aboutsummaryrefslogtreecommitdiff
path: root/src/pkg/fmt/print.go
blob: c18a8ea38d2eb468248f6ac27b3b91bb48ec4308 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package fmt

import (
	"bytes"
	"io"
	"os"
	"reflect"
	"unicode"
	"utf8"
)

// Some constants in the form of bytes, to avoid string overhead.
// Needlessly fastidious, I suppose.
var (
	commaSpaceBytes = []byte(", ")
	nilAngleBytes   = []byte("<nil>")
	nilParenBytes   = []byte("(nil)")
	nilBytes        = []byte("nil")
	mapBytes        = []byte("map[")
	missingBytes    = []byte("(MISSING)")
	extraBytes      = []byte("%!(EXTRA ")
	irparenBytes    = []byte("i)")
	bytesBytes      = []byte("[]byte{")
	widthBytes      = []byte("%!(BADWIDTH)")
	precBytes       = []byte("%!(BADPREC)")
	noVerbBytes     = []byte("%!(NOVERB)")
)

// State represents the printer state passed to custom formatters.
// It provides access to the io.Writer interface plus information about
// the flags and options for the operand's format specifier.
type State interface {
	// Write is the function to call to emit formatted output to be printed.
	Write(b []byte) (ret int, err os.Error)
	// Width returns the value of the width option and whether it has been set.
	Width() (wid int, ok bool)
	// Precision returns the value of the precision option and whether it has been set.
	Precision() (prec int, ok bool)

	// Flag returns whether the flag c, a character, has been set.
	Flag(c int) bool
}

// Formatter is the interface implemented by values with a custom formatter.
// The implementation of Format may call Sprintf or Fprintf(f) etc.
// to generate its output.
type Formatter interface {
	Format(f State, c int)
}

// Stringer is implemented by any value that has a String method(),
// which defines the ``native'' format for that value.
// The String method is used to print values passed as an operand
// to a %s or %v format or to an unformatted printer such as Print.
type Stringer interface {
	String() string
}

// GoStringer is implemented by any value that has a GoString() method,
// which defines the Go syntax for that value.
// The GoString method is used to print values passed as an operand
// to a %#v format.
type GoStringer interface {
	GoString() string
}

type pp struct {
	n       int
	buf     bytes.Buffer
	runeBuf [utf8.UTFMax]byte
	fmt     fmt
}

// A cache holds a set of reusable objects.
// The buffered channel holds the currently available objects.
// If more are needed, the cache creates them by calling new.
type cache struct {
	saved chan interface{}
	new   func() interface{}
}

func (c *cache) put(x interface{}) {
	select {
	case c.saved <- x:
		// saved in cache
	default:
		// discard
	}
}

func (c *cache) get() interface{} {
	select {
	case x := <-c.saved:
		return x // reused from cache
	default:
		return c.new()
	}
	panic("not reached")
}

func newCache(f func() interface{}) *cache {
	return &cache{make(chan interface{}, 100), f}
}

var ppFree = newCache(func() interface{} { return new(pp) })

// Allocate a new pp struct or grab a cached one.
func newPrinter() *pp {
	p := ppFree.get().(*pp)
	p.fmt.init(&p.buf)
	return p
}

// Save used pp structs in ppFree; avoids an allocation per invocation.
func (p *pp) free() {
	// Don't hold on to pp structs with large buffers.
	if cap(p.buf.Bytes()) > 1024 {
		return
	}
	p.buf.Reset()
	ppFree.put(p)
}

func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }

func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }

func (p *pp) Flag(b int) bool {
	switch b {
	case '-':
		return p.fmt.minus
	case '+':
		return p.fmt.plus
	case '#':
		return p.fmt.sharp
	case ' ':
		return p.fmt.space
	case '0':
		return p.fmt.zero
	}
	return false
}

func (p *pp) add(c int) {
	p.buf.WriteRune(c)
}

// Implement Write so we can call Fprintf on a pp (through State), for
// recursive use in custom verbs.
func (p *pp) Write(b []byte) (ret int, err os.Error) {
	return p.buf.Write(b)
}

// These routines end in 'f' and take a format string.

