aboutsummaryrefslogtreecommitdiff
path: root/src/go/types/subst.go
blob: 16aafd622e97c40428eb2cef12b98c0b316c306b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// This file implements type parameter substitution.

package types

import "go/token"

type substMap map[*TypeParam]Type

// makeSubstMap creates a new substitution map mapping tpars[i] to targs[i].
// If targs[i] is nil, tpars[i] is not substituted.
func makeSubstMap(tpars []*TypeParam, targs []Type) substMap {
	assert(len(tpars) == len(targs))
	proj := make(substMap, len(tpars))
	for i, tpar := range tpars {
		proj[tpar] = targs[i]
	}
	return proj
}

func (m substMap) empty() bool {
	return len(m) == 0
}

func (m substMap) lookup(tpar *TypeParam) Type {
	if t := m[tpar]; t != nil {
		return t
	}
	return tpar
}

// subst returns the type typ with its type parameters tpars replaced by the
// corresponding type arguments targs, recursively. subst is pure in the sense
// that it doesn't modify the incoming type. If a substitution took place, the
// result type is different from the incoming type.
//
// If the given environment is non-nil, it is used in lieu of check.env.
func (check *Checker) subst(pos token.Pos, typ Type, smap substMap, env *Environment) Type {
	if smap.empty() {
		return typ
	}

	// common cases
	switch t := typ.(type) {
	case *Basic:
		return typ // nothing to do
	case *TypeParam:
		return smap.lookup(t)
	}

	// general case
	subst := subster{
		pos:   pos,
		smap:  smap,
		check: check,
		env:   check.bestEnv(env),
	}
	return subst.typ(typ)
}

type subster struct {
	pos   token.Pos
	smap  substMap
	check *Checker // nil if called via Instantiate
	env   *Environment
}

func (subst *subster) typ(typ Type) Type {
	switch t := typ.(type) {
	case nil:
		// Call typOrNil if it's possible that typ is nil.
		panic("nil typ")

	case *Basic, *top:
		// nothing to do

	case *Array:
		elem := subst.typOrNil(t.elem)
		if elem != t.elem {
			return &Array{len: t.len, elem: elem}
		}

	case *Slice:
		elem := subst.typOrNil(t.elem)
		if elem != t.elem {
			return &Slice{elem: elem}
		}

	case *Struct:
		if fields, copied := subst.varList(t.fields); copied {
			return &Struct{fields: fields, tags: t.tags}
		}

	case *Pointer:
		base := subst.typ(t.base)
		if base != t.base {
			return &Pointer{base: base}
		}

	case *Tuple:
		return subst.tuple(t)

	case *Signature:
		// TODO(gri) rethink the recv situation with respect to methods on parameterized types
		// recv := subst.var_(t.recv) // TODO(gri) this causes a stack overflow - explain
		recv := t.recv
		params := subst.tuple(t.params)
		results := subst.tuple(t.results)
		if recv != t.recv || params != t.params || results != t.results {
			return &Signature{
				rparams: t.rparams,
				// TODO(rFindley) why can't we nil out tparams here, rather than in instantiate?
				tparams:  t.tparams,
				scope:    t.scope,
				recv:     recv,
				params:   params,
				results:  results,
				variadic: t.variadic,
			}
		}

	case *Union:
		terms, copied := subst.termlist(t.terms)
		if copied {
			// term list substitution may introduce duplicate terms (unlikely but possible).
			// This is ok; lazy type set computation will determine the actual type set
			// in normal form.
			return &Union{terms, nil}
		}

	case *Interface:
		methods, mcopied := subst.funcList(t.methods)
		embeddeds, ecopied := subst.typeList(t.embeddeds)
		if mcopied || ecopied {
			iface := &Interface{methods: methods, embeddeds: embeddeds, complete: t.complete}
			return iface
		}

	case *Map:
		key := subst.typ(t.key)
		elem := subst.typ(t.elem)
		if key != t.key || elem != t.elem {
			return &Map{key: key, elem: elem}
		}

	case *Chan:
		elem := subst.typ(t.elem)
		if elem != t.elem {
			return &Chan{dir: t.dir, elem: elem}
		}

	case *Named:
		// dump is for debugging
		dump := func(string, ...interface{}) {}
		if subst.check != nil && trace {
			subst.check.indent++
			defer func() {
				subst.check.indent--
			}()
			dump = func(format string, args ...interface{}) {
				subst.check.trace(subst.pos, format, args...)
			}
		}

