aboutsummaryrefslogtreecommitdiff
path: root/src/go/types/typexpr.go
blob: 63e37de4b71da675ed160ecc23b082f79f33cd30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements type-checking of identifiers and type expressions.

package types

import (
	"fmt"
	"go/ast"
	"go/constant"
	"go/token"
	"sort"
	"strconv"
	"strings"
)

// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def, see Checker.definedType, below.
// If wantType is set, the identifier e is expected to denote a type.
//
func (check *Checker) ident(x *operand, e *ast.Ident, def *Named, wantType bool) {
	x.mode = invalid
	x.expr = e

	// Note that we cannot use check.lookup here because the returned scope
	// may be different from obj.Parent(). See also Scope.LookupParent doc.
	scope, obj := check.scope.LookupParent(e.Name, check.pos)
	if obj == nil {
		if e.Name == "_" {
			check.errorf(e, _InvalidBlank, "cannot use _ as value or type")
		} else {
			check.errorf(e, _UndeclaredName, "undeclared name: %s", e.Name)
		}
		return
	}
	check.recordUse(e, obj)

	// Type-check the object.
	// Only call Checker.objDecl if the object doesn't have a type yet
	// (in which case we must actually determine it) or the object is a
	// TypeName and we also want a type (in which case we might detect
	// a cycle which needs to be reported). Otherwise we can skip the
	// call and avoid a possible cycle error in favor of the more
	// informative "not a type/value" error that this function's caller
	// will issue (see issue #25790).
	typ := obj.Type()
	if _, gotType := obj.(*TypeName); typ == nil || gotType && wantType {
		check.objDecl(obj, def)
		typ = obj.Type() // type must have been assigned by Checker.objDecl
	}
	assert(typ != nil)

	// The object may have been dot-imported.
	// If so, mark the respective package as used.
	// (This code is only needed for dot-imports. Without them,
	// we only have to mark variables, see *Var case below).
	if pkgName := check.dotImportMap[dotImportKey{scope, obj}]; pkgName != nil {
		pkgName.used = true
	}

	switch obj := obj.(type) {
	case *PkgName:
		check.errorf(e, _InvalidPkgUse, "use of package %s not in selector", obj.name)
		return

	case *Const:
		check.addDeclDep(obj)
		if typ == Typ[Invalid] {
			return
		}
		if obj == universeIota {
			if check.iota == nil {
				check.errorf(e, _InvalidIota, "cannot use iota outside constant declaration")
				return
			}
			x.val = check.iota
		} else {
			x.val = obj.val
		}
		assert(x.val != nil)
		x.mode = constant_

	case *TypeName:
		x.mode = typexpr

	case *Var:
		// It's ok to mark non-local variables, but ignore variables
		// from other packages to avoid potential race conditions with
		// dot-imported variables.
		if obj.pkg == check.pkg {
			obj.used = true
		}
		check.addDeclDep(obj)
		if typ == Typ[Invalid] {
			return
		}
		x.mode = variable

	case *Func:
		check.addDeclDep(obj)
		x.mode = value

	case *Builtin:
		x.id = obj.id
		x.mode = builtin

	case *Nil:
		x.mode = value

	default:
		unreachable()
	}

	x.typ = typ
}

// typ type-checks the type expression e and returns its type, or Typ[Invalid].
// The type must not be an (uninstantiated) generic type.
func (check *Checker) typ(e ast.Expr) Type {
	return check.definedType(e, nil)
}

// varType type-checks the type expression e and returns its type, or Typ[Invalid].
// The type must not be an (uninstantiated) generic type and it must be ordinary
// (see ordinaryType).
func (check *Checker) varType(e ast.Expr) Type {
	typ := check.definedType(e, nil)
	check.ordinaryType(e, typ)
	return typ
}

// ordinaryType reports an error if typ is an interface type containing
// type lists or is (or embeds) the predeclared type comparable.
func (check *Checker) ordinaryType(pos positioner, typ Type) {
	// We don't want to call under() (via asInterface) or complete interfaces
	// while we are in the middle of type-checking parameter declarations that
	// might belong to interface methods. Delay this check to the end of
	// type-checking.
	check.atEnd(func() {
		if t := asInterface(typ); t != nil {
			check.completeInterface(pos.Pos(), t) // TODO(gri) is this the correct position?
			if t.allTypes != nil {
				check.softErrorf(pos, _Todo, "interface contains type constraints (%s)", t.allTypes)
				return
			}
			if t._IsComparable() {
				check.softErrorf(pos, _Todo, "interface is (or embeds) comparable")
			}
		}
	})
}

// anyType type-checks the type expression e and returns its type, or Typ[Invalid].
// The type may be generic or instantiated.
func (check *Checker) anyType(e ast.Expr) Type {
	typ := check.typInternal(e, nil)
	assert(isTyped(typ))
	check.recordTypeAndValue(e, typexpr, typ, nil)
	return typ
}

