aboutsummaryrefslogtreecommitdiff
path: root/src/math/big/float.go
blob: 47755f2719296c909981a071ab3eb105323e1ba6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements multi-precision floating-point numbers.
// Like in the GNU MPFR library (http://www.mpfr.org/), operands
// can be of mixed precision. Unlike MPFR, the rounding mode is
// not specified with each operation, but with each operand. The
// rounding mode of the result operand determines the rounding
// mode of an operation. This is a from-scratch implementation.

// CAUTION: WORK IN PROGRESS - USE AT YOUR OWN RISK.

package big

import (
	"fmt"
	"math"
)

const debugFloat = true // enable for debugging

// A Float represents a multi-precision floating point number of the form
//
//   sign × mantissa × 2**exponent
//
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp (with the
// exception of 0 and Inf which have a 0 mantissa and special exponents).
//
// Each Float value also has a precision, rounding mode, and accuracy.
//
// The precision is the maximum number of mantissa bits available to
// represent the value. The rounding mode specifies how a result should
// be rounded to fit into the mantissa bits, and accuracy describes the
// rounding error with respect to the exact result.
//
// All operations, including setters, that specify a *Float for the result,
// usually via the receiver, round their result to the result's precision
// and according to its rounding mode, unless specified otherwise. If the
// result precision is 0 (see below), it is set to the precision of the
// argument with the largest precision value before any rounding takes
// place, and the rounding mode remains unchanged. Thus, uninitialized Floats
// provided as result arguments will have their precision set to a reasonable
// value determined by the operands and their mode is the zero value for
// RoundingMode (ToNearestEven).
//
// By setting the desired precision to 24 or 53 and using ToNearestEven
// rounding, Float operations produce the same results as the corresponding
// float32 or float64 IEEE-754 arithmetic for normalized operands (no NaNs
// or denormalized numbers). Additionally, positive and negative zeros and
// infinities are fully supported.
//
// The zero (uninitialized) value for a Float is ready to use and represents
// the number +0.0 exactly, with precision 0 and rounding mode ToNearestEven.
//
type Float struct {
	mode RoundingMode
	acc  Accuracy
	neg  bool
	mant nat
	exp  int32
	prec uint // TODO(gri) make this a 32bit field
}

// TODO(gri) provide a couple of Example tests showing typical Float intialization
// and use.

// Internal representation: The mantissa bits x.mant of a Float x are stored
// in a nat slice long enough to hold up to x.prec bits; the slice may (but
// doesn't have to) be shorter if the mantissa contains trailing 0 bits.
// Unless x is a zero or an infinity, x.mant is normalized such that the
// msb of x.mant == 1 (i.e., the msb is shifted all the way "to the left").
// Thus, if the mantissa has trailing 0 bits or x.prec is not a multiple
// of the the Word size _W, x.mant[0] has trailing zero bits. Zero and Inf
// values have an empty mantissa and a 0 or infExp exponent, respectively.

const (
	MaxExp = math.MaxInt32 // largest supported exponent magnitude
	infExp = -MaxExp - 1   // exponent for Inf values
)

// NewInf returns a new infinite Float value with value +Inf (sign >= 0),
// or -Inf (sign < 0).
func NewInf(sign int) *Float {
	return &Float{neg: sign < 0, exp: infExp}
}

// Accuracy describes the rounding error produced by the most recent
// operation that generated a Float value, relative to the exact value:
//
//  -1: below exact value
//   0: exact value
//  +1: above exact value
//
type Accuracy int8

// Constants describing the Accuracy of a Float.
const (
	Below Accuracy = -1
	Exact Accuracy = 0
	Above Accuracy = +1
)

func (a Accuracy) String() string {
	switch {
	case a < 0:
		return "below"
	default:
		return "exact"
	case a > 0:
		return "above"
	}
}

// RoundingMode determines how a Float value is rounded to the
// desired precision. Rounding may change the Float value; the
// rounding error is described by the Float's Accuracy.
type RoundingMode uint8

// The following rounding modes are supported.
const (
	ToNearestEven RoundingMode = iota // == IEEE 754-2008 roundTiesToEven
	ToNearestAway                     // == IEEE 754-2008 roundTiesToAway
	ToZero                            // == IEEE 754-2008 roundTowardZero
	AwayFromZero                      // no IEEE 754-2008 equivalent
	ToNegativeInf                     // == IEEE 754-2008 roundTowardNegative
	ToPositiveInf                     // == IEEE 754-2008 roundTowardPositive
)

func (mode RoundingMode) String() string {
	switch mode {
	case ToNearestEven:
		return "ToNearestEven"
	case ToNearestAway:
		return "ToNearestAway"
	case ToZero:
		return "ToZero"
	case AwayFromZero:
		return "AwayFromZero"
	case ToNegativeInf:
		return "ToNegativeInf"
	case ToPositiveInf:
		return "ToPositiveInf"
	}
	panic("unreachable")
}