// Fprintf formats according to a format specifier and writes to w.
// It returns the number of bytes written and any write error encountered.
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) {
	p := newPrinter()
	p.doPrintf(format, a)
	n64, error := p.buf.WriteTo(w)
	p.free()
	return int(n64), error
}

// Printf formats according to a format specifier and writes to standard output.
// It returns the number of bytes written and any write error encountered.
func Printf(format string, a ...interface{}) (n int, errno os.Error) {
	n, errno = Fprintf(os.Stdout, format, a...)
	return n, errno
}

// Sprintf formats according to a format specifier and returns the resulting string.
func Sprintf(format string, a ...interface{}) string {
	p := newPrinter()
	p.doPrintf(format, a)
	s := p.buf.String()
	p.free()
	return s
}

// Errorf formats according to a format specifier and returns the string 
// converted to an os.ErrorString, which satisfies the os.Error interface.
func Errorf(format string, a ...interface{}) os.Error {
	return os.ErrorString(Sprintf(format, a...))
}

// These routines do not take a format string

// Fprint formats using the default formats for its operands and writes to w.
// Spaces are added between operands when neither is a string.
// It returns the number of bytes written and any write error encountered.
func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) {
	p := newPrinter()
	p.doPrint(a, false, false)
	n64, error := p.buf.WriteTo(w)
	p.free()
	return int(n64), error
}

// Print formats using the default formats for its operands and writes to standard output.
// Spaces are added between operands when neither is a string.
// It returns the number of bytes written and any write error encountered.
func Print(a ...interface{}) (n int, errno os.Error) {
	n, errno = Fprint(os.Stdout, a...)
	return n, errno
}

// Sprint formats using the default formats for its operands and returns the resulting string.
// Spaces are added between operands when neither is a string.
func Sprint(a ...interface{}) string {
	p := newPrinter()
	p.doPrint(a, false, false)
	s := p.buf.String()
	p.free()
	return s
}

// These routines end in 'ln', do not take a format string,
// always add spaces between operands, and add a newline
// after the last operand.

// Fprintln formats using the default formats for its operands and writes to w.
// Spaces are always added between operands and a newline is appended.
// It returns the number of bytes written and any write error encountered.
func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) {
	p := newPrinter()
	p.doPrint(a, true, true)
	n64, error := p.buf.WriteTo(w)
	p.free()
	return int(n64), error
}

// Println formats using the default formats for its operands and writes to standard output.
// Spaces are always added between operands and a newline is appended.
// It returns the number of bytes written and any write error encountered.
func Println(a ...interface{}) (n int, errno os.Error) {
	n, errno = Fprintln(os.Stdout, a...)
	return n, errno
}

// Sprintln formats using the default formats for its operands and returns the resulting string.
// Spaces are always added between operands and a newline is appended.
func Sprintln(a ...interface{}) string {
	p := newPrinter()
	p.doPrint(a, true, true)
	s := p.buf.String()
	p.free()
	return s
}


// Get the i'th arg of the struct value.
// If the arg itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v reflect.Value, i int) reflect.Value {
	val := v.Field(i)
	if i := val; i.Kind() == reflect.Interface {
		if inter := i.Interface(); inter != nil {
			return reflect.ValueOf(inter)
		}
	}
	return val
}

// Convert ASCII to integer.  n is 0 (and got is false) if no number present.
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
	if start >= end {
		return 0, false, end
	}
	for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
		num = num*10 + int(s[newi]-'0')
		isnum = true
	}
	return
}

func (p *pp) unknownType(v interface{}) {
	if v == nil {
		p.buf.Write(nilAngleBytes)
		return
	}
	p.buf.WriteByte('?')
	p.buf.WriteString(reflect.TypeOf(v).String())
	p.buf.WriteByte('?')
}

func (p *pp) badVerb(verb int, val interface{}) {
	p.add('%')
	p.add('!')
	p.add(verb)
	p.add('(')
	if val == nil {
		p.buf.Write(nilAngleBytes)
	} else {
		p.buf.WriteString(reflect.TypeOf(val).String())
		p.add('=')
		p.printField(val, 'v', false, false, 0)
	}
	p.add(')')
}

func (p *pp) fmtBool(v bool, verb int, value interface{}) {
	switch verb {
	case 't', 'v':
		p.fmt.fmt_boolean(v)
	default:
		p.badVerb(verb, value)
	}
}