// definedType is like typ but also accepts a type name def.
// If def != nil, e is the type specification for the defined type def, declared
// in a type declaration, and def.underlying will be set to the type of e before
// any components of e are type-checked.
//
func (check *Checker) definedType(e ast.Expr, def *Named) Type {
	typ := check.typInternal(e, def)
	assert(isTyped(typ))
	if isGeneric(typ) {
		check.errorf(e, _Todo, "cannot use generic type %s without instantiation", typ)
		typ = Typ[Invalid]
	}
	check.recordTypeAndValue(e, typexpr, typ, nil)
	return typ
}

// genericType is like typ but the type must be an (uninstantiated) generic type.
func (check *Checker) genericType(e ast.Expr, reportErr bool) Type {
	typ := check.typInternal(e, nil)
	assert(isTyped(typ))
	if typ != Typ[Invalid] && !isGeneric(typ) {
		if reportErr {
			check.errorf(e, _Todo, "%s is not a generic type", typ)
		}
		typ = Typ[Invalid]
	}
	// TODO(gri) what is the correct call below?
	check.recordTypeAndValue(e, typexpr, typ, nil)
	return typ
}

// isubst returns an x with identifiers substituted per the substitution map smap.
// isubst only handles the case of (valid) method receiver type expressions correctly.
func isubst(x ast.Expr, smap map[*ast.Ident]*ast.Ident) ast.Expr {
	switch n := x.(type) {
	case *ast.Ident:
		if alt := smap[n]; alt != nil {
			return alt
		}
	case *ast.StarExpr:
		X := isubst(n.X, smap)
		if X != n.X {
			new := *n
			new.X = X
			return &new
		}
	case *ast.IndexExpr:
		index := isubst(n.Index, smap)
		if index != n.Index {
			new := *n
			new.Index = index
			return &new
		}
	case *ast.ListExpr:
		var elems []ast.Expr
		for i, elem := range n.ElemList {
			new := isubst(elem, smap)
			if new != elem {
				if elems == nil {
					elems = make([]ast.Expr, len(n.ElemList))
					copy(elems, n.ElemList)
				}
				elems[i] = new
			}
		}
		if elems != nil {
			new := *n
			new.ElemList = elems
			return &new
		}
	case *ast.ParenExpr:
		return isubst(n.X, smap) // no need to keep parentheses
	default:
		// Other receiver type expressions are invalid.
		// It's fine to ignore those here as they will
		// be checked elsewhere.
	}
	return x
}

// funcType type-checks a function or method type.
func (check *Checker) funcType(sig *Signature, recvPar *ast.FieldList, ftyp *ast.FuncType) {
	check.openScope(ftyp, "function")
	check.scope.isFunc = true
	check.recordScope(ftyp, check.scope)
	sig.scope = check.scope
	defer check.closeScope()

	var recvTyp ast.Expr // rewritten receiver type; valid if != nil
	if recvPar != nil && len(recvPar.List) > 0 {
		// collect generic receiver type parameters, if any
		// - a receiver type parameter is like any other type parameter, except that it is declared implicitly
		// - the receiver specification acts as local declaration for its type parameters, which may be blank
		_, rname, rparams := check.unpackRecv(recvPar.List[0].Type, true)
		if len(rparams) > 0 {
			// Blank identifiers don't get declared and regular type-checking of the instantiated
			// parameterized receiver type expression fails in Checker.collectParams of receiver.
			// Identify blank type parameters and substitute each with a unique new identifier named
			// "n_" (where n is the parameter index) and which cannot conflict with any user-defined
			// name.
			var smap map[*ast.Ident]*ast.Ident // substitution map from "_" to "n_" identifiers
			for i, p := range rparams {
				if p.Name == "_" {
					new := *p
					new.Name = fmt.Sprintf("%d_", i)
					rparams[i] = &new // use n_ identifier instead of _ so it can be looked up
					if smap == nil {
						smap = make(map[*ast.Ident]*ast.Ident)
					}
					smap[p] = &new
				}
			}
			if smap != nil {
				// blank identifiers were found => use rewritten receiver type
				recvTyp = isubst(recvPar.List[0].Type, smap)
			}
			sig.rparams = check.declareTypeParams(nil, rparams)
			// determine receiver type to get its type parameters
			// and the respective type parameter bounds
			var recvTParams []*TypeName
			if rname != nil {
				// recv should be a Named type (otherwise an error is reported elsewhere)
				// Also: Don't report an error via genericType since it will be reported
				//       again when we type-check the signature.
				// TODO(gri) maybe the receiver should be marked as invalid instead?
				if recv := asNamed(check.genericType(rname, false)); recv != nil {
					recvTParams = recv.tparams
				}
			}
			// provide type parameter bounds
			// - only do this if we have the right number (otherwise an error is reported elsewhere)
			if len(sig.rparams) == len(recvTParams) {
				// We have a list of *TypeNames but we need a list of Types.
				list := make([]Type, len(sig.rparams))
				for i, t := range sig.rparams {
					list[i] = t.typ
				}
				smap := makeSubstMap(recvTParams, list)
				for i, tname := range sig.rparams {
					bound := recvTParams[i].typ.(*_TypeParam).bound
					// bound is (possibly) parameterized in the context of the
					// receiver type declaration. Substitute parameters for the
					// current context.
					// TODO(gri) should we assume now that bounds always exist?
					//           (no bound == empty interface)
					if bound != nil {
						bound = check.subst(tname.pos, bound, smap)
						tname.typ.(*_TypeParam).bound = bound
					}
				}
			}
		}
	}