// SetPrec sets z's precision to prec and returns the (possibly) rounded
// value of z. Rounding occurs according to z's rounding mode if the mantissa
// cannot be represented in prec bits without loss of precision.
func (z *Float) SetPrec(prec uint) *Float {
	old := z.prec
	z.acc = Exact
	z.prec = prec
	if prec < old {
		z.round(0)
	}
	return z
}

// SetMode sets z's rounding mode to mode and returns an exact z.
// z remains unchanged otherwise.
func (z *Float) SetMode(mode RoundingMode) *Float {
	z.acc = Exact // TODO(gri) should we not do this? what's the general rule for setting accuracy?
	z.mode = mode
	return z
}

// Prec returns the mantissa precision of x in bits.
// The result may be 0 for |x| == 0 or |x| == Inf.
func (x *Float) Prec() uint {
	return uint(x.prec)
}

// Acc returns the accuracy of x produced by the most recent operation.
func (x *Float) Acc() Accuracy {
	return x.acc
}

// Mode returns the rounding mode of x.
func (x *Float) Mode() RoundingMode {
	return x.mode
}

// Sign returns:
//
//	-1 if x <  0
//	 0 if x == 0 or x == -0
//	+1 if x >  0
//
func (x *Float) Sign() int {
	s := 0
	if len(x.mant) != 0 || x.exp == infExp {
		s = 1 // non-zero x
	}
	if x.neg {
		s = -s
	}
	return s
}

// MantExp breaks x into its mantissa and exponent components.
// It returns mant and exp satisfying x == mant × 2**exp, with
// the absolute value of mant satisfying 0.5 <= |mant| < 1.0.
// mant has the same precision and rounding mode as x.
//
// Special cases are:
//
//	(  ±0).MantExp() =   ±0, 0
//	(±Inf).MantExp() = ±Inf, 0
//
// MantExp does not modify x; the result mant is a new Float.
func (x *Float) MantExp() (mant *Float, exp int) {
	mant = new(Float).Copy(x)
	if x.exp != infExp {
		mant.exp = 0
		exp = int(x.exp)
	}
	return
}

// SetMantExp is the inverse of MantExp. It sets z to mant × 2**exp and
// and returns z. The result z has the same precision and rounding mode
// as mant.
//
// Special cases are:
//
//	z.SetMantExp(  ±0, exp) =   ±0
//	z.SetMantExp(±Inf, exp) = ±Inf
//
// The result is ±Inf if the magnitude of exp is > MaxExp.
func (z *Float) SetMantExp(mant *Float, exp int) *Float {
	z.Copy(mant)
	if len(z.mant) == 0 || z.exp == infExp {
		return z
	}
	z.setExp(int64(exp))
	return z
}

// IsInt reports whether x is an integer.
// ±Inf are not considered integers.
func (x *Float) IsInt() bool {
	if debugFloat {
		validate(x)
	}
	// pick off easy cases
	if x.exp <= 0 {
		// |x| < 1 || |x| == Inf
		return len(x.mant) == 0 && x.exp != infExp
	}
	// x.exp > 0
	return x.prec <= uint(x.exp) || x.minPrec() <= uint(x.exp) // not enough bits for fractional mantissa
}

// IsInf reports whether x is an infinity, according to sign.
// If sign > 0, IsInf reports whether x is positive infinity.
// If sign < 0, IsInf reports whether x is negative infinity.
// If sign == 0, IsInf reports whether x is either infinity.
func (x *Float) IsInf(sign int) bool {
	return x.exp == infExp && (sign == 0 || x.neg == (sign < 0))
}

// setExp sets the exponent for z.
// If the exponent's magnitude is too large, z becomes ±Inf.
func (z *Float) setExp(e int64) {
	if -MaxExp <= e && e <= MaxExp {
		if len(z.mant) == 0 {
			e = 0
		}
		z.exp = int32(e)
		return
	}
	// Inf
	z.mant = z.mant[:0]
	z.exp = infExp
}