// fmtC formats a rune for the 'c' format.
func (p *pp) fmtC(c int64) {
	rune := int(c) // Check for overflow.
	if int64(rune) != c {
		rune = utf8.RuneError
	}
	w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], rune)
	p.fmt.pad(p.runeBuf[0:w])
}

func (p *pp) fmtInt64(v int64, verb int, value interface{}) {
	switch verb {
	case 'b':
		p.fmt.integer(v, 2, signed, ldigits)
	case 'c':
		p.fmtC(v)
	case 'd', 'v':
		p.fmt.integer(v, 10, signed, ldigits)
	case 'o':
		p.fmt.integer(v, 8, signed, ldigits)
	case 'q':
		if 0 <= v && v <= unicode.MaxRune {
			p.fmt.fmt_qc(v)
		} else {
			p.badVerb(verb, value)
		}
	case 'x':
		p.fmt.integer(v, 16, signed, ldigits)
	case 'U':
		p.fmtUnicode(v)
	case 'X':
		p.fmt.integer(v, 16, signed, udigits)
	default:
		p.badVerb(verb, value)
	}
}

// fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
// not, as requested, by temporarily setting the sharp flag.
func (p *pp) fmt0x64(v uint64, leading0x bool) {
	sharp := p.fmt.sharp
	p.fmt.sharp = leading0x
	p.fmt.integer(int64(v), 16, unsigned, ldigits)
	p.fmt.sharp = sharp
}

// fmtUnicode formats a uint64 in U+1234 form by
// temporarily turning on the unicode flag and tweaking the precision.
func (p *pp) fmtUnicode(v int64) {
	precPresent := p.fmt.precPresent
	prec := p.fmt.prec
	if !precPresent {
		// If prec is already set, leave it alone; otherwise 4 is minimum.
		p.fmt.prec = 4
		p.fmt.precPresent = true
	}
	p.fmt.unicode = true // turn on U+
	p.fmt.integer(int64(v), 16, unsigned, udigits)
	p.fmt.unicode = false
	p.fmt.prec = prec
	p.fmt.precPresent = precPresent
}

func (p *pp) fmtUint64(v uint64, verb int, goSyntax bool, value interface{}) {
	switch verb {
	case 'b':
		p.fmt.integer(int64(v), 2, unsigned, ldigits)
	case 'c':
		p.fmtC(int64(v))
	case 'd':
		p.fmt.integer(int64(v), 10, unsigned, ldigits)
	case 'v':
		if goSyntax {
			p.fmt0x64(v, true)
		} else {
			p.fmt.integer(int64(v), 10, unsigned, ldigits)
		}
	case 'o':
		p.fmt.integer(int64(v), 8, unsigned, ldigits)
	case 'q':
		if 0 <= v && v <= unicode.MaxRune {
			p.fmt.fmt_qc(int64(v))
		} else {
			p.badVerb(verb, value)
		}
	case 'x':
		p.fmt.integer(int64(v), 16, unsigned, ldigits)
	case 'X':
		p.fmt.integer(int64(v), 16, unsigned, udigits)
	case 'U':
		p.fmtUnicode(int64(v))
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtFloat32(v float32, verb int, value interface{}) {
	switch verb {
	case 'b':
		p.fmt.fmt_fb32(v)
	case 'e':
		p.fmt.fmt_e32(v)
	case 'E':
		p.fmt.fmt_E32(v)
	case 'f':
		p.fmt.fmt_f32(v)
	case 'g', 'v':
		p.fmt.fmt_g32(v)
	case 'G':
		p.fmt.fmt_G32(v)
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtFloat64(v float64, verb int, value interface{}) {
	switch verb {
	case 'b':
		p.fmt.fmt_fb64(v)
	case 'e':
		p.fmt.fmt_e64(v)
	case 'E':
		p.fmt.fmt_E64(v)
	case 'f':
		p.fmt.fmt_f64(v)
	case 'g', 'v':
		p.fmt.fmt_g64(v)
	case 'G':
		p.fmt.fmt_G64(v)
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) {
	switch verb {
	case 'e', 'E', 'f', 'F', 'g', 'G':
		p.fmt.fmt_c64(v, verb)
	case 'v':
		p.fmt.fmt_c64(v, 'g')
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) {
	switch verb {
	case 'e', 'E', 'f', 'F', 'g', 'G':
		p.fmt.fmt_c128(v, verb)
	case 'v':
		p.fmt.fmt_c128(v, 'g')
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtString(v string, verb int, goSyntax bool, value interface{}) {
	switch verb {
	case 'v':
		if goSyntax {
			p.fmt.fmt_q(v)
		} else {
			p.fmt.fmt_s(v)
		}
	case 's':
		p.fmt.fmt_s(v)
	case 'x':
		p.fmt.fmt_sx(v)
	case 'X':
		p.fmt.fmt_sX(v)
	case 'q':
		p.fmt.fmt_q(v)
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtBytes(v []byte, verb int, goSyntax bool, depth int, value interface{}) {
	if verb == 'v' || verb == 'd' {
		if goSyntax {
			p.buf.Write(bytesBytes)
		} else {
			p.buf.WriteByte('[')
		}
		for i, c := range v {
			if i > 0 {
				if goSyntax {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			p.printField(c, 'v', p.fmt.plus, goSyntax, depth+1)
		}
		if goSyntax {
			p.buf.WriteByte('}')
		} else {
			p.buf.WriteByte(']')
		}
		return
	}
	s := string(v)
	switch verb {
	case 's':
		p.fmt.fmt_s(s)
	case 'x':
		p.fmt.fmt_sx(s)
	case 'X':
		p.fmt.fmt_sX(s)
	case 'q':
		p.fmt.fmt_q(s)
	default:
		p.badVerb(verb, value)
	}
}

