aboutsummaryrefslogtreecommitdiff
path: root/src/runtime/asm_mipsx.s
blob: ee87d81436304436952bdafc72ed5cd4bd185281 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// +build mips mipsle

#include "go_asm.h"
#include "go_tls.h"
#include "funcdata.h"
#include "textflag.h"

#define	REGCTXT	R22

TEXT runtime·rt0_go(SB),NOSPLIT,$0
	// R29 = stack; R4 = argc; R5 = argv

	ADDU	$-12, R29
	MOVW	R4, 4(R29)	// argc
	MOVW	R5, 8(R29)	// argv

	// create istack out of the given (operating system) stack.
	// _cgo_init may update stackguard.
	MOVW	$runtime·g0(SB), g
	MOVW	$(-64*1024), R23
	ADD	R23, R29, R1
	MOVW	R1, g_stackguard0(g)
	MOVW	R1, g_stackguard1(g)
	MOVW	R1, (g_stack+stack_lo)(g)
	MOVW	R29, (g_stack+stack_hi)(g)

	// if there is a _cgo_init, call it using the gcc ABI.
	MOVW	_cgo_init(SB), R25
	BEQ	R25, nocgo
	ADDU	$-16, R29
	MOVW	R0, R7	// arg 3: not used
	MOVW	R0, R6	// arg 2: not used
	MOVW	$setg_gcc<>(SB), R5	// arg 1: setg
	MOVW	g, R4	// arg 0: G
	JAL	(R25)
	ADDU	$16, R29

nocgo:
	// update stackguard after _cgo_init
	MOVW	(g_stack+stack_lo)(g), R1
	ADD	$const__StackGuard, R1
	MOVW	R1, g_stackguard0(g)
	MOVW	R1, g_stackguard1(g)

	// set the per-goroutine and per-mach "registers"
	MOVW	$runtime·m0(SB), R1

	// save m->g0 = g0
	MOVW	g, m_g0(R1)
	// save m0 to g0->m
	MOVW	R1, g_m(g)

	JAL	runtime·check(SB)

	// args are already prepared
	JAL	runtime·args(SB)
	JAL	runtime·osinit(SB)
	JAL	runtime·schedinit(SB)

	// create a new goroutine to start program
	MOVW	$runtime·mainPC(SB), R1	// entry
	ADDU	$-12, R29
	MOVW	R1, 8(R29)
	MOVW	R0, 4(R29)
	MOVW	R0, 0(R29)
	JAL	runtime·newproc(SB)
	ADDU	$12, R29

	// start this M
	JAL	runtime·mstart(SB)

	UNDEF
	RET

DATA	runtime·mainPC+0(SB)/4,$runtime·main(SB)
GLOBL	runtime·mainPC(SB),RODATA,$4

TEXT runtime·breakpoint(SB),NOSPLIT,$0-0
	BREAK
	RET

TEXT runtime·asminit(SB),NOSPLIT,$0-0
	RET

/*
 *  go-routine
 */

// void gosave(Gobuf*)
// save state in Gobuf; setjmp
TEXT runtime·gosave(SB),NOSPLIT|NOFRAME,$0-4
	MOVW	buf+0(FP), R1
	MOVW	R29, gobuf_sp(R1)
	MOVW	R31, gobuf_pc(R1)
	MOVW	g, gobuf_g(R1)
	MOVW	R0, gobuf_lr(R1)
	MOVW	R0, gobuf_ret(R1)
	// Assert ctxt is zero. See func save.
	MOVW	gobuf_ctxt(R1), R1
	BEQ	R1, 2(PC)
	JAL	runtime·badctxt(SB)
	RET

// void gogo(Gobuf*)
// restore state from Gobuf; longjmp
TEXT runtime·gogo(SB),NOSPLIT,$8-4
	MOVW	buf+0(FP), R3
	MOVW	gobuf_g(R3), g	// make sure g is not nil
	JAL	runtime·save_g(SB)

	MOVW	0(g), R2
	MOVW	gobuf_sp(R3), R29
	MOVW	gobuf_lr(R3), R31
	MOVW	gobuf_ret(R3), R1
	MOVW	gobuf_ctxt(R3), REGCTXT
	MOVW	R0, gobuf_sp(R3)
	MOVW	R0, gobuf_ret(R3)
	MOVW	R0, gobuf_lr(R3)
	MOVW	R0, gobuf_ctxt(R3)
	MOVW	gobuf_pc(R3), R4
	JMP	(R4)