// debugging support
func validate(x *Float) {
	const msb = 1 << (_W - 1)
	m := len(x.mant)
	if m == 0 {
		// 0.0 or Inf
		if x.exp != 0 && x.exp != infExp {
			panic(fmt.Sprintf("%empty matissa with invalid exponent %d", x.exp))
		}
		return
	}
	if x.mant[m-1]&msb == 0 {
		panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
	}
	if x.prec <= 0 {
		panic(fmt.Sprintf("invalid precision %d", x.prec))
	}
}

// round rounds z according to z.mode to z.prec bits and sets z.acc accordingly.
// sbit must be 0 or 1 and summarizes any "sticky bit" information one might
// have before calling round. z's mantissa must be normalized (with the msb set)
// or empty.
//
// CAUTION: The rounding modes ToNegativeInf, ToPositiveInf are affected by the
// sign of z. For correct rounding, the sign of z must be set correctly before
// calling round.
func (z *Float) round(sbit uint) {
	if debugFloat {
		validate(z)
	}

	z.acc = Exact

	// handle zero and Inf
	m := uint(len(z.mant)) // present mantissa length in words
	if m == 0 {
		if z.exp != infExp {
			z.exp = 0
		}
		return
	}
	// m > 0 implies z.prec > 0 (checked by validate)

	bits := m * _W // present mantissa bits
	if bits <= z.prec {
		// mantissa fits => nothing to do
		return
	}
	// bits > z.prec

	n := (z.prec + (_W - 1)) / _W // mantissa length in words for desired precision

	// Rounding is based on two bits: the rounding bit (rbit) and the
	// sticky bit (sbit). The rbit is the bit immediately before the
	// z.prec leading mantissa bits (the "0.5"). The sbit is set if any
	// of the bits before the rbit are set (the "0.25", "0.125", etc.):
	//
	//   rbit  sbit  => "fractional part"
	//
	//   0     0        == 0
	//   0     1        >  0  , < 0.5
	//   1     0        == 0.5
	//   1     1        >  0.5, < 1.0

	// bits > z.prec: mantissa too large => round
	r := bits - z.prec - 1 // rounding bit position; r >= 0
	rbit := z.mant.bit(r)  // rounding bit
	if sbit == 0 {
		sbit = z.mant.sticky(r)
	}
	if debugFloat && sbit&^1 != 0 {
		panic(fmt.Sprintf("invalid sbit %#x", sbit))
	}

	// convert ToXInf rounding modes
	mode := z.mode
	switch mode {
	case ToNegativeInf:
		mode = ToZero
		if z.neg {
			mode = AwayFromZero
		}
	case ToPositiveInf:
		mode = AwayFromZero
		if z.neg {
			mode = ToZero
		}
	}

	// cut off extra words
	if m > n {
		copy(z.mant, z.mant[m-n:]) // move n last words to front
		z.mant = z.mant[:n]
	}

	// determine number of trailing zero bits t
	t := n*_W - z.prec // 0 <= t < _W
	lsb := Word(1) << t

	// make rounding decision
	// TODO(gri) This can be simplified (see roundBits in float_test.go).
	switch mode {
	case ToZero:
		// nothing to do
	case ToNearestEven, ToNearestAway:
		if rbit == 0 {
			// rounding bits == 0b0x
			mode = ToZero
		} else if sbit == 1 {
			// rounding bits == 0b11
			mode = AwayFromZero
		}
	case AwayFromZero:
		if rbit|sbit == 0 {
			mode = ToZero
		}
	default:
		// ToXInf modes have been converted to ToZero or AwayFromZero
		panic("unreachable")
	}

	// round and determine accuracy
	switch mode {
	case ToZero:
		if rbit|sbit != 0 {
			z.acc = Below
		}

	case ToNearestEven, ToNearestAway:
		if debugFloat && rbit != 1 {
			panic("internal error in rounding")
		}
		if mode == ToNearestEven && sbit == 0 && z.mant[0]&lsb == 0 {
			z.acc = Below
			break
		}
		// mode == ToNearestAway || sbit == 1 || z.mant[0]&lsb != 0
		fallthrough

	case AwayFromZero:
		// add 1 to mantissa
		if addVW(z.mant, z.mant, lsb) != 0 {
			// overflow => shift mantissa right by 1 and add msb
			shrVU(z.mant, z.mant, 1)
			z.mant[n-1] |= 1 << (_W - 1)
			// adjust exponent
			z.exp++
		}
		z.acc = Above
	}