func (p *pp) fmtPointer(field interface{}, value reflect.Value, verb int, goSyntax bool) {
	var u uintptr
	switch value.Kind() {
	case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
		u = value.Pointer()
	default:
		p.badVerb(verb, field)
		return
	}
	if goSyntax {
		p.add('(')
		p.buf.WriteString(reflect.TypeOf(field).String())
		p.add(')')
		p.add('(')
		if u == 0 {
			p.buf.Write(nilBytes)
		} else {
			p.fmt0x64(uint64(u), true)
		}
		p.add(')')
	} else {
		p.fmt0x64(uint64(u), !p.fmt.sharp)
	}
}

var (
	intBits     = reflect.TypeOf(0).Bits()
	floatBits   = reflect.TypeOf(0.0).Bits()
	complexBits = reflect.TypeOf(1i).Bits()
	uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
)

func (p *pp) printField(field interface{}, verb int, plus, goSyntax bool, depth int) (wasString bool) {
	if field == nil {
		if verb == 'T' || verb == 'v' {
			p.buf.Write(nilAngleBytes)
		} else {
			p.badVerb(verb, field)
		}
		return false
	}

	// Special processing considerations.
	// %T (the value's type) and %p (its address) are special; we always do them first.
	switch verb {
	case 'T':
		p.printField(reflect.TypeOf(field).String(), 's', false, false, 0)
		return false
	case 'p':
		p.fmtPointer(field, reflect.ValueOf(field), verb, goSyntax)
		return false
	}
	// Is it a Formatter?
	if formatter, ok := field.(Formatter); ok {
		formatter.Format(p, verb)
		return false // this value is not a string

	}
	// Must not touch flags before Formatter looks at them.
	if plus {
		p.fmt.plus = false
	}
	// If we're doing Go syntax and the field knows how to supply it, take care of it now.
	if goSyntax {
		p.fmt.sharp = false
		if stringer, ok := field.(GoStringer); ok {
			// Print the result of GoString unadorned.
			p.fmtString(stringer.GoString(), 's', false, field)
			return false // this value is not a string
		}
	} else {
		// Is it a Stringer?
		if stringer, ok := field.(Stringer); ok {
			p.printField(stringer.String(), verb, plus, false, depth)
			return false // this value is not a string
		}
	}

	// Some types can be done without reflection.
	switch f := field.(type) {
	case bool:
		p.fmtBool(f, verb, field)
		return false
	case float32:
		p.fmtFloat32(f, verb, field)
		return false
	case float64:
		p.fmtFloat64(f, verb, field)
		return false
	case complex64:
		p.fmtComplex64(complex64(f), verb, field)
		return false
	case complex128:
		p.fmtComplex128(f, verb, field)
		return false
	case int:
		p.fmtInt64(int64(f), verb, field)
		return false
	case int8:
		p.fmtInt64(int64(f), verb, field)
		return false
	case int16:
		p.fmtInt64(int64(f), verb, field)
		return false
	case int32:
		p.fmtInt64(int64(f), verb, field)
		return false
	case int64:
		p.fmtInt64(f, verb, field)
		return false
	case uint:
		p.fmtUint64(uint64(f), verb, goSyntax, field)
		return false
	case uint8:
		p.fmtUint64(uint64(f), verb, goSyntax, field)
		return false
	case uint16:
		p.fmtUint64(uint64(f), verb, goSyntax, field)
		return false
	case uint32:
		p.fmtUint64(uint64(f), verb, goSyntax, field)
		return false
	case uint64:
		p.fmtUint64(f, verb, goSyntax, field)
		return false
	case uintptr:
		p.fmtUint64(uint64(f), verb, goSyntax, field)
		return false
	case string:
		p.fmtString(f, verb, goSyntax, field)
		return verb == 's' || verb == 'v'
	case []byte:
		p.fmtBytes(f, verb, goSyntax, depth, field)
		return verb == 's'
	}