// void mcall(fn func(*g))
// Switch to m->g0's stack, call fn(g).
// Fn must never return. It should gogo(&g->sched)
// to keep running g.
TEXT runtime·mcall(SB),NOSPLIT|NOFRAME,$0-4
	// Save caller state in g->sched
	MOVW	R29, (g_sched+gobuf_sp)(g)
	MOVW	R31, (g_sched+gobuf_pc)(g)
	MOVW	R0, (g_sched+gobuf_lr)(g)
	MOVW	g, (g_sched+gobuf_g)(g)

	// Switch to m->g0 & its stack, call fn.
	MOVW	g, R1
	MOVW	g_m(g), R3
	MOVW	m_g0(R3), g
	JAL	runtime·save_g(SB)
	BNE	g, R1, 2(PC)
	JMP	runtime·badmcall(SB)
	MOVW	fn+0(FP), REGCTXT	// context
	MOVW	0(REGCTXT), R4	// code pointer
	MOVW	(g_sched+gobuf_sp)(g), R29	// sp = m->g0->sched.sp
	ADDU	$-8, R29	// make room for 1 arg and fake LR
	MOVW	R1, 4(R29)
	MOVW	R0, 0(R29)
	JAL	(R4)
	JMP	runtime·badmcall2(SB)

// systemstack_switch is a dummy routine that systemstack leaves at the bottom
// of the G stack.  We need to distinguish the routine that
// lives at the bottom of the G stack from the one that lives
// at the top of the system stack because the one at the top of
// the system stack terminates the stack walk (see topofstack()).
TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0
	UNDEF
	JAL	(R31)	// make sure this function is not leaf
	RET

// func systemstack(fn func())
TEXT runtime·systemstack(SB),NOSPLIT,$0-4
	MOVW	fn+0(FP), R1	// R1 = fn
	MOVW	R1, REGCTXT	// context
	MOVW	g_m(g), R2	// R2 = m

	MOVW	m_gsignal(R2), R3	// R3 = gsignal
	BEQ	g, R3, noswitch

	MOVW	m_g0(R2), R3	// R3 = g0
	BEQ	g, R3, noswitch

	MOVW	m_curg(R2), R4
	BEQ	g, R4, switch

	// Bad: g is not gsignal, not g0, not curg. What is it?
	// Hide call from linker nosplit analysis.
	MOVW	$runtime·badsystemstack(SB), R4
	JAL	(R4)
	JAL	runtime·abort(SB)

switch:
	// save our state in g->sched.  Pretend to
	// be systemstack_switch if the G stack is scanned.
	MOVW	$runtime·systemstack_switch(SB), R4
	ADDU	$8, R4	// get past prologue
	MOVW	R4, (g_sched+gobuf_pc)(g)
	MOVW	R29, (g_sched+gobuf_sp)(g)
	MOVW	R0, (g_sched+gobuf_lr)(g)
	MOVW	g, (g_sched+gobuf_g)(g)

	// switch to g0
	MOVW	R3, g
	JAL	runtime·save_g(SB)
	MOVW	(g_sched+gobuf_sp)(g), R1
	// make it look like mstart called systemstack on g0, to stop traceback
	ADDU	$-4, R1
	MOVW	$runtime·mstart(SB), R2
	MOVW	R2, 0(R1)
	MOVW	R1, R29

	// call target function
	MOVW	0(REGCTXT), R4	// code pointer
	JAL	(R4)

	// switch back to g
	MOVW	g_m(g), R1
	MOVW	m_curg(R1), g
	JAL	runtime·save_g(SB)
	MOVW	(g_sched+gobuf_sp)(g), R29
	MOVW	R0, (g_sched+gobuf_sp)(g)
	RET

noswitch:
	// already on m stack, just call directly
	// Using a tail call here cleans up tracebacks since we won't stop
	// at an intermediate systemstack.
	MOVW	0(REGCTXT), R4	// code pointer
	MOVW	0(R29), R31	// restore LR
	ADD	$4, R29
	JMP	(R4)