	// zero out trailing bits in least-significant word
	z.mant[0] &^= lsb - 1

	// update accuracy
	if z.neg {
		z.acc = -z.acc
	}

	if debugFloat {
		validate(z)
	}

	return
}

// nlz returns the number of leading zero bits in x.
func nlz(x Word) uint {
	return _W - uint(bitLen(x))
}

func nlz64(x uint64) uint {
	// TODO(gri) this can be done more nicely
	if _W == 32 {
		if x>>32 == 0 {
			return 32 + nlz(Word(x))
		}
		return nlz(Word(x >> 32))
	}
	if _W == 64 {
		return nlz(Word(x))
	}
	panic("unreachable")
}

func (z *Float) setBits64(neg bool, x uint64) *Float {
	if z.prec == 0 {
		z.prec = 64
	}
	z.acc = Exact
	z.neg = neg
	if x == 0 {
		z.mant = z.mant[:0]
		z.exp = 0
		return z
	}
	// x != 0
	s := nlz64(x)
	z.mant = z.mant.setUint64(x << s)
	z.exp = int32(64 - s) // always fits
	if z.prec < 64 {
		z.round(0)
	}
	return z
}

// SetUint64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetUint64(x uint64) *Float {
	return z.setBits64(false, x)
}

// SetInt64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 64 (and rounding will have
// no effect).
func (z *Float) SetInt64(x int64) *Float {
	u := x
	if u < 0 {
		u = -u
	}
	// We cannot simply call z.SetUint64(uint64(u)) and change
	// the sign afterwards because the sign affects rounding.
	return z.setBits64(x < 0, uint64(u))
}

// SetFloat64 sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to 53 (and rounding will have
// no effect).
// If x is denormalized or NaN, the result is unspecified.
// TODO(gri) should return nil in those cases
func (z *Float) SetFloat64(x float64) *Float {
	if z.prec == 0 {
		z.prec = 53
	}
	z.acc = Exact
	z.neg = math.Signbit(x) // handle -0 correctly
	if math.IsInf(x, 0) {
		z.mant = z.mant[:0]
		z.exp = infExp
		return z
	}
	if x == 0 {
		z.mant = z.mant[:0]
		z.exp = 0
		return z
	}
	// x != 0
	fmant, exp := math.Frexp(x) // get normalized mantissa
	z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
	z.exp = int32(exp) // always fits
	if z.prec < 53 {
		z.round(0)
	}
	return z
}

// fnorm normalizes mantissa m by shifting it to the left
// such that the msb of the most-significant word (msw) is 1.
// It returns the shift amount. It assumes that len(m) != 0.
func fnorm(m nat) uint {
	if debugFloat && (len(m) == 0 || m[len(m)-1] == 0) {
		panic("msw of mantissa is 0")
	}
	s := nlz(m[len(m)-1])
	if s > 0 {
		c := shlVU(m, m, s)
		if debugFloat && c != 0 {
			panic("nlz or shlVU incorrect")
		}
	}
	return s
}

// SetInt sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the larger of x.BitLen()
// or 64 (and rounding will have no effect).
func (z *Float) SetInt(x *Int) *Float {
	// TODO(gri) can be more efficient if z.prec > 0
	// but small compared to the size of x, or if there
	// are many trailing 0's.
	bits := uint(x.BitLen())
	if z.prec == 0 {
		z.prec = umax(bits, 64)
	}
	z.acc = Exact
	z.neg = x.neg
	if len(x.abs) == 0 {
		z.mant = z.mant[:0]
		z.exp = 0
		return z
	}
	// x != 0
	z.mant = z.mant.set(x.abs)
	fnorm(z.mant)
	z.setExp(int64(bits))
	if z.prec < bits {
		z.round(0)
	}
	return z
}

// SetRat sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the largest of a.BitLen(),
// b.BitLen(), or 64; with x = a/b.
func (z *Float) SetRat(x *Rat) *Float {
	if x.IsInt() {
		return z.SetInt(x.Num())
	}
	var a, b Float
	a.SetInt(x.Num())
	b.SetInt(x.Denom())
	if z.prec == 0 {
		z.prec = umax(a.prec, b.prec)
	}
	return z.Quo(&a, &b)
}

// Set sets z to the (possibly rounded) value of x and returns z.
// If z's precision is 0, it is changed to the precision of x
// before setting z (and rounding will have no effect).
// Rounding is performed according to z's precision and rounding
// mode; and z's accuracy reports the result error relative to the
// exact (not rounded) result.
func (z *Float) Set(x *Float) *Float {
	// TODO(gri) what about z.acc? should it be always Exact?
	if z != x {
		if z.prec == 0 {
			z.prec = x.prec
		}
		z.acc = Exact
		z.neg = x.neg
		z.exp = x.exp
		z.mant = z.mant.set(x.mant)
		if z.prec < x.prec {
			z.round(0)
		}
	}
	return z
}