		// subst is called by expandNamed, so in this function we need to be
		// careful not to call any methods that would cause t to be expanded: doing
		// so would result in deadlock.
		//
		// So we call t.orig.TypeParams() rather than t.TypeParams() here and
		// below.
		if t.orig.TypeParams().Len() == 0 {
			dump(">>> %s is not parameterized", t)
			return t // type is not parameterized
		}

		var newTArgs []Type
		assert(t.targs.Len() == t.orig.TypeParams().Len())

		// already instantiated
		dump(">>> %s already instantiated", t)
		// For each (existing) type argument targ, determine if it needs
		// to be substituted; i.e., if it is or contains a type parameter
		// that has a type argument for it.
		for i, targ := range t.targs.list() {
			dump(">>> %d targ = %s", i, targ)
			new_targ := subst.typ(targ)
			if new_targ != targ {
				dump(">>> substituted %d targ %s => %s", i, targ, new_targ)
				if newTArgs == nil {
					newTArgs = make([]Type, t.orig.TypeParams().Len())
					copy(newTArgs, t.targs.list())
				}
				newTArgs[i] = new_targ
			}
		}

		if newTArgs == nil {
			dump(">>> nothing to substitute in %s", t)
			return t // nothing to substitute
		}

		// before creating a new named type, check if we have this one already
		h := subst.env.typeHash(t.orig, newTArgs)
		dump(">>> new type hash: %s", h)
		if named := subst.env.typeForHash(h, nil); named != nil {
			dump(">>> found %s", named)
			return named
		}

		t.orig.resolve(subst.env)
		// Create a new instance and populate the environment to avoid endless
		// recursion. The position used here is irrelevant because validation only
		// occurs on t (we don't call validType on named), but we use subst.pos to
		// help with debugging.
		t.orig.resolve(subst.env)
		return subst.check.instance(subst.pos, t.orig, newTArgs, subst.env)

		// Note that if we were to expose substitution more generally (not just in
		// the context of a declaration), we'd have to substitute in
		// named.underlying as well.
		//
		// But this is unnecessary for now.

	case *TypeParam:
		return subst.smap.lookup(t)

	default:
		panic("unimplemented")
	}

	return typ
}

// typOrNil is like typ but if the argument is nil it is replaced with Typ[Invalid].
// A nil type may appear in pathological cases such as type T[P any] []func(_ T([]_))
// where an array/slice element is accessed before it is set up.
func (subst *subster) typOrNil(typ Type) Type {
	if typ == nil {
		return Typ[Invalid]
	}
	return subst.typ(typ)
}

func (subst *subster) var_(v *Var) *Var {
	if v != nil {
		if typ := subst.typ(v.typ); typ != v.typ {
			copy := *v
			copy.typ = typ
			return &copy
		}
	}
	return v
}

func (subst *subster) tuple(t *Tuple) *Tuple {
	if t != nil {
		if vars, copied := subst.varList(t.vars); copied {
			return &Tuple{vars: vars}
		}
	}
	return t
}

func (subst *subster) varList(in []*Var) (out []*Var, copied bool) {
	out = in
	for i, v := range in {
		if w := subst.var_(v); w != v {
			if !copied {
				// first variable that got substituted => allocate new out slice
				// and copy all variables
				new := make([]*Var, len(in))
				copy(new, out)
				out = new
				copied = true
			}
			out[i] = w
		}
	}
	return
}

func (subst *subster) func_(f *Func) *Func {
	if f != nil {
		if typ := subst.typ(f.typ); typ != f.typ {
			copy := *f
			copy.typ = typ
			return &copy
		}
	}
	return f
}

func (subst *subster) funcList(in []*Func) (out []*Func, copied bool) {
	out = in
	for i, f := range in {
		if g := subst.func_(f); g != f {
			if !copied {
				// first function that got substituted => allocate new out slice
				// and copy all functions
				new := make([]*Func, len(in))
				copy(new, out)
				out = new
				copied = true
			}
			out[i] = g
		}
	}
	return
}

func (subst *subster) typeList(in []Type) (out []Type, copied bool) {
	out = in
	for i, t := range in {
		if u := subst.typ(t); u != t {
			if !copied {
				// first function that got substituted => allocate new out slice
				// and copy all functions
				new := make([]Type, len(in))
				copy(new, out)
				out = new
				copied = true
			}
			out[i] = u
		}
	}
	return
}

func (subst *subster) termlist(in []*Term) (out []*Term, copied bool) {
	out = in
	for i, t := range in {
		if u := subst.typ(t.typ); u != t.typ {
			if !copied {
				// first function that got substituted => allocate new out slice
				// and copy all functions
				new := make([]*Term, len(in))
				copy(new, out)
				out = new
				copied = true
			}
			out[i] = NewTerm(t.tilde, u)
		}
	}
	return
}