/*
 * support for morestack
 */

// Called during function prolog when more stack is needed.
// Caller has already loaded:
// R1: framesize, R2: argsize, R3: LR
//
// The traceback routines see morestack on a g0 as being
// the top of a stack (for example, morestack calling newstack
// calling the scheduler calling newm calling gc), so we must
// record an argument size. For that purpose, it has no arguments.
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
	// Cannot grow scheduler stack (m->g0).
	MOVW	g_m(g), R7
	MOVW	m_g0(R7), R8
	BNE	g, R8, 3(PC)
	JAL	runtime·badmorestackg0(SB)
	JAL	runtime·abort(SB)

	// Cannot grow signal stack (m->gsignal).
	MOVW	m_gsignal(R7), R8
	BNE	g, R8, 3(PC)
	JAL	runtime·badmorestackgsignal(SB)
	JAL	runtime·abort(SB)

	// Called from f.
	// Set g->sched to context in f.
	MOVW	R29, (g_sched+gobuf_sp)(g)
	MOVW	R31, (g_sched+gobuf_pc)(g)
	MOVW	R3, (g_sched+gobuf_lr)(g)
	MOVW	REGCTXT, (g_sched+gobuf_ctxt)(g)

	// Called from f.
	// Set m->morebuf to f's caller.
	MOVW	R3, (m_morebuf+gobuf_pc)(R7)	// f's caller's PC
	MOVW	R29, (m_morebuf+gobuf_sp)(R7)	// f's caller's SP
	MOVW	g, (m_morebuf+gobuf_g)(R7)

	// Call newstack on m->g0's stack.
	MOVW	m_g0(R7), g
	JAL	runtime·save_g(SB)
	MOVW	(g_sched+gobuf_sp)(g), R29
	// Create a stack frame on g0 to call newstack.
	MOVW	R0, -4(R29)	// Zero saved LR in frame
	ADDU	$-4, R29
	JAL	runtime·newstack(SB)

	// Not reached, but make sure the return PC from the call to newstack
	// is still in this function, and not the beginning of the next.
	UNDEF

TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0
	MOVW	R0, REGCTXT
	JMP	runtime·morestack(SB)

// reflectcall: call a function with the given argument list
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
// we don't have variable-sized frames, so we use a small number
// of constant-sized-frame functions to encode a few bits of size in the pc.

#define DISPATCH(NAME,MAXSIZE)	\
	MOVW	$MAXSIZE, R23;	\
	SGTU	R1, R23, R23;	\
	BNE	R23, 3(PC);	\
	MOVW	$NAME(SB), R4;	\
	JMP	(R4)

TEXT ·reflectcall(SB),NOSPLIT|NOFRAME,$0-20
	MOVW	argsize+12(FP), R1

	DISPATCH(runtime·call16, 16)
	DISPATCH(runtime·call32, 32)
	DISPATCH(runtime·call64, 64)
	DISPATCH(runtime·call128, 128)
	DISPATCH(runtime·call256, 256)
	DISPATCH(runtime·call512, 512)
	DISPATCH(runtime·call1024, 1024)
	DISPATCH(runtime·call2048, 2048)
	DISPATCH(runtime·call4096, 4096)
	DISPATCH(runtime·call8192, 8192)
	DISPATCH(runtime·call16384, 16384)
	DISPATCH(runtime·call32768, 32768)
	DISPATCH(runtime·call65536, 65536)
	DISPATCH(runtime·call131072, 131072)
	DISPATCH(runtime·call262144, 262144)
	DISPATCH(runtime·call524288, 524288)
	DISPATCH(runtime·call1048576, 1048576)
	DISPATCH(runtime·call2097152, 2097152)
	DISPATCH(runtime·call4194304, 4194304)
	DISPATCH(runtime·call8388608, 8388608)
	DISPATCH(runtime·call16777216, 16777216)
	DISPATCH(runtime·call33554432, 33554432)
	DISPATCH(runtime·call67108864, 67108864)
	DISPATCH(runtime·call134217728, 134217728)
	DISPATCH(runtime·call268435456, 268435456)
	DISPATCH(runtime·call536870912, 536870912)
	DISPATCH(runtime·call1073741824, 1073741824)
	MOVW	$runtime·badreflectcall(SB), R4
	JMP	(R4)