// Copy sets z to x, with the same precision and rounding mode as x,
// and returns z.
func (z *Float) Copy(x *Float) *Float {
	// TODO(gri) what about z.acc? should it be always Exact?
	if z != x {
		z.acc = Exact
		z.neg = x.neg
		z.exp = x.exp
		z.mant = z.mant.set(x.mant)
		z.prec = x.prec
		z.mode = x.mode
	}
	return z
}

func high64(x nat) uint64 {
	i := len(x)
	if i == 0 {
		return 0
	}
	// i > 0
	v := uint64(x[i-1])
	if _W == 32 {
		v <<= 32
		if i > 1 {
			v |= uint64(x[i-2])
		}
	}
	return v
}

// minPrec returns the minimum precision required to represent
// x without loss of accuracy.
// TODO(gri) this might be useful to export, perhaps under a better name
func (x *Float) minPrec() uint {
	return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
}

// Uint64 returns the unsigned integer resulting from truncating x
// towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
// if x is an integer and Below otherwise.
// The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
// for x > math.MaxUint64.
func (x *Float) Uint64() (uint64, Accuracy) {
	if debugFloat {
		validate(x)
	}
	switch x.ord() {
	case -2, -1:
		// x < 0
		return 0, Above
	case 0:
		// x == 0 || x == -0
		return 0, Exact
	case 1:
		// 0 < x < +Inf
		if x.exp <= 0 {
			// 0 < x < 1
			return 0, Below
		}
		// 1 <= x < +Inf
		if x.exp <= 64 {
			// u = trunc(x) fits into a uint64
			u := high64(x.mant) >> (64 - uint32(x.exp))
			if x.minPrec() <= 64 {
				return u, Exact
			}
			return u, Below // x truncated
		}
		fallthrough // x too large
	case 2:
		// x == +Inf
		return math.MaxUint64, Below
	}
	panic("unreachable")
}

// Int64 returns the integer resulting from truncating x towards zero.
// If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
// an integer, and Above (x < 0) or Below (x > 0) otherwise.
// The result is (math.MinInt64, Above) for x < math.MinInt64, and
// (math.MaxInt64, Below) for x > math.MaxInt64.
func (x *Float) Int64() (int64, Accuracy) {
	if debugFloat {
		validate(x)
	}

	switch x.ord() {
	case -2:
		// x == -Inf
		return math.MinInt64, Above
	case 0:
		// x == 0 || x == -0
		return 0, Exact
	case -1, 1:
		// 0 < |x| < +Inf
		acc := Below
		if x.neg {
			acc = Above
		}
		if x.exp <= 0 {
			// 0 < |x| < 1
			return 0, acc
		}
		// 1 <= |x| < +Inf
		if x.exp <= 63 {
			// i = trunc(x) fits into an int64 (excluding math.MinInt64)
			i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
			if x.neg {
				i = -i
			}
			if x.minPrec() <= 63 {
				return i, Exact
			}
			return i, acc // x truncated
		}
		if x.neg {
			// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
			if x.exp == 64 && x.minPrec() == 1 {
				acc = Exact
			}
			return math.MinInt64, acc
		}
		fallthrough
	case 2:
		// x == +Inf
		return math.MaxInt64, Below
	}
	panic("unreachable")
}

// Float64 returns the closest float64 value of x
// by rounding to nearest with 53 bits precision.
// TODO(gri) implement/document error scenarios.
func (x *Float) Float64() (float64, Accuracy) {
	// x == ±Inf
	if x.exp == infExp {
		var sign int
		if x.neg {
			sign = -1
		}
		return math.Inf(sign), Exact
	}
	// x == 0
	if len(x.mant) == 0 {
		return 0, Exact
	}
	// x != 0
	var r Float
	r.prec = 53
	r.Set(x)
	var s uint64
	if r.neg {
		s = 1 << 63
	}
	e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow
	m := high64(r.mant) >> 11 & (1<<52 - 1)
	return math.Float64frombits(s | e<<52 | m), r.acc
}