	if ftyp.TParams != nil {
		sig.tparams = check.collectTypeParams(ftyp.TParams)
		// Always type-check method type parameters but complain that they are not allowed.
		// (A separate check is needed when type-checking interface method signatures because
		// they don't have a receiver specification.)
		if recvPar != nil {
			check.errorf(ftyp.TParams, _Todo, "methods cannot have type parameters")
		}
	}

	// Value (non-type) parameters' scope starts in the function body. Use a temporary scope for their
	// declarations and then squash that scope into the parent scope (and report any redeclarations at
	// that time).
	scope := NewScope(check.scope, token.NoPos, token.NoPos, "function body (temp. scope)")
	recvList, _ := check.collectParams(scope, recvPar, recvTyp, false) // use rewritten receiver type, if any
	params, variadic := check.collectParams(scope, ftyp.Params, nil, true)
	results, _ := check.collectParams(scope, ftyp.Results, nil, false)
	scope.squash(func(obj, alt Object) {
		check.errorf(obj, _DuplicateDecl, "%s redeclared in this block", obj.Name())
		check.reportAltDecl(alt)
	})

	if recvPar != nil {
		// recv parameter list present (may be empty)
		// spec: "The receiver is specified via an extra parameter section preceding the
		// method name. That parameter section must declare a single parameter, the receiver."
		var recv *Var
		switch len(recvList) {
		case 0:
			// error reported by resolver
			recv = NewParam(0, nil, "", Typ[Invalid]) // ignore recv below
		default:
			// more than one receiver
			check.error(recvList[len(recvList)-1], _BadRecv, "method must have exactly one receiver")
			fallthrough // continue with first receiver
		case 1:
			recv = recvList[0]
		}

		// TODO(gri) We should delay rtyp expansion to when we actually need the
		//           receiver; thus all checks here should be delayed to later.
		rtyp, _ := deref(recv.typ)
		rtyp = expand(rtyp)

		// spec: "The receiver type must be of the form T or *T where T is a type name."
		// (ignore invalid types - error was reported before)
		if t := rtyp; t != Typ[Invalid] {
			var err string
			if T := asNamed(t); T != nil {
				// spec: "The type denoted by T is called the receiver base type; it must not
				// be a pointer or interface type and it must be declared in the same package
				// as the method."
				if T.obj.pkg != check.pkg {
					err = "type not defined in this package"
				} else {
					switch u := optype(T).(type) {
					case *Basic:
						// unsafe.Pointer is treated like a regular pointer
						if u.kind == UnsafePointer {
							err = "unsafe.Pointer"
						}
					case *Pointer, *Interface:
						err = "pointer or interface type"
					}
				}
			} else {
				err = "basic or unnamed type"
			}
			if err != "" {
				check.errorf(recv, _InvalidRecv, "invalid receiver %s (%s)", recv.typ, err)
				// ok to continue
			}
		}
		sig.recv = recv
	}

	sig.params = NewTuple(params...)
	sig.results = NewTuple(results...)
	sig.variadic = variadic
}

// goTypeName returns the Go type name for typ and
// removes any occurrences of "types." from that name.
func goTypeName(typ Type) string {
	return strings.ReplaceAll(fmt.Sprintf("%T", typ), "types.", "")
}