#define CALLFN(NAME,MAXSIZE)	\
TEXT NAME(SB),WRAPPER,$MAXSIZE-20;	\
	NO_LOCAL_POINTERS;	\
	/* copy arguments to stack */		\
	MOVW	arg+8(FP), R1;	\
	MOVW	argsize+12(FP), R2;	\
	MOVW	R29, R3;	\
	ADDU	$4, R3;	\
	ADDU	R3, R2;	\
	BEQ	R3, R2, 6(PC);	\
	MOVBU	(R1), R4;	\
	ADDU	$1, R1;	\
	MOVBU	R4, (R3);	\
	ADDU	$1, R3;	\
	JMP	-5(PC);	\
	/* call function */			\
	MOVW	f+4(FP), REGCTXT;	\
	MOVW	(REGCTXT), R4;	\
	PCDATA	$PCDATA_StackMapIndex, $0;	\
	JAL	(R4);	\
	/* copy return values back */		\
	MOVW	argtype+0(FP), R5;	\
	MOVW	arg+8(FP), R1;	\
	MOVW	n+12(FP), R2;	\
	MOVW	retoffset+16(FP), R4;	\
	ADDU	$4, R29, R3;	\
	ADDU	R4, R3;	\
	ADDU	R4, R1;	\
	SUBU	R4, R2;	\
	JAL	callRet<>(SB);		\
	RET

// callRet copies return values back at the end of call*. This is a
// separate function so it can allocate stack space for the arguments
// to reflectcallmove. It does not follow the Go ABI; it expects its
// arguments in registers.
TEXT callRet<>(SB), NOSPLIT, $16-0
	MOVW	R5, 4(R29)
	MOVW	R1, 8(R29)
	MOVW	R3, 12(R29)
	MOVW	R2, 16(R29)
	JAL	runtime·reflectcallmove(SB)
	RET

CALLFN(·call16, 16)
CALLFN(·call32, 32)
CALLFN(·call64, 64)
CALLFN(·call128, 128)
CALLFN(·call256, 256)
CALLFN(·call512, 512)
CALLFN(·call1024, 1024)
CALLFN(·call2048, 2048)
CALLFN(·call4096, 4096)
CALLFN(·call8192, 8192)
CALLFN(·call16384, 16384)
CALLFN(·call32768, 32768)
CALLFN(·call65536, 65536)
CALLFN(·call131072, 131072)
CALLFN(·call262144, 262144)
CALLFN(·call524288, 524288)
CALLFN(·call1048576, 1048576)
CALLFN(·call2097152, 2097152)
CALLFN(·call4194304, 4194304)
CALLFN(·call8388608, 8388608)
CALLFN(·call16777216, 16777216)
CALLFN(·call33554432, 33554432)
CALLFN(·call67108864, 67108864)
CALLFN(·call134217728, 134217728)
CALLFN(·call268435456, 268435456)
CALLFN(·call536870912, 536870912)
CALLFN(·call1073741824, 1073741824)

TEXT runtime·procyield(SB),NOSPLIT,$0-4
	RET

// void jmpdefer(fv, sp);
// called from deferreturn.
// 1. grab stored LR for caller
// 2. sub 8 bytes to get back to JAL deferreturn
// 3. JMP to fn
TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8
	MOVW	0(R29), R31
	ADDU	$-8, R31

	MOVW	fv+0(FP), REGCTXT
	MOVW	argp+4(FP), R29
	ADDU	$-4, R29
	NOR	R0, R0	// prevent scheduling
	MOVW	0(REGCTXT), R4
	JMP	(R4)

// Save state of caller into g->sched. Smashes R1.
TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
	MOVW	R31, (g_sched+gobuf_pc)(g)
	MOVW	R29, (g_sched+gobuf_sp)(g)
	MOVW	R0, (g_sched+gobuf_lr)(g)
	MOVW	R0, (g_sched+gobuf_ret)(g)
	// Assert ctxt is zero. See func save.
	MOVW	(g_sched+gobuf_ctxt)(g), R1
	BEQ	R1, 2(PC)
	JAL	runtime·badctxt(SB)
	RET

