aboutsummaryrefslogtreecommitdiff
path: root/src/math/big/arith.go
blob: b0885f261fe9bad8e35290b94200a98a2048505b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file provides Go implementations of elementary multi-precision
// arithmetic operations on word vectors. These have the suffix _g.
// These are needed for platforms without assembly implementations of these routines.
// This file also contains elementary operations that can be implemented
// sufficiently efficiently in Go.

package big

import "math/bits"

// A Word represents a single digit of a multi-precision unsigned integer.
type Word uint

const (
	_S = _W / 8 // word size in bytes

	_W = bits.UintSize // word size in bits
	_B = 1 << _W       // digit base
	_M = _B - 1        // digit mask
)

// Many of the loops in this file are of the form
//   for i := 0; i < len(z) && i < len(x) && i < len(y); i++
// i < len(z) is the real condition.
// However, checking i < len(x) && i < len(y) as well is faster than
// having the compiler do a bounds check in the body of the loop;
// remarkably it is even faster than hoisting the bounds check
// out of the loop, by doing something like
//   _, _ = x[len(z)-1], y[len(z)-1]
// There are other ways to hoist the bounds check out of the loop,
// but the compiler's BCE isn't powerful enough for them (yet?).
// See the discussion in CL 164966.

// ----------------------------------------------------------------------------
// Elementary operations on words
//
// These operations are used by the vector operations below.

// z1<<_W + z0 = x*y
func mulWW_g(x, y Word) (z1, z0 Word) {
	hi, lo := bits.Mul(uint(x), uint(y))
	return Word(hi), Word(lo)
}

// z1<<_W + z0 = x*y + c
func mulAddWWW_g(x, y, c Word) (z1, z0 Word) {
	hi, lo := bits.Mul(uint(x), uint(y))
	var cc uint
	lo, cc = bits.Add(lo, uint(c), 0)
	return Word(hi + cc), Word(lo)
}

// nlz returns the number of leading zeros in x.
// Wraps bits.LeadingZeros call for convenience.
func nlz(x Word) uint {
	return uint(bits.LeadingZeros(uint(x)))
}

// q = (u1<<_W + u0 - r)/v
func divWW_g(u1, u0, v Word) (q, r Word) {
	qq, rr := bits.Div(uint(u1), uint(u0), uint(v))
	return Word(qq), Word(rr)
}

// The resulting carry c is either 0 or 1.
func addVV_g(z, x, y []Word) (c Word) {
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
		zi, cc := bits.Add(uint(x[i]), uint(y[i]), uint(c))
		z[i] = Word(zi)
		c = Word(cc)
	}
	return
}

// The resulting carry c is either 0 or 1.
func subVV_g(z, x, y []Word) (c Word) {
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x) && i < len(y); i++ {
		zi, cc := bits.Sub(uint(x[i]), uint(y[i]), uint(c))
		z[i] = Word(zi)
		c = Word(cc)
	}
	return
}

// The resulting carry c is either 0 or 1.
func addVW_g(z, x []Word, y Word) (c Word) {
	c = y
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x); i++ {
		zi, cc := bits.Add(uint(x[i]), uint(c), 0)
		z[i] = Word(zi)
		c = Word(cc)
	}
	return
}

// addVWlarge is addVW, but intended for large z.
// The only difference is that we check on every iteration
// whether we are done with carries,
// and if so, switch to a much faster copy instead.
// This is only a good idea for large z,
// because the overhead of the check and the function call
// outweigh the benefits when z is small.
func addVWlarge(z, x []Word, y Word) (c Word) {
	c = y
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x); i++ {
		if c == 0 {
			copy(z[i:], x[i:])
			return
		}
		zi, cc := bits.Add(uint(x[i]), uint(c), 0)
		z[i] = Word(zi)
		c = Word(cc)
	}
	return
}

func subVW_g(z, x []Word, y Word) (c Word) {
	c = y
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x); i++ {
		zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
		z[i] = Word(zi)
		c = Word(cc)
	}
	return
}

// subVWlarge is to subVW as addVWlarge is to addVW.
func subVWlarge(z, x []Word, y Word) (c Word) {
	c = y
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x); i++ {
		if c == 0 {
			copy(z[i:], x[i:])
			return
		}
		zi, cc := bits.Sub(uint(x[i]), uint(c), 0)
		z[i] = Word(zi)
		c = Word(cc)
	}
	return
}

func shlVU_g(z, x []Word, s uint) (c Word) {
	if s == 0 {
		copy(z, x)
		return
	}
	if len(z) == 0 {
		return
	}
	s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
	ŝ := _W - s
	ŝ &= _W - 1 // ditto
	c = x[len(z)-1] >> ŝ
	for i := len(z) - 1; i > 0; i-- {
		z[i] = x[i]<<s | x[i-1]>>ŝ
	}
	z[0] = x[0] << s
	return
}

func shrVU_g(z, x []Word, s uint) (c Word) {
	if s == 0 {
		copy(z, x)
		return
	}
	if len(z) == 0 {
		return
	}
	s &= _W - 1 // hint to the compiler that shifts by s don't need guard code
	ŝ := _W - s
	ŝ &= _W - 1 // ditto
	c = x[0] << ŝ
	for i := 0; i < len(z)-1; i++ {
		z[i] = x[i]>>s | x[i+1]<<ŝ
	}
	z[len(z)-1] = x[len(z)-1] >> s
	return
}

func mulAddVWW_g(z, x []Word, y, r Word) (c Word) {
	c = r
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x); i++ {
		c, z[i] = mulAddWWW_g(x[i], y, c)
	}
	return
}

func addMulVVW_g(z, x []Word, y Word) (c Word) {
	// The comment near the top of this file discusses this for loop condition.
	for i := 0; i < len(z) && i < len(x); i++ {
		z1, z0 := mulAddWWW_g(x[i], y, z[i])
		lo, cc := bits.Add(uint(z0), uint(c), 0)
		c, z[i] = Word(cc), Word(lo)
		c += z1
	}
	return
}

func divWVW_g(z []Word, xn Word, x []Word, y Word) (r Word) {
	r = xn
	for i := len(z) - 1; i >= 0; i-- {
		z[i], r = divWW_g(r, x[i], y)
	}
	return
}