// Int returns the result of truncating x towards zero; or nil
// if x is an infinity. The result is Exact if x.IsInt();
// otherwise it is Below for x > 0, and Above for x < 0.
func (x *Float) Int() (res *Int, acc Accuracy) {
	if debugFloat {
		validate(x)
	}
	// accuracy for inexact results
	acc = Below // truncation
	if x.neg {
		acc = Above
	}
	// pick off easy cases
	if x.exp <= 0 {
		// |x| < 1 || |x| == Inf
		if x.exp == infExp {
			return nil, acc // ±Inf
		}
		if len(x.mant) == 0 {
			acc = Exact // ±0
		}
		return new(Int), acc // ±0.xxx
	}
	// x.exp > 0
	// x.mant[len(x.mant)-1] != 0
	// determine minimum required precision for x
	allBits := uint(len(x.mant)) * _W
	exp := uint(x.exp)
	if x.minPrec() <= exp {
		acc = Exact
	}
	// shift mantissa as needed
	res = &Int{neg: x.neg}
	// TODO(gri) should have a shift that takes positive and negative shift counts
	switch {
	case exp > allBits:
		res.abs = res.abs.shl(x.mant, exp-allBits)
	default:
		res.abs = res.abs.set(x.mant)
	case exp < allBits:
		res.abs = res.abs.shr(x.mant, allBits-exp)
	}
	return
}

// BUG(gri) Rat is not yet implemented
func (x *Float) Rat() *Rat {
	panic("unimplemented")
}

// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
// and returns z.
func (z *Float) Abs(x *Float) *Float {
	z.Set(x)
	z.neg = false
	return z
}

// Neg sets z to the (possibly rounded) value of x with its sign negated,
// and returns z.
func (z *Float) Neg(x *Float) *Float {
	z.Set(x)
	z.neg = !z.neg
	return z
}

// z = x + y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) uadd(x, y *Float) {
	// Note: This implementation requires 2 shifts most of the
	// time. It is also inefficient if exponents or precisions
	// differ by wide margins. The following article describes
	// an efficient (but much more complicated) implementation
	// compatible with the internal representation used here:
	//
	// Vincent Lefèvre: "The Generic Multiple-Precision Floating-
	// Point Addition With Exact Rounding (as in the MPFR Library)"
	// http://www.vinc17.net/research/papers/rnc6.pdf

	if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
		panic("uadd called with 0 argument")
	}

	// compute exponents ex, ey for mantissa with "binary point"
	// on the right (mantissa.0) - use int64 to avoid overflow
	ex := int64(x.exp) - int64(len(x.mant))*_W
	ey := int64(y.exp) - int64(len(y.mant))*_W

	// TODO(gri) having a combined add-and-shift primitive
	//           could make this code significantly faster
	switch {
	case ex < ey:
		// cannot re-use z.mant w/o testing for aliasing
		t := nat(nil).shl(y.mant, uint(ey-ex))
		z.mant = z.mant.add(x.mant, t)
	default:
		// ex == ey, no shift needed
		z.mant = z.mant.add(x.mant, y.mant)
	case ex > ey:
		// cannot re-use z.mant w/o testing for aliasing
		t := nat(nil).shl(x.mant, uint(ex-ey))
		z.mant = z.mant.add(t, y.mant)
		ex = ey
	}
	// len(z.mant) > 0

	z.setExp(ex + int64(len(z.mant))*_W - int64(fnorm(z.mant)))
	z.round(0)
}

// z = x - y for x >= y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) usub(x, y *Float) {
	// This code is symmetric to uadd.
	// We have not factored the common code out because
	// eventually uadd (and usub) should be optimized
	// by special-casing, and the code will diverge.

	if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
		panic("usub called with 0 argument")
	}

	ex := int64(x.exp) - int64(len(x.mant))*_W
	ey := int64(y.exp) - int64(len(y.mant))*_W

	switch {
	case ex < ey:
		// cannot re-use z.mant w/o testing for aliasing
		t := nat(nil).shl(y.mant, uint(ey-ex))
		z.mant = t.sub(x.mant, t)
	default:
		// ex == ey, no shift needed
		z.mant = z.mant.sub(x.mant, y.mant)
	case ex > ey:
		// cannot re-use z.mant w/o testing for aliasing
		t := nat(nil).shl(x.mant, uint(ex-ey))
		z.mant = t.sub(t, y.mant)
		ex = ey
	}

	// operands may have cancelled each other out
	if len(z.mant) == 0 {
		z.acc = Exact
		z.setExp(0)
		return
	}
	// len(z.mant) > 0

	z.setExp(ex + int64(len(z.mant))*_W - int64(fnorm(z.mant)))
	z.round(0)
}

// z = x * y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) umul(x, y *Float) {
	if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
		panic("umul called with 0 argument")
	}

	// Note: This is doing too much work if the precision
	// of z is less than the sum of the precisions of x
	// and y which is often the case (e.g., if all floats
	// have the same precision).
	// TODO(gri) Optimize this for the common case.

	e := int64(x.exp) + int64(y.exp)
	z.mant = z.mant.mul(x.mant, y.mant)