// func asmcgocall(fn, arg unsafe.Pointer) int32
// Call fn(arg) on the scheduler stack,
// aligned appropriately for the gcc ABI.
// See cgocall.go for more details.
TEXT ·asmcgocall(SB),NOSPLIT,$0-12
	MOVW	fn+0(FP), R25
	MOVW	arg+4(FP), R4

	MOVW	R29, R3	// save original stack pointer
	MOVW	g, R2

	// Figure out if we need to switch to m->g0 stack.
	// We get called to create new OS threads too, and those
	// come in on the m->g0 stack already.
	MOVW	g_m(g), R5
	MOVW	m_g0(R5), R6
	BEQ	R6, g, g0

	JAL	gosave<>(SB)
	MOVW	R6, g
	JAL	runtime·save_g(SB)
	MOVW	(g_sched+gobuf_sp)(g), R29

	// Now on a scheduling stack (a pthread-created stack).
g0:
	// Save room for two of our pointers and O32 frame.
	ADDU	$-24, R29
	AND	$~7, R29	// O32 ABI expects 8-byte aligned stack on function entry
	MOVW	R2, 16(R29)	// save old g on stack
	MOVW	(g_stack+stack_hi)(R2), R2
	SUBU	R3, R2
	MOVW	R2, 20(R29)	// save depth in old g stack (can't just save SP, as stack might be copied during a callback)
	JAL	(R25)

	// Restore g, stack pointer. R2 is return value.
	MOVW	16(R29), g
	JAL	runtime·save_g(SB)
	MOVW	(g_stack+stack_hi)(g), R5
	MOVW	20(R29), R6
	SUBU	R6, R5
	MOVW	R5, R29

	MOVW	R2, ret+8(FP)
	RET

// cgocallback(fn, frame unsafe.Pointer, ctxt uintptr)
// See cgocall.go for more details.
TEXT ·cgocallback(SB),NOSPLIT,$12-12
	NO_LOCAL_POINTERS

	// Load m and g from thread-local storage.
	MOVB	runtime·iscgo(SB), R1
	BEQ	R1, nocgo
	JAL	runtime·load_g(SB)
nocgo:

	// If g is nil, Go did not create the current thread.
	// Call needm to obtain one for temporary use.
	// In this case, we're running on the thread stack, so there's
	// lots of space, but the linker doesn't know. Hide the call from
	// the linker analysis by using an indirect call.
	BEQ	g, needm

	MOVW	g_m(g), R3
	MOVW	R3, savedm-4(SP)
	JMP	havem

needm:
	MOVW	g, savedm-4(SP) // g is zero, so is m.
	MOVW	$runtime·needm(SB), R4
	JAL	(R4)

	// Set m->sched.sp = SP, so that if a panic happens
	// during the function we are about to execute, it will
	// have a valid SP to run on the g0 stack.
	// The next few lines (after the havem label)
	// will save this SP onto the stack and then write
	// the same SP back to m->sched.sp. That seems redundant,
	// but if an unrecovered panic happens, unwindm will
	// restore the g->sched.sp from the stack location
	// and then systemstack will try to use it. If we don't set it here,
	// that restored SP will be uninitialized (typically 0) and
	// will not be usable.
	MOVW	g_m(g), R3
	MOVW	m_g0(R3), R1
	MOVW	R29, (g_sched+gobuf_sp)(R1)

havem:
	// Now there's a valid m, and we're running on its m->g0.
	// Save current m->g0->sched.sp on stack and then set it to SP.
	// Save current sp in m->g0->sched.sp in preparation for
	// switch back to m->curg stack.
	// NOTE: unwindm knows that the saved g->sched.sp is at 4(R29) aka savedsp-8(SP).
	MOVW	m_g0(R3), R1
	MOVW	(g_sched+gobuf_sp)(R1), R2
	MOVW	R2, savedsp-12(SP)	// must match frame size
	MOVW	R29, (g_sched+gobuf_sp)(R1)