	// Need to use reflection
	value := reflect.ValueOf(field)

BigSwitch:
	switch f := value; f.Kind() {
	case reflect.Bool:
		p.fmtBool(f.Bool(), verb, field)
	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
		p.fmtInt64(f.Int(), verb, field)
	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
		p.fmtUint64(uint64(f.Uint()), verb, goSyntax, field)
	case reflect.Float32, reflect.Float64:
		if f.Type().Size() == 4 {
			p.fmtFloat32(float32(f.Float()), verb, field)
		} else {
			p.fmtFloat64(float64(f.Float()), verb, field)
		}
	case reflect.Complex64, reflect.Complex128:
		if f.Type().Size() == 8 {
			p.fmtComplex64(complex64(f.Complex()), verb, field)
		} else {
			p.fmtComplex128(complex128(f.Complex()), verb, field)
		}
	case reflect.String:
		p.fmtString(f.String(), verb, goSyntax, field)
	case reflect.Map:
		if goSyntax {
			p.buf.WriteString(f.Type().String())
			p.buf.WriteByte('{')
		} else {
			p.buf.Write(mapBytes)
		}
		keys := f.MapKeys()
		for i, key := range keys {
			if i > 0 {
				if goSyntax {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			p.printField(key.Interface(), verb, plus, goSyntax, depth+1)
			p.buf.WriteByte(':')
			p.printField(f.MapIndex(key).Interface(), verb, plus, goSyntax, depth+1)
		}
		if goSyntax {
			p.buf.WriteByte('}')
		} else {
			p.buf.WriteByte(']')
		}
	case reflect.Struct:
		if goSyntax {
			p.buf.WriteString(reflect.TypeOf(field).String())
		}
		p.add('{')
		v := f
		t := v.Type()
		for i := 0; i < v.NumField(); i++ {
			if i > 0 {
				if goSyntax {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			if plus || goSyntax {
				if f := t.Field(i); f.Name != "" {
					p.buf.WriteString(f.Name)
					p.buf.WriteByte(':')
				}
			}
			p.printField(getField(v, i).Interface(), verb, plus, goSyntax, depth+1)
		}
		p.buf.WriteByte('}')
	case reflect.Interface:
		value := f.Elem()
		if !value.IsValid() {
			if goSyntax {
				p.buf.WriteString(reflect.TypeOf(field).String())
				p.buf.Write(nilParenBytes)
			} else {
				p.buf.Write(nilAngleBytes)
			}
		} else {
			return p.printField(value.Interface(), verb, plus, goSyntax, depth+1)
		}
	case reflect.Array, reflect.Slice:
		// Byte slices are special.
		if f.Type().Elem().Kind() == reflect.Uint8 {
			// We know it's a slice of bytes, but we also know it does not have static type
			// []byte, or it would have been caught above.  Therefore we cannot convert
			// it directly in the (slightly) obvious way: f.Interface().([]byte); it doesn't have
			// that type, and we can't write an expression of the right type and do a
			// conversion because we don't have a static way to write the right type.
			// So we build a slice by hand.  This is a rare case but it would be nice
			// if reflection could help a little more.
			bytes := make([]byte, f.Len())
			for i := range bytes {
				bytes[i] = byte(f.Index(i).Uint())
			}
			p.fmtBytes(bytes, verb, goSyntax, depth, field)
			return verb == 's'
		}
		if goSyntax {
			p.buf.WriteString(reflect.TypeOf(field).String())
			p.buf.WriteByte('{')
		} else {
			p.buf.WriteByte('[')
		}
		for i := 0; i < f.Len(); i++ {
			if i > 0 {
				if goSyntax {
					p.buf.Write(commaSpaceBytes)
				} else {
					p.buf.WriteByte(' ')
				}
			}
			p.printField(f.Index(i).Interface(), verb, plus, goSyntax, depth+1)
		}
		if goSyntax {
			p.buf.WriteByte('}')
		} else {
			p.buf.WriteByte(']')
		}
	case reflect.Ptr:
		v := f.Pointer()
		// pointer to array or slice or struct?  ok at top level
		// but not embedded (avoid loops)
		if v != 0 && depth == 0 {
			switch a := f.Elem(); a.Kind() {
			case reflect.Array, reflect.Slice:
				p.buf.WriteByte('&')
				p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
				break BigSwitch
			case reflect.Struct:
				p.buf.WriteByte('&')
				p.printField(a.Interface(), verb, plus, goSyntax, depth+1)
				break BigSwitch
			}
		}
		if goSyntax {
			p.buf.WriteByte('(')
			p.buf.WriteString(reflect.TypeOf(field).String())
			p.buf.WriteByte(')')
			p.buf.WriteByte('(')
			if v == 0 {
				p.buf.Write(nilBytes)
			} else {
				p.fmt0x64(uint64(v), true)
			}
			p.buf.WriteByte(')')
			break
		}
		if v == 0 {
			p.buf.Write(nilAngleBytes)
			break
		}
		p.fmt0x64(uint64(v), true)
	case reflect.Chan, reflect.Func, reflect.UnsafePointer:
		p.fmtPointer(field, value, verb, goSyntax)
	default:
		p.unknownType(f)
	}
	return false
}

