X2)
	// X10 already saved (A0)
	// X11 already saved (A1)
	MOV	X12, 6*8(X2)
	MOV	X13, 7*8(X2)
	MOV	X14, 8*8(X2)
	MOV	X15, 9*8(X2)
	MOV	X16, 10*8(X2)
	MOV	X17, 11*8(X2)
	MOV	X18, 12*8(X2)
	MOV	X19, 13*8(X2)
	MOV	X20, 14*8(X2)
	MOV	X21, 15*8(X2)
	MOV	X22, 16*8(X2)
	MOV	X23, 17*8(X2)
	MOV	X24, 18*8(X2)
	MOV	X25, 19*8(X2)
	MOV	X26, 20*8(X2)
	// X27 is g.
	MOV	X28, 21*8(X2)
	MOV	X29, 22*8(X2)
	MOV	X30, 23*8(X2)
	// X31 is tmp register.

	// This takes arguments T0 and T1.
	CALL	runtime·wbBufFlush(SB)

	MOV	1*8(X2), T0
	MOV	2*8(X2), T1
	MOV	3*8(X2), X7
	MOV	4*8(X2), X8
	MOV	5*8(X2), X9
	MOV	6*8(X2), X12
	MOV	7*8(X2), X13
	MOV	8*8(X2), X14
	MOV	9*8(X2), X15
	MOV	10*8(X2), X16
	MOV	11*8(X2), X17
	MOV	12*8(X2), X18
	MOV	13*8(X2), X19
	MOV	14*8(X2), X20
	MOV	15*8(X2), X21
	MOV	16*8(X2), X22
	MOV	17*8(X2), X23
	MOV	18*8(X2), X24
	MOV	19*8(X2), X25
	MOV	20*8(X2), X26
	MOV	21*8(X2), X28
	MOV	22*8(X2), X29
	MOV	23*8(X2), X30

	JMP	ret

// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers (ssa/gen/RISCV64Ops.go), but the space for those
// arguments are allocated in the caller's stack frame.
// These stubs write the args into that stack space and then tail call to the
// corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T0, X10
	MOV	T1, X11
#else
	MOV	T0, x+0(FP)
	MOV	T1, y+8(FP)
#endif
	JMP	runtime·goPanicIndex<ABIInternal>(SB)
TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T0, X10
	MOV	T1, X11
#else
	MOV	T0, x+0(FP)
	MOV	T1, y+8(FP)
#endif
	JMP	runtime·goPanicIndexU<ABIInternal>(SB)
TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T1, X10
	MOV	T2, X11
#else
	MOV	T1, x+0(FP)
	MOV	T2, y+8(FP)
#endif
	JMP	runtime·goPanicSliceAlen<ABIInternal>(SB)
TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T1, X10
	MOV	T2, X11
#else
	MOV	T1, x+0(FP)
	MOV	T2, y+8(FP)
#endif
	JMP	runtime·goPanicSliceAlenU<ABIInternal>(SB)
TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T1, X10
	MOV	T2, X11
#else
	MOV	T1, x+0(FP)
	MOV	T2, y+8(FP)
#endif
	JMP	runtime·goPanicSliceAcap<ABIInternal>(SB)
TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T1, X10
	MOV	T2, X11
#else
	MOV	T1, x+0(FP)
	MOV	T2, y+8(FP)
#endif
	JMP	runtime·goPanicSliceAcapU<ABIInternal>(SB)
TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T0, X10
	MOV	T1, X11
#else
	MOV	T0, x+0(FP)
	MOV	T1, y+8(FP)
#endif
	JMP	runtime·goPanicSliceB<ABIInternal>(SB)
TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T0, X10
	MOV	T1, X11
#else
	MOV	T0, x+0(FP)
	MOV	T1, y+8(FP)
#endif
	JMP	runtime·goPanicSliceBU<ABIInternal>(SB)
TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T2, X10
	MOV	T3, X11
#else
	MOV	T2, x+0(FP)
	MOV	T3, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3Alen<ABIInternal>(SB)
TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T2, X10
	MOV	T3, X11
#else
	MOV	T2, x+0(FP)
	MOV	T3, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3AlenU<ABIInternal>(SB)
TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T2, X10
	MOV	T3, X11
#else
	MOV	T2, x+0(FP)
	MOV	T3, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3Acap<ABIInternal>(SB)
TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T2, X10
	MOV	T3, X11
#else
	MOV	T2, x+0(FP)
	MOV	T3, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3AcapU<ABIInternal>(SB)
TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T1, X10
	MOV	T2, X11
#else
	MOV	T1, x+0(FP)
	MOV	T2, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3B<ABIInternal>(SB)
TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T1, X10
	MOV	T2, X11
#else
	MOV	T1, x+0(FP)
	MOV	T2, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3BU<ABIInternal>(SB)
TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T0, X10
	MOV	T1, X11
#else
	MOV	T0, x+0(FP)
	MOV	T1, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3C<ABIInternal>(SB)
TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T0, X10
	MOV	T1, X11
#else
	MOV	T0, x+0(FP)
	MOV	T1, y+8(FP)
#endif
	JMP	runtime·goPanicSlice3CU<ABIInternal>(SB)
TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16
#ifdef GOEXPERIMENT_regabiargs
	MOV	T2, X10
	MOV	T3, X11
#else
	MOV	T2, x+0(FP)
	MOV	T3, y+8(FP)
#endif
	JMP	runtime·goPanicSliceConvert<ABIInternal>(SB)

DATA	runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB)
GLOBL	runtime·mainPC(SB),RODATA,$8