	// Switch to m->curg stack and call runtime.cgocallbackg.
	// Because we are taking over the execution of m->curg
	// but *not* resuming what had been running, we need to
	// save that information (m->curg->sched) so we can restore it.
	// We can restore m->curg->sched.sp easily, because calling
	// runtime.cgocallbackg leaves SP unchanged upon return.
	// To save m->curg->sched.pc, we push it onto the curg stack and
	// open a frame the same size as cgocallback's g0 frame.
	// Once we switch to the curg stack, the pushed PC will appear
	// to be the return PC of cgocallback, so that the traceback
	// will seamlessly trace back into the earlier calls.
	MOVW	m_curg(R3), g
	JAL	runtime·save_g(SB)
	MOVW	(g_sched+gobuf_sp)(g), R2 // prepare stack as R2
	MOVW	(g_sched+gobuf_pc)(g), R4
	MOVW	R4, -(12+4)(R2)	// "saved LR"; must match frame size
	// Gather our arguments into registers.
	MOVW	fn+0(FP), R5
	MOVW	frame+4(FP), R6
	MOVW	ctxt+8(FP), R7
	MOVW	$-(12+4)(R2), R29	// switch stack; must match frame size
	MOVW	R5, 4(R29)
	MOVW	R6, 8(R29)
	MOVW	R7, 12(R29)
	JAL	runtime·cgocallbackg(SB)

	// Restore g->sched (== m->curg->sched) from saved values.
	MOVW	0(R29), R4
	MOVW	R4, (g_sched+gobuf_pc)(g)
	MOVW	$(12+4)(R29), R2	// must match frame size
	MOVW	R2, (g_sched+gobuf_sp)(g)

	// Switch back to m->g0's stack and restore m->g0->sched.sp.
	// (Unlike m->curg, the g0 goroutine never uses sched.pc,
	// so we do not have to restore it.)
	MOVW	g_m(g), R3
	MOVW	m_g0(R3), g
	JAL	runtime·save_g(SB)
	MOVW	(g_sched+gobuf_sp)(g), R29
	MOVW	savedsp-12(SP), R2	// must match frame size
	MOVW	R2, (g_sched+gobuf_sp)(g)

	// If the m on entry was nil, we called needm above to borrow an m
	// for the duration of the call. Since the call is over, return it with dropm.
	MOVW	savedm-4(SP), R3
	BNE	R3, droppedm
	MOVW	$runtime·dropm(SB), R4
	JAL	(R4)
droppedm:

	// Done!
	RET

// void setg(G*); set g. for use by needm.
// This only happens if iscgo, so jump straight to save_g
TEXT runtime·setg(SB),NOSPLIT,$0-4
	MOVW	gg+0(FP), g
	JAL	runtime·save_g(SB)
	RET

// void setg_gcc(G*); set g in C TLS.
// Must obey the gcc calling convention.
TEXT setg_gcc<>(SB),NOSPLIT,$0
	MOVW	R4, g
	JAL	runtime·save_g(SB)
	RET

TEXT runtime·abort(SB),NOSPLIT,$0-0
	UNDEF

// AES hashing not implemented for mips
TEXT runtime·memhash(SB),NOSPLIT|NOFRAME,$0-16
	JMP	runtime·memhashFallback(SB)
TEXT runtime·strhash(SB),NOSPLIT|NOFRAME,$0-12
	JMP	runtime·strhashFallback(SB)
TEXT runtime·memhash32(SB),NOSPLIT|NOFRAME,$0-12
	JMP	runtime·memhash32Fallback(SB)
TEXT runtime·memhash64(SB),NOSPLIT|NOFRAME,$0-12
	JMP	runtime·memhash64Fallback(SB)

TEXT runtime·return0(SB),NOSPLIT,$0
	MOVW	$0, R1
	RET

// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
// Must obey the gcc calling convention.
TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
	// g (R30), R3 and REGTMP (R23) might be clobbered by load_g. R30 and R23
	// are callee-save in the gcc calling convention, so save them.
	MOVW	R23, R8
	MOVW	g, R9
	MOVW	R31, R10 // this call frame does not save LR

	JAL	runtime·load_g(SB)
	MOVW	g_m(g), R1
	MOVW	m_curg(R1), R1
	MOVW	(g_stack+stack_hi)(R1), R2 // return value in R2

	MOVW	R8, R23
	MOVW	R9, g
	MOVW	R10, R31

	RET

// The top-most function running on a goroutine
// returns to goexit+PCQuantum.
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0
	NOR	R0, R0	// NOP
	JAL	runtime·goexit1(SB)	// does not return
	// traceback from goexit1 must hit code range of goexit
	NOR	R0, R0	// NOP