// intFromArg gets the fieldnumth element of a. On return, isInt reports whether the argument has type int.
func intFromArg(a []interface{}, end, i, fieldnum int) (num int, isInt bool, newi, newfieldnum int) {
	newi, newfieldnum = end, fieldnum
	if i < end && fieldnum < len(a) {
		num, isInt = a[fieldnum].(int)
		newi, newfieldnum = i+1, fieldnum+1
	}
	return
}

func (p *pp) doPrintf(format string, a []interface{}) {
	end := len(format)
	fieldnum := 0 // we process one field per non-trivial format
	for i := 0; i < end; {
		lasti := i
		for i < end && format[i] != '%' {
			i++
		}
		if i > lasti {
			p.buf.WriteString(format[lasti:i])
		}
		if i >= end {
			// done processing format string
			break
		}

		// Process one verb
		i++
		// flags and widths
		p.fmt.clearflags()
	F:
		for ; i < end; i++ {
			switch format[i] {
			case '#':
				p.fmt.sharp = true
			case '0':
				p.fmt.zero = true
			case '+':
				p.fmt.plus = true
			case '-':
				p.fmt.minus = true
			case ' ':
				p.fmt.space = true
			default:
				break F
			}
		}
		// do we have width?
		if i < end && format[i] == '*' {
			p.fmt.wid, p.fmt.widPresent, i, fieldnum = intFromArg(a, end, i, fieldnum)
			if !p.fmt.widPresent {
				p.buf.Write(widthBytes)
			}
		} else {
			p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
		}
		// do we have precision?
		if i < end && format[i] == '.' {
			if format[i+1] == '*' {
				p.fmt.prec, p.fmt.precPresent, i, fieldnum = intFromArg(a, end, i+1, fieldnum)
				if !p.fmt.precPresent {
					p.buf.Write(precBytes)
				}
			} else {
				p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end)
			}
		}
		if i >= end {
			p.buf.Write(noVerbBytes)
			continue
		}
		c, w := utf8.DecodeRuneInString(format[i:])
		i += w
		// percent is special - absorbs no operand
		if c == '%' {
			p.buf.WriteByte('%') // We ignore width and prec.
			continue
		}
		if fieldnum >= len(a) { // out of operands
			p.buf.WriteByte('%')
			p.add(c)
			p.buf.Write(missingBytes)
			continue
		}
		field := a[fieldnum]
		fieldnum++

		goSyntax := c == 'v' && p.fmt.sharp
		plus := c == 'v' && p.fmt.plus
		p.printField(field, c, plus, goSyntax, 0)
	}

	if fieldnum < len(a) {
		p.buf.Write(extraBytes)
		for ; fieldnum < len(a); fieldnum++ {
			field := a[fieldnum]
			if field != nil {
				p.buf.WriteString(reflect.TypeOf(field).String())
				p.buf.WriteByte('=')
			}
			p.printField(field, 'v', false, false, 0)
			if fieldnum+1 < len(a) {
				p.buf.Write(commaSpaceBytes)
			}
		}
		p.buf.WriteByte(')')
	}
}

func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
	prevString := false
	for fieldnum := 0; fieldnum < len(a); fieldnum++ {
		p.fmt.clearflags()
		// always add spaces if we're doing println
		field := a[fieldnum]
		if fieldnum > 0 {
			isString := field != nil && reflect.TypeOf(field).Kind() == reflect.String
			if addspace || !isString && !prevString {
				p.buf.WriteByte(' ')
			}
		}
		prevString = p.printField(field, 'v', false, false, 0)
	}
	if addnewline {
		p.buf.WriteByte('\n')
	}
}