	// normalize mantissa
	z.setExp(e - int64(fnorm(z.mant)))
	z.round(0)
}

// z = x / y, ignoring signs of x and y.
// x and y must not be 0 or an Inf.
func (z *Float) uquo(x, y *Float) {
	if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
		panic("uquo called with 0 argument")
	}

	// mantissa length in words for desired result precision + 1
	// (at least one extra bit so we get the rounding bit after
	// the division)
	n := int(z.prec/_W) + 1

	// compute adjusted x.mant such that we get enough result precision
	xadj := x.mant
	if d := n - len(x.mant) + len(y.mant); d > 0 {
		// d extra words needed => add d "0 digits" to x
		xadj = make(nat, len(x.mant)+d)
		copy(xadj[d:], x.mant)
	}
	// TODO(gri): If we have too many digits (d < 0), we should be able
	// to shorten x for faster division. But we must be extra careful
	// with rounding in that case.

	// Compute d before division since there may be aliasing of x.mant
	// (via xadj) or y.mant with z.mant.
	d := len(xadj) - len(y.mant)

	// divide
	var r nat
	z.mant, r = z.mant.div(nil, xadj, y.mant)

	// determine exponent
	e := int64(x.exp) - int64(y.exp) - int64(d-len(z.mant))*_W

	// normalize mantissa
	z.setExp(e - int64(fnorm(z.mant)))

	// The result is long enough to include (at least) the rounding bit.
	// If there's a non-zero remainder, the corresponding fractional part
	// (if it were computed), would have a non-zero sticky bit (if it were
	// zero, it couldn't have a non-zero remainder).
	var sbit uint
	if len(r) > 0 {
		sbit = 1
	}
	z.round(sbit)
}

// ucmp returns -1, 0, or 1, depending on whether x < y, x == y, or x > y,
// while ignoring the signs of x and y. x and y must not be 0 or an Inf.
func (x *Float) ucmp(y *Float) int {
	if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
		panic("ucmp called with 0 argument")
	}

	switch {
	case x.exp < y.exp:
		return -1
	case x.exp > y.exp:
		return 1
	}
	// x.exp == y.exp

	// compare mantissas
	i := len(x.mant)
	j := len(y.mant)
	for i > 0 || j > 0 {
		var xm, ym Word
		if i > 0 {
			i--
			xm = x.mant[i]
		}
		if j > 0 {
			j--
			ym = y.mant[j]
		}
		switch {
		case xm < ym:
			return -1
		case xm > ym:
			return 1
		}
	}

	return 0
}

// Handling of sign bit as defined by IEEE 754-2008,
// section 6.3 (note that there are no NaN Floats):
//
// When neither the inputs nor result are NaN, the sign of a product or
// quotient is the exclusive OR of the operands’ signs; the sign of a sum,
// or of a difference x−y regarded as a sum x+(−y), differs from at most
// one of the addends’ signs; and the sign of the result of conversions,
// the quantize operation, the roundToIntegral operations, and the
// roundToIntegralExact (see 5.3.1) is the sign of the first or only operand.
// These rules shall apply even when operands or results are zero or infinite.
//
// When the sum of two operands with opposite signs (or the difference of
// two operands with like signs) is exactly zero, the sign of that sum (or
// difference) shall be +0 in all rounding-direction attributes except
// roundTowardNegative; under that attribute, the sign of an exact zero
// sum (or difference) shall be −0. However, x+x = x−(−x) retains the same
// sign as x even when x is zero.

// Add sets z to the rounded sum x+y and returns z.
// If z's precision is 0, it is changed to the larger
// of x's or y's precision before the operation.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
func (z *Float) Add(x, y *Float) *Float {
	if debugFloat {
		validate(x)
		validate(y)
	}

	if z.prec == 0 {
		z.prec = umax(x.prec, y.prec)
	}

	// TODO(gri) what about -0?
	if len(y.mant) == 0 {
		// TODO(gri) handle Inf
		return z.Set(x)
	}
	if len(x.mant) == 0 {
		// TODO(gri) handle Inf
		return z.Set(y)
	}

	// x, y != 0
	z.neg = x.neg
	if x.neg == y.neg {
		// x + y == x + y
		// (-x) + (-y) == -(x + y)
		z.uadd(x, y)
	} else {
		// x + (-y) == x - y == -(y - x)
		// (-x) + y == y - x == -(x - y)
		if x.ucmp(y) >= 0 {
			z.usub(x, y)
		} else {
			z.neg = !z.neg
			z.usub(y, x)
		}
	}
	return z
}