TEXT ·checkASM(SB),NOSPLIT,$0-1
	MOVW	$1, R1
	MOVB	R1, ret+0(FP)
	RET

// gcWriteBarrier performs a heap pointer write and informs the GC.
//
// gcWriteBarrier does NOT follow the Go ABI. It takes two arguments:
// - R20 is the destination of the write
// - R21 is the value being written at R20.
// It clobbers R23 (the linker temp register).
// The act of CALLing gcWriteBarrier will clobber R31 (LR).
// It does not clobber any other general-purpose registers,
// but may clobber others (e.g., floating point registers).
TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$104
	// Save the registers clobbered by the fast path.
	MOVW	R1, 100(R29)
	MOVW	R2, 104(R29)
	MOVW	g_m(g), R1
	MOVW	m_p(R1), R1
	MOVW	(p_wbBuf+wbBuf_next)(R1), R2
	// Increment wbBuf.next position.
	ADD	$8, R2
	MOVW	R2, (p_wbBuf+wbBuf_next)(R1)
	MOVW	(p_wbBuf+wbBuf_end)(R1), R1
	MOVW	R1, R23		// R23 is linker temp register
	// Record the write.
	MOVW	R21, -8(R2)	// Record value
	MOVW	(R20), R1	// TODO: This turns bad writes into bad reads.
	MOVW	R1, -4(R2)	// Record *slot
	// Is the buffer full?
	BEQ	R2, R23, flush
ret:
	MOVW	100(R29), R1
	MOVW	104(R29), R2
	// Do the write.
	MOVW	R21, (R20)
	RET

flush:
	// Save all general purpose registers since these could be
	// clobbered by wbBufFlush and were not saved by the caller.
	MOVW	R20, 4(R29)	// Also first argument to wbBufFlush
	MOVW	R21, 8(R29)	// Also second argument to wbBufFlush
	// R1 already saved
	// R2 already saved
	MOVW	R3, 12(R29)
	MOVW	R4, 16(R29)
	MOVW	R5, 20(R29)
	MOVW	R6, 24(R29)
	MOVW	R7, 28(R29)
	MOVW	R8, 32(R29)
	MOVW	R9, 36(R29)
	MOVW	R10, 40(R29)
	MOVW	R11, 44(R29)
	MOVW	R12, 48(R29)
	MOVW	R13, 52(R29)
	MOVW	R14, 56(R29)
	MOVW	R15, 60(R29)
	MOVW	R16, 64(R29)
	MOVW	R17, 68(R29)
	MOVW	R18, 72(R29)
	MOVW	R19, 76(R29)
	MOVW	R20, 80(R29)
	// R21 already saved
	// R22 already saved.
	MOVW	R22, 84(R29)
	// R23 is tmp register.
	MOVW	R24, 88(R29)
	MOVW	R25, 92(R29)
	// R26 is reserved by kernel.
	// R27 is reserved by kernel.
	MOVW	R28, 96(R29)
	// R29 is SP.
	// R30 is g.
	// R31 is LR, which was saved by the prologue.

	// This takes arguments R20 and R21.
	CALL	runtime·wbBufFlush(SB)

	MOVW	4(R29), R20
	MOVW	8(R29), R21
	MOVW	12(R29), R3
	MOVW	16(R29), R4
	MOVW	20(R29), R5
	MOVW	24(R29), R6
	MOVW	28(R29), R7
	MOVW	32(R29), R8
	MOVW	36(R29), R9
	MOVW	40(R29), R10
	MOVW	44(R29), R11
	MOVW	48(R29), R12
	MOVW	52(R29), R13
	MOVW	56(R29), R14
	MOVW	60(R29), R15
	MOVW	64(R29), R16
	MOVW	68(R29), R17
	MOVW	72(R29), R18
	MOVW	76(R29), R19
	MOVW	80(R29), R20
	MOVW	84(R29), R22
	MOVW	88(R29), R24
	MOVW	92(R29), R25
	MOVW	96(R29), R28
	JMP	ret