// typInternal drives type checking of types.
// Must only be called by definedType or genericType.
//
func (check *Checker) typInternal(e0 ast.Expr, def *Named) (T Type) {
	if trace {
		check.trace(e0.Pos(), "type %s", e0)
		check.indent++
		defer func() {
			check.indent--
			var under Type
			if T != nil {
				// Calling under() here may lead to endless instantiations.
				// Test case: type T[P any] *T[P]
				// TODO(gri) investigate if that's a bug or to be expected
				// (see also analogous comment in Checker.instantiate).
				under = T.Underlying()
			}
			if T == under {
				check.trace(e0.Pos(), "=> %s // %s", T, goTypeName(T))
			} else {
				check.trace(e0.Pos(), "=> %s (under = %s) // %s", T, under, goTypeName(T))
			}
		}()
	}

	switch e := e0.(type) {
	case *ast.BadExpr:
		// ignore - error reported before

	case *ast.Ident:
		var x operand
		check.ident(&x, e, def, true)

		switch x.mode {
		case typexpr:
			typ := x.typ
			def.setUnderlying(typ)
			return typ
		case invalid:
			// ignore - error reported before
		case novalue:
			check.errorf(&x, _NotAType, "%s used as type", &x)
		default:
			check.errorf(&x, _NotAType, "%s is not a type", &x)
		}

	case *ast.SelectorExpr:
		var x operand
		check.selector(&x, e)

		switch x.mode {
		case typexpr:
			typ := x.typ
			def.setUnderlying(typ)
			return typ
		case invalid:
			// ignore - error reported before
		case novalue:
			check.errorf(&x, _NotAType, "%s used as type", &x)
		default:
			check.errorf(&x, _NotAType, "%s is not a type", &x)
		}

	case *ast.IndexExpr:
		return check.instantiatedType(e.X, unpackExpr(e.Index), def)

	case *ast.ParenExpr:
		// Generic types must be instantiated before they can be used in any form.
		// Consequently, generic types cannot be parenthesized.
		return check.definedType(e.X, def)

	case *ast.ArrayType:
		if e.Len != nil {
			typ := new(Array)
			def.setUnderlying(typ)
			typ.len = check.arrayLength(e.Len)
			typ.elem = check.varType(e.Elt)
			return typ
		}

		typ := new(Slice)
		def.setUnderlying(typ)
		typ.elem = check.varType(e.Elt)
		return typ

	case *ast.Ellipsis:
		// dots are handled explicitly where they are legal
		// (array composite literals and parameter lists)
		check.error(e, _InvalidDotDotDot, "invalid use of '...'")
		check.use(e.Elt)

	case *ast.StructType:
		typ := new(Struct)
		def.setUnderlying(typ)
		check.structType(typ, e)
		return typ

	case *ast.StarExpr:
		typ := new(Pointer)
		def.setUnderlying(typ)
		typ.base = check.varType(e.X)
		return typ

	case *ast.FuncType:
		typ := new(Signature)
		def.setUnderlying(typ)
		check.funcType(typ, nil, e)
		return typ

	case *ast.InterfaceType:
		typ := new(Interface)
		def.setUnderlying(typ)
		if def != nil {
			typ.obj = def.obj
		}
		check.interfaceType(typ, e, def)
		return typ

	case *ast.MapType:
		typ := new(Map)
		def.setUnderlying(typ)

		typ.key = check.varType(e.Key)
		typ.elem = check.varType(e.Value)

		// spec: "The comparison operators == and != must be fully defined
		// for operands of the key type; thus the key type must not be a
		// function, map, or slice."
		//
		// Delay this check because it requires fully setup types;
		// it is safe to continue in any case (was issue 6667).
		check.atEnd(func() {
			if !Comparable(typ.key) {
				var why string
				if asTypeParam(typ.key) != nil {
					why = " (missing comparable constraint)"
				}
				check.errorf(e.Key, _IncomparableMapKey, "incomparable map key type %s%s", typ.key, why)
			}
		})

		return typ

	case *ast.ChanType:
		typ := new(Chan)
		def.setUnderlying(typ)

		dir := SendRecv
		switch e.Dir {
		case ast.SEND | ast.RECV:
			// nothing to do
		case ast.SEND:
			dir = SendOnly
		case ast.RECV:
			dir = RecvOnly
		default:
			check.invalidAST(e, "unknown channel direction %d", e.Dir)
			// ok to continue
		}

		typ.dir = dir
		typ.elem = check.varType(e.Value)
		return typ

	default:
		check.errorf(e0, _NotAType, "%s is not a type", e0)
	}

	typ := Typ[Invalid]
	def.setUnderlying(typ)
	return typ
}

// typeOrNil type-checks the type expression (or nil value) e
// and returns the type of e, or nil. If e is a type, it must
// not be an (uninstantiated) generic type.
// If e is neither a type nor nil, typeOrNil returns Typ[Invalid].
// TODO(gri) should we also disallow non-var types?
func (check *Checker) typeOrNil(e ast.Expr) Type {
	var x operand
	check.rawExpr(&x, e, nil)
	switch x.mode {
	case invalid:
		// ignore - error reported before
	case novalue:
		check.errorf(&x, _NotAType, "%s used as type", &x)
	case typexpr:
		check.instantiatedOperand(&x)
		return x.typ
	case value:
		if x.isNil() {
			return nil
		}
		fallthrough
	default:
		check.errorf(&x, _NotAType, "%s is not a type", &x)
	}
	return Typ[Invalid]
}

func (check *Checker) instantiatedType(x ast.Expr, targs []ast.Expr, def *Named) Type {
	b := check.genericType(x, true) // TODO(gri) what about cycles?
	if b == Typ[Invalid] {
		return b // error already reported
	}
	base := asNamed(b)
	if base == nil {
		unreachable() // should have been caught by genericType
	}