// Sub sets z to the rounded difference x-y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Sub(x, y *Float) *Float {
	if debugFloat {
		validate(x)
		validate(y)
	}

	if z.prec == 0 {
		z.prec = umax(x.prec, y.prec)
	}

	// TODO(gri) what about -0?
	if len(y.mant) == 0 {
		// TODO(gri) handle Inf
		return z.Set(x)
	}
	if len(x.mant) == 0 {
		return z.Neg(y)
	}

	// x, y != 0
	z.neg = x.neg
	if x.neg != y.neg {
		// x - (-y) == x + y
		// (-x) - y == -(x + y)
		z.uadd(x, y)
	} else {
		// x - y == x - y == -(y - x)
		// (-x) - (-y) == y - x == -(x - y)
		if x.ucmp(y) >= 0 {
			z.usub(x, y)
		} else {
			z.neg = !z.neg
			z.usub(y, x)
		}
	}
	return z
}

// Mul sets z to the rounded product x*y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Mul(x, y *Float) *Float {
	if debugFloat {
		validate(x)
		validate(y)
	}

	if z.prec == 0 {
		z.prec = umax(x.prec, y.prec)
	}

	// TODO(gri) handle Inf

	// TODO(gri) what about -0?
	if len(x.mant) == 0 || len(y.mant) == 0 {
		z.neg = false
		z.mant = z.mant[:0]
		z.exp = 0
		z.acc = Exact
		return z
	}

	// x, y != 0
	z.neg = x.neg != y.neg
	z.umul(x, y)
	return z
}

// Quo sets z to the rounded quotient x/y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
func (z *Float) Quo(x, y *Float) *Float {
	if debugFloat {
		validate(x)
		validate(y)
	}

	if z.prec == 0 {
		z.prec = umax(x.prec, y.prec)
	}

	// TODO(gri) handle Inf

	// TODO(gri) check that this is correct
	z.neg = x.neg != y.neg

	if len(y.mant) == 0 {
		z.setExp(infExp)
		return z
	}

	if len(x.mant) == 0 {
		z.mant = z.mant[:0]
		z.exp = 0
		z.acc = Exact
		return z
	}

	// x, y != 0
	z.uquo(x, y)
	return z
}

// Lsh sets z to the rounded x * (1<<s) and returns z.
// If z's precision is 0, it is changed to x's precision.
// Rounding is performed according to z's precision
// and rounding mode; and z's accuracy reports the
// result error relative to the exact (not rounded)
// result.
// BUG(gri) Lsh is not tested and may not work correctly.
func (z *Float) Lsh(x *Float, s uint) *Float {
	if debugFloat {
		validate(x)
	}

	if z.prec == 0 {
		z.prec = x.prec
	}

	// TODO(gri) handle Inf

	z.round(0)
	z.setExp(int64(z.exp) + int64(s))
	return z
}

// Rsh sets z to the rounded x / (1<<s) and returns z.
// Precision, rounding, and accuracy reporting are as for Lsh.
// BUG(gri) Rsh is not tested and may not work correctly.
func (z *Float) Rsh(x *Float, s uint) *Float {
	if debugFloat {
		validate(x)
	}

	if z.prec == 0 {
		z.prec = x.prec
	}

	// TODO(gri) handle Inf

	z.round(0)
	z.setExp(int64(z.exp) - int64(s))
	return z
}

// Cmp compares x and y and returns:
//
//   -1 if x <  y
//    0 if x == y (incl. -0 == 0)
//   +1 if x >  y
//
// Infinities with matching sign are equal.
func (x *Float) Cmp(y *Float) int {
	if debugFloat {
		validate(x)
		validate(y)
	}

	mx := x.ord()
	my := y.ord()
	switch {
	case mx < my:
		return -1
	case mx > my:
		return +1
	}
	// mx == my

	// only if |mx| == 1 we have to compare the mantissae
	switch mx {
	case -1:
		return -x.ucmp(y)
	case +1:
		return +x.ucmp(y)
	}

	return 0
}

func umax(x, y uint) uint {
	if x > y {
		return x
	}
	return y
}

// ord classifies x and returns:
//
//	-2 if -Inf == x
//	-1 if -Inf < x < 0
//	 0 if x == 0 (signed or unsigned)
//	+1 if 0 < x < +Inf
//	+2 if x == +Inf
//
// TODO(gri) export (and remove IsInf)?
func (x *Float) ord() int {
	m := 1 // common case
	if len(x.mant) == 0 {
		m = 0
		if x.exp == infExp {
			m = 2
		}
	}
	if x.neg {
		m = -m
	}
	return m
}