// Note: these functions use a special calling convention to save generated code space.
// Arguments are passed in registers, but the space for those arguments are allocated
// in the caller's stack frame. These stubs write the args into that stack space and
// then tail call to the corresponding runtime handler.
// The tail call makes these stubs disappear in backtraces.
TEXT runtime·panicIndex(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicIndex(SB)
TEXT runtime·panicIndexU(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicIndexU(SB)
TEXT runtime·panicSliceAlen(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSliceAlen(SB)
TEXT runtime·panicSliceAlenU(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSliceAlenU(SB)
TEXT runtime·panicSliceAcap(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSliceAcap(SB)
TEXT runtime·panicSliceAcapU(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSliceAcapU(SB)
TEXT runtime·panicSliceB(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSliceB(SB)
TEXT runtime·panicSliceBU(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSliceBU(SB)
TEXT runtime·panicSlice3Alen(SB),NOSPLIT,$0-8
	MOVW	R3, x+0(FP)
	MOVW	R4, y+4(FP)
	JMP	runtime·goPanicSlice3Alen(SB)
TEXT runtime·panicSlice3AlenU(SB),NOSPLIT,$0-8
	MOVW	R3, x+0(FP)
	MOVW	R4, y+4(FP)
	JMP	runtime·goPanicSlice3AlenU(SB)
TEXT runtime·panicSlice3Acap(SB),NOSPLIT,$0-8
	MOVW	R3, x+0(FP)
	MOVW	R4, y+4(FP)
	JMP	runtime·goPanicSlice3Acap(SB)
TEXT runtime·panicSlice3AcapU(SB),NOSPLIT,$0-8
	MOVW	R3, x+0(FP)
	MOVW	R4, y+4(FP)
	JMP	runtime·goPanicSlice3AcapU(SB)
TEXT runtime·panicSlice3B(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSlice3B(SB)
TEXT runtime·panicSlice3BU(SB),NOSPLIT,$0-8
	MOVW	R2, x+0(FP)
	MOVW	R3, y+4(FP)
	JMP	runtime·goPanicSlice3BU(SB)
TEXT runtime·panicSlice3C(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSlice3C(SB)
TEXT runtime·panicSlice3CU(SB),NOSPLIT,$0-8
	MOVW	R1, x+0(FP)
	MOVW	R2, y+4(FP)
	JMP	runtime·goPanicSlice3CU(SB)

// Extended versions for 64-bit indexes.
TEXT runtime·panicExtendIndex(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendIndex(SB)
TEXT runtime·panicExtendIndexU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendIndexU(SB)
TEXT runtime·panicExtendSliceAlen(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSliceAlen(SB)
TEXT runtime·panicExtendSliceAlenU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSliceAlenU(SB)
TEXT runtime·panicExtendSliceAcap(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSliceAcap(SB)
TEXT runtime·panicExtendSliceAcapU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSliceAcapU(SB)
TEXT runtime·panicExtendSliceB(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSliceB(SB)
TEXT runtime·panicExtendSliceBU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSliceBU(SB)
TEXT runtime·panicExtendSlice3Alen(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R3, lo+4(FP)
	MOVW	R4, y+8(FP)
	JMP	runtime·goPanicExtendSlice3Alen(SB)
TEXT runtime·panicExtendSlice3AlenU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R3, lo+4(FP)
	MOVW	R4, y+8(FP)
	JMP	runtime·goPanicExtendSlice3AlenU(SB)
TEXT runtime·panicExtendSlice3Acap(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R3, lo+4(FP)
	MOVW	R4, y+8(FP)
	JMP	runtime·goPanicExtendSlice3Acap(SB)
TEXT runtime·panicExtendSlice3AcapU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R3, lo+4(FP)
	MOVW	R4, y+8(FP)
	JMP	runtime·goPanicExtendSlice3AcapU(SB)
TEXT runtime·panicExtendSlice3B(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSlice3B(SB)
TEXT runtime·panicExtendSlice3BU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R2, lo+4(FP)
	MOVW	R3, y+8(FP)
	JMP	runtime·goPanicExtendSlice3BU(SB)
TEXT runtime·panicExtendSlice3C(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSlice3C(SB)
TEXT runtime·panicExtendSlice3CU(SB),NOSPLIT,$0-12
	MOVW	R5, hi+0(FP)
	MOVW	R1, lo+4(FP)
	MOVW	R2, y+8(FP)
	JMP	runtime·goPanicExtendSlice3CU(SB)