	// create a new type instance rather than instantiate the type
	// TODO(gri) should do argument number check here rather than
	//           when instantiating the type?
	typ := new(instance)
	def.setUnderlying(typ)

	typ.check = check
	typ.pos = x.Pos()
	typ.base = base

	// evaluate arguments (always)
	typ.targs = check.typeList(targs)
	if typ.targs == nil {
		def.setUnderlying(Typ[Invalid]) // avoid later errors due to lazy instantiation
		return Typ[Invalid]
	}

	// determine argument positions (for error reporting)
	typ.poslist = make([]token.Pos, len(targs))
	for i, arg := range targs {
		typ.poslist[i] = arg.Pos()
	}

	// make sure we check instantiation works at least once
	// and that the resulting type is valid
	check.atEnd(func() {
		t := typ.expand()
		check.validType(t, nil)
	})

	return typ
}

// arrayLength type-checks the array length expression e
// and returns the constant length >= 0, or a value < 0
// to indicate an error (and thus an unknown length).
func (check *Checker) arrayLength(e ast.Expr) int64 {
	var x operand
	check.expr(&x, e)
	if x.mode != constant_ {
		if x.mode != invalid {
			check.errorf(&x, _InvalidArrayLen, "array length %s must be constant", &x)
		}
		return -1
	}
	if isUntyped(x.typ) || isInteger(x.typ) {
		if val := constant.ToInt(x.val); val.Kind() == constant.Int {
			if representableConst(val, check, Typ[Int], nil) {
				if n, ok := constant.Int64Val(val); ok && n >= 0 {
					return n
				}
				check.errorf(&x, _InvalidArrayLen, "invalid array length %s", &x)
				return -1
			}
		}
	}
	check.errorf(&x, _InvalidArrayLen, "array length %s must be integer", &x)
	return -1
}

// typeList provides the list of types corresponding to the incoming expression list.
// If an error occurred, the result is nil, but all list elements were type-checked.
func (check *Checker) typeList(list []ast.Expr) []Type {
	res := make([]Type, len(list)) // res != nil even if len(list) == 0
	for i, x := range list {
		t := check.varType(x)
		if t == Typ[Invalid] {
			res = nil
		}
		if res != nil {
			res[i] = t
		}
	}
	return res
}

// collectParams declares the parameters of list in scope and returns the corresponding
// variable list. If type0 != nil, it is used instead of the the first type in list.
func (check *Checker) collectParams(scope *Scope, list *ast.FieldList, type0 ast.Expr, variadicOk bool) (params []*Var, variadic bool) {
	if list == nil {
		return
	}

	var named, anonymous bool
	for i, field := range list.List {
		ftype := field.Type
		if i == 0 && type0 != nil {
			ftype = type0
		}
		if t, _ := ftype.(*ast.Ellipsis); t != nil {
			ftype = t.Elt
			if variadicOk && i == len(list.List)-1 && len(field.Names) <= 1 {
				variadic = true
			} else {
				check.softErrorf(t, _MisplacedDotDotDot, "can only use ... with final parameter in list")
				// ignore ... and continue
			}
		}
		typ := check.varType(ftype)
		// The parser ensures that f.Tag is nil and we don't
		// care if a constructed AST contains a non-nil tag.
		if len(field.Names) > 0 {
			// named parameter
			for _, name := range field.Names {
				if name.Name == "" {
					check.invalidAST(name, "anonymous parameter")
					// ok to continue
				}
				par := NewParam(name.Pos(), check.pkg, name.Name, typ)
				check.declare(scope, name, par, scope.pos)
				params = append(params, par)
			}
			named = true
		} else {
			// anonymous parameter
			par := NewParam(ftype.Pos(), check.pkg, "", typ)
			check.recordImplicit(field, par)
			params = append(params, par)
			anonymous = true
		}
	}

	if named && anonymous {
		check.invalidAST(list, "list contains both named and anonymous parameters")
		// ok to continue
	}

	// For a variadic function, change the last parameter's type from T to []T.
	// Since we type-checked T rather than ...T, we also need to retro-actively
	// record the type for ...T.
	if variadic {
		last := params[len(params)-1]
		last.typ = &Slice{elem: last.typ}
		check.recordTypeAndValue(list.List[len(list.List)-1].Type, typexpr, last.typ, nil)
	}

	return
}

func (check *Checker) declareInSet(oset *objset, pos token.Pos, obj Object) bool {
	if alt := oset.insert(obj); alt != nil {
		check.errorf(atPos(pos), _DuplicateDecl, "%s redeclared", obj.Name())
		check.reportAltDecl(alt)
		return false
	}
	return true
}

func (check *Checker) interfaceType(ityp *Interface, iface *ast.InterfaceType, def *Named) {
	var tlist *ast.Ident // "type" name of first entry in a type list declaration
	var types []ast.Expr
	for _, f := range iface.Methods.List {
		if len(f.Names) > 0 {
			// We have a method with name f.Names[0], or a type
			// of a type list (name.Name == "type").
			// (The parser ensures that there's only one method
			// and we don't care if a constructed AST has more.)
			name := f.Names[0]
			if name.Name == "_" {
				check.errorf(name, _BlankIfaceMethod, "invalid method name _")
				continue // ignore
			}

			if name.Name == "type" {
				// Always collect all type list entries, even from
				// different type lists, under the assumption that
				// the author intended to include all types.
				types = append(types, f.Type)
				if tlist != nil && tlist != name {
					check.errorf(name, _Todo, "cannot have multiple type lists in an interface")
				}
				tlist = name
				continue
			}

			typ := check.typ(f.Type)
			sig, _ := typ.(*Signature)
			if sig == nil {
				if typ != Typ[Invalid] {
					check.invalidAST(f.Type, "%s is not a method signature", typ)
				}
				continue // ignore
			}

			// Always type-check method type parameters but complain if they are not enabled.
			// (This extra check is needed here because interface method signatures don't have
			// a receiver specification.)
			if sig.tparams != nil {
				check.errorf(f.Type.(*ast.FuncType).TParams, _Todo, "methods cannot have type parameters")
			}

			// use named receiver type if available (for better error messages)
			var recvTyp Type = ityp
			if def != nil {
				recvTyp = def
			}
			sig.recv = NewVar(name.Pos(), check.pkg, "", recvTyp)

			m := NewFunc(name.Pos(), check.pkg, name.Name, sig)
			check.recordDef(name, m)
			ityp.methods = append(ityp.methods, m)
		} else {
			// We have an embedded type. completeInterface will
			// eventually verify that we have an interface.
			ityp.embeddeds = append(ityp.embeddeds, check.typ(f.Type))
			check.posMap[ityp] = append(check.posMap[ityp], f.Type.Pos())
		}
	}

	// type constraints
	ityp.types = _NewSum(check.collectTypeConstraints(iface.Pos(), types))

	if len(ityp.methods) == 0 && ityp.types == nil && len(ityp.embeddeds) == 0 {
		// empty interface
		ityp.allMethods = markComplete
		return
	}

	// sort for API stability
	sortMethods(ityp.methods)
	sortTypes(ityp.embeddeds)

	check.later(func() { check.completeInterface(iface.Pos(), ityp) })
}

func (check *Checker) completeInterface(pos token.Pos, ityp *Interface) {
	if ityp.allMethods != nil {
		return
	}

	// completeInterface may be called via the LookupFieldOrMethod,
	// MissingMethod, Identical, or IdenticalIgnoreTags external API
	// in which case check will be nil. In this case, type-checking
	// must be finished and all interfaces should have been completed.
	if check == nil {
		panic("internal error: incomplete interface")
	}

	if trace {
		// Types don't generally have position information.
		// If we don't have a valid pos provided, try to use
		// one close enough.
		if !pos.IsValid() && len(ityp.methods) > 0 {
			pos = ityp.methods[0].pos
		}

		check.trace(pos, "complete %s", ityp)
		check.indent++
		defer func() {
			check.indent--
			check.trace(pos, "=> %s (methods = %v, types = %v)", ityp, ityp.allMethods, ityp.allTypes)
		}()
	}

	// An infinitely expanding interface (due to a cycle) is detected
	// elsewhere (Checker.validType), so here we simply assume we only
	// have valid interfaces. Mark the interface as complete to avoid
	// infinite recursion if the validType check occurs later for some
	// reason.
	ityp.allMethods = markComplete

	// Methods of embedded interfaces are collected unchanged; i.e., the identity
	// of a method I.m's Func Object of an interface I is the same as that of
	// the method m in an interface that embeds interface I. On the other hand,
	// if a method is embedded via multiple overlapping embedded interfaces, we
	// don't provide a guarantee which "original m" got chosen for the embedding
	// interface. See also issue #34421.
	//
	// If we don't care to provide this identity guarantee anymore, instead of
	// reusing the original method in embeddings, we can clone the method's Func
	// Object and give it the position of a corresponding embedded interface. Then
	// we can get rid of the mpos map below and simply use the cloned method's
	// position.

	var seen objset
	var methods []*Func
	mpos := make(map[*Func]token.Pos) // method specification or method embedding position, for good error messages
	addMethod := func(pos token.Pos, m *Func, explicit bool) {
		switch other := seen.insert(m); {
		case other == nil:
			methods = append(methods, m)
			mpos[m] = pos
		case explicit:
			check.errorf(atPos(pos), _DuplicateDecl, "duplicate method %s", m.name)
			check.errorf(atPos(mpos[other.(*Func)]), _DuplicateDecl, "\tother declaration of %s", m.name) // secondary error, \t indented
		default:
			// We have a duplicate method name in an embedded (not explicitly declared) method.
			// Check method signatures after all types are computed (issue #33656).
			// If we're pre-go1.14 (overlapping embeddings are not permitted), report that
			// error here as well (even though we could do it eagerly) because it's the same
			// error message.
			check.atEnd(func() {
				if !check.allowVersion(m.pkg, 1, 14) || !check.identical(m.typ, other.Type()) {
					check.errorf(atPos(pos), _DuplicateDecl, "duplicate method %s", m.name)
					check.errorf(atPos(mpos[other.(*Func)]), _DuplicateDecl, "\tother declaration of %s", m.name) // secondary error, \t indented
				}
			})
		}
	}

	for _, m := range ityp.methods {
		addMethod(m.pos, m, true)
	}

	// collect types
	allTypes := ityp.types

	posList := check.posMap[ityp]
	for i, typ := range ityp.embeddeds {
		pos := posList[i] // embedding position
		utyp := under(typ)
		etyp := asInterface(utyp)
		if etyp == nil {
			if utyp != Typ[Invalid] {
				var format string
				if _, ok := utyp.(*_TypeParam); ok {
					format = "%s is a type parameter, not an interface"
				} else {
					format = "%s is not an interface"
				}
				// TODO: correct error code.
				check.errorf(atPos(pos), _InvalidIfaceEmbed, format, typ)
			}
			continue
		}
		check.completeInterface(pos, etyp)
		for _, m := range etyp.allMethods {
			addMethod(pos, m, false) // use embedding position pos rather than m.pos
		}
		allTypes = intersect(allTypes, etyp.allTypes)
	}

	if methods != nil {
		sort.Sort(byUniqueMethodName(methods))
		ityp.allMethods = methods
	}
	ityp.allTypes = allTypes
}

// intersect computes the intersection of the types x and y.
// Note: A incomming nil type stands for the top type. A top
// type result is returned as nil.
func intersect(x, y Type) (r Type) {
	defer func() {
		if r == theTop {
			r = nil
		}
	}()

	switch {
	case x == theBottom || y == theBottom:
		return theBottom
	case x == nil || x == theTop:
		return y
	case y == nil || x == theTop:
		return x
	}

	xtypes := unpackType(x)
	ytypes := unpackType(y)
	// Compute the list rtypes which includes only
	// types that are in both xtypes and ytypes.
	// Quadratic algorithm, but good enough for now.
	// TODO(gri) fix this
	var rtypes []Type
	for _, x := range xtypes {
		if includes(ytypes, x) {
			rtypes = append(rtypes, x)
		}
	}

	if rtypes == nil {
		return theBottom
	}
	return _NewSum(rtypes)
}

func sortTypes(list []Type) {
	sort.Stable(byUniqueTypeName(list))
}

// byUniqueTypeName named type lists can be sorted by their unique type names.
type byUniqueTypeName []Type

func (a byUniqueTypeName) Len() int           { return len(a) }
func (a byUniqueTypeName) Less(i, j int) bool { return sortName(a[i]) < sortName(a[j]) }
func (a byUniqueTypeName) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

func sortName(t Type) string {
	if named := asNamed(t); named != nil {
		return named.obj.Id()
	}
	return ""
}

func sortMethods(list []*Func) {
	sort.Sort(byUniqueMethodName(list))
}

func assertSortedMethods(list []*Func) {
	if !debug {
		panic("internal error: assertSortedMethods called outside debug mode")
	}
	if !sort.IsSorted(byUniqueMethodName(list)) {
		panic("internal error: methods not sorted")
	}
}

// byUniqueMethodName method lists can be sorted by their unique method names.
type byUniqueMethodName []*Func

func (a byUniqueMethodName) Len() int           { return len(a) }
func (a byUniqueMethodName) Less(i, j int) bool { return a[i].Id() < a[j].Id() }
func (a byUniqueMethodName) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }

func (check *Checker) tag(t *ast.BasicLit) string {
	if t != nil {
		if t.Kind == token.STRING {
			if val, err := strconv.Unquote(t.Value); err == nil {
				return val
			}
		}
		check.invalidAST(t, "incorrect tag syntax: %q", t.Value)
	}
	return ""
}

func (check *Checker) structType(styp *Struct, e *ast.StructType) {
	list := e.Fields
	if list == nil {
		return
	}

	// struct fields and tags
	var fields []*Var
	var tags []string

	// for double-declaration checks
	var fset objset

	// current field typ and tag
	var typ Type
	var tag string
	add := func(ident *ast.Ident, embedded bool, pos token.Pos) {
		if tag != "" && tags == nil {
			tags = make([]string, len(fields))
		}
		if tags != nil {
			tags = append(tags, tag)
		}

		name := ident.Name
		fld := NewField(pos, check.pkg, name, typ, embedded)
		// spec: "Within a struct, non-blank field names must be unique."
		if name == "_" || check.declareInSet(&fset, pos, fld) {
			fields = append(fields, fld)
			check.recordDef(ident, fld)
		}
	}

	// addInvalid adds an embedded field of invalid type to the struct for
	// fields with errors; this keeps the number of struct fields in sync
	// with the source as long as the fields are _ or have different names
	// (issue #25627).
	addInvalid := func(ident *ast.Ident, pos token.Pos) {
		typ = Typ[Invalid]
		tag = ""
		add(ident, true, pos)
	}

	for _, f := range list.List {
		typ = check.varType(f.Type)
		tag = check.tag(f.Tag)
		if len(f.Names) > 0 {
			// named fields
			for _, name := range f.Names {
				add(name, false, name.Pos())
			}
		} else {
			// embedded field
			// spec: "An embedded type must be specified as a type name T or as a
			// pointer to a non-interface type name *T, and T itself may not be a
			// pointer type."
			pos := f.Type.Pos()
			name := embeddedFieldIdent(f.Type)
			if name == nil {
				// TODO(rFindley): using invalidAST here causes test failures (all
				//                 errors should have codes). Clean this up.
				check.errorf(f.Type, _Todo, "invalid AST: embedded field type %s has no name", f.Type)
				name = ast.NewIdent("_")
				name.NamePos = pos
				addInvalid(name, pos)
				continue
			}
			add(name, true, pos)

			// Because we have a name, typ must be of the form T or *T, where T is the name
			// of a (named or alias) type, and t (= deref(typ)) must be the type of T.
			// We must delay this check to the end because we don't want to instantiate
			// (via under(t)) a possibly incomplete type.

			// for use in the closure below
			embeddedTyp := typ
			embeddedPos := f.Type

			check.atEnd(func() {
				t, isPtr := deref(embeddedTyp)
				switch t := optype(t).(type) {
				case *Basic:
					if t == Typ[Invalid] {
						// error was reported before
						return
					}
					// unsafe.Pointer is treated like a regular pointer
					if t.kind == UnsafePointer {
						check.errorf(embeddedPos, _InvalidPtrEmbed, "embedded field type cannot be unsafe.Pointer")
					}
				case *Pointer:
					check.errorf(embeddedPos, _InvalidPtrEmbed, "embedded field type cannot be a pointer")
				case *Interface:
					if isPtr {
						check.errorf(embeddedPos, _InvalidPtrEmbed, "embedded field type cannot be a pointer to an interface")
					}
				}
			})
		}
	}

	styp.fields = fields
	styp.tags = tags
}

func embeddedFieldIdent(e ast.Expr) *ast.Ident {
	switch e := e.(type) {
	case *ast.Ident:
		return e
	case *ast.StarExpr:
		// *T is valid, but **T is not
		if _, ok := e.X.(*ast.StarExpr); !ok {
			return embeddedFieldIdent(e.X)
		}
	case *ast.SelectorExpr:
		return e.Sel
	case *ast.IndexExpr:
		return embeddedFieldIdent(e.X)
	}
	return nil // invalid embedded field
}

func (check *Checker) collectTypeConstraints(pos token.Pos, types []ast.Expr) []Type {
	list := make([]Type, 0, len(types)) // assume all types are correct
	for _, texpr := range types {
		if texpr == nil {
			check.invalidAST(atPos(pos), "missing type constraint")
			continue
		}
		list = append(list, check.varType(texpr))
	}

	// Ensure that each type is only present once in the type list.  Types may be
	// interfaces, which may not be complete yet. It's ok to do this check at the
	// end because it's not a requirement for correctness of the code.
	// Note: This is a quadratic algorithm, but type lists tend to be short.
	check.atEnd(func() {
		for i, t := range list {
			if t := asInterface(t); t != nil {
				check.completeInterface(types[i].Pos(), t)
			}
			if includes(list[:i], t) {
				check.softErrorf(types[i], _Todo, "duplicate type %s in type list", t)
			}
		}
	})

	return list
}

// includes reports whether typ is in list.
func includes(list []Type, typ Type) bool {
	for _, e := range list {
		if Identical(typ, e) {
			return true
		}
	}